organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­amino-6-methyl-1,3,5-triazin-1-ium nitrate

aCollege of Sciences, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and bState Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
*Correspondence e-mail: whuang@nju.edu.cn,

(Received 15 January 2009; accepted 2 February 2009; online 11 February 2009)

In the title salt, C4H8N5+·NO3, a ring N atom of 2,6-diamino-4-methyl­triazine is protonated. Each anion is connected to three neighbouring cations by multiple N—H⋯O hydrogen bonds which, together with N—H⋯N contacts, generate a layer structure.

Related literature

For 2,6-diamino-4-methyl­triazine compounds, see: Kaczmarek et al. (2008[Kaczmarek, M., Radecka-Paryzek, W. & Kubicki, M. (2008). Acta Cryst. E64, o269.]); Perpétuo & Janczak (2007[Perpétuo, G. J. & Janczak, J. (2007). Acta Cryst. C63, o271-o273.]); Portalone & Colapietro (2007[Portalone, G. & Colapietro, M. (2007). Acta Cryst. C63, o655-o658.]); Wijaya et al. (2004[Wijaya, K., Moers, O., Henschel, D., Blaschette, A. & Jones, P. G. (2004). Z. Naturforsch. Teil B, 59, 747-756.]); Xiao (2008[Xiao, Z.-H. (2008). Acta Cryst. E64, o411.]).

[Scheme 1]

Experimental

Crystal data
  • C4H8N5+·NO3

  • Mr = 188.16

  • Monoclinic, P 21 /n

  • a = 7.667 (1) Å

  • b = 10.338 (2) Å

  • c = 9.977 (1) Å

  • β = 93.384 (2)°

  • V = 789.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 291 (2) K

  • 0.13 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 4763 measured reflections

  • 1867 independent reflections

  • 1202 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.178

  • S = 1.00

  • 1867 reflections

  • 138 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3 0.88 (2) 2.62 (2) 3.414 (3) 150 (3)
N2—H2⋯O2 0.88 (2) 2.00 (3) 2.831 (3) 156 (3)
N4—H4D⋯O1i 0.87 (2) 2.17 (2) 3.031 (3) 175 (2)
N4—H4E⋯N3ii 0.87 (3) 2.24 (3) 3.105 (3) 177 (2)
N5—H5B⋯O3 0.90 (1) 2.20 (1) 3.083 (3) 167 (3)
N5—H5A⋯O3iii 0.89 (1) 2.13 (1) 3.014 (3) 174 (3)
N5—H5A⋯O1iii 0.89 (1) 2.49 (2) 3.046 (3) 121 (2)
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y, -z+2; (iii) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The crystal structures of 2,6-diamino-4-methayltriazine with methanol and ethanol solvates (Kaczmarek et al., 2008; Xiao, 2008) and its trifluoroacetate, dimesylamide and hydrogenchlorate (Perpétuo & Janczak 2007; Wijaya et al., 2004; Portalone et al., 2007) have been reported in literature. In this paper, we report the X-ray single-crystal structure of 2,4-diamino-6-methyl-1,3,5-triazin-1-ium nitrate (I).

The molecular structure of (I) is illustrated in Fig. 1. The bond distances and bond angles are similar to those reported structures. All the non-hydrogen atoms of cations and nitrate anions are coplanar with the mean deviation from least-squares plane is 0.0745 (3) Å. The proton is suggested to be delocalized within the aromatic ring although it is added to one of the nitrogen atoms. The molecules of (I) form a layer structure where intermolecular N—H···O, N—H···N hydrogen bonds are found between adjacent molecules (Table 1). Every nitrate is connected with three neighboring cations by multiple N—H···O hydrogen contacts (Fig. 2).

Related literature top

For 2,6-diamino-4-methyltriazine compounds, see: Kaczmarek et al. (2008); Perpétuo & Janczak (2007); Portalone & Colapietro (2007); Wijaya et al. (2004); Xiao (2008).

Experimental top

Experimental The title compound was obtained as a by-product from the reaction between CuNO3.3H2O (180 mg, 1.0 mmol) and 2,6-diamino-4-methayltriazine (935 mg, 5.0 mmol) in methanol (30 ml). Colourless crystals of (I) were obtained by slow evaporation of the mother liquid at room temperature in air after one week. Anal.Calcd. for C4H8N6O3: C: 25.55; H: 4.29; N: 44.67%. Found: C: 25.45; H: 4.34; N: 44.56%. Main FT—IR absorptions (KBr, cm-1): 3384 (b, s), 2396 (m), 1763 (m), 1624 (s), 1384 (s), 825 (m), and 456 (m).

Refinement top

The methyl H atoms were placed in geometrically idealized positions and refined as riding, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C). The H atoms bonded to the N atoms were located in the difference synthesis. Four restraints are used to restrain the bond lengths of N2—H2, N4—H4D, N5—H5A and N5—H5B in order to give similar N—H distances. In addition, one restraint is used to restrain the distance of atoms N1 and H5A so that it is simiar to that between atoms N1 and H4D.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Perspective view of the hydrogen bonding interactions related to every nitrate anion where the hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) x, y-1, z; (ii) -x-1/2, y-1/2, -z+3/2.]
2,4-Diamino-6-methyl-1,3,5-triazin-1-ium nitrate top
Crystal data top
C4H8N5+·NO3F(000) = 392
Mr = 188.16Dx = 1.583 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1324 reflections
a = 7.667 (1) Åθ = 2.8–26.0°
b = 10.338 (2) ŵ = 0.14 mm1
c = 9.977 (1) ÅT = 291 K
β = 93.384 (2)°Block, colourless
V = 789.4 (2) Å30.13 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1202 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.070
Graphite monochromatorθmax = 28.0°, θmin = 2.8°
ϕ and ω scansh = 810
4763 measured reflectionsk = 1213
1867 independent reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.106P)2]
where P = (Fo2 + 2Fc2)/3
1867 reflections(Δ/σ)max = 0.001
138 parametersΔρmax = 0.30 e Å3
5 restraintsΔρmin = 0.38 e Å3
Crystal data top
C4H8N5+·NO3V = 789.4 (2) Å3
Mr = 188.16Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.667 (1) ŵ = 0.14 mm1
b = 10.338 (2) ÅT = 291 K
c = 9.977 (1) Å0.13 × 0.12 × 0.10 mm
β = 93.384 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1202 reflections with I > 2σ(I)
4763 measured reflectionsRint = 0.070
1867 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0465 restraints
wR(F2) = 0.178H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.30 e Å3
1867 reflectionsΔρmin = 0.38 e Å3
138 parameters
Special details top

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0367 (3)0.2000 (2)0.8411 (2)0.0350 (5)
C20.3207 (3)0.2520 (2)0.9243 (2)0.0368 (5)
C30.2268 (3)0.0451 (2)0.9114 (2)0.0340 (5)
C40.4496 (3)0.3560 (2)0.9556 (3)0.0488 (6)
H4A0.55890.31830.98720.073*
H4B0.40740.41131.02390.073*
H4C0.46610.40570.87610.073*
H20.129 (4)0.372 (2)0.858 (3)0.067 (9)*
H4D0.189 (3)0.137 (2)0.909 (2)0.034 (6)*
H4E0.371 (4)0.096 (2)0.965 (3)0.044 (7)*
N10.0678 (2)0.07622 (17)0.85890 (19)0.0366 (5)
N20.1626 (2)0.29135 (19)0.87137 (19)0.0373 (5)
N30.3580 (2)0.13121 (17)0.94713 (19)0.0358 (5)
N40.2668 (3)0.07814 (18)0.9311 (2)0.0415 (5)
N50.1161 (3)0.2428 (2)0.7917 (2)0.0484 (6)
H5A0.193 (3)0.1810 (18)0.771 (3)0.082 (9)*
H5B0.131 (4)0.3288 (11)0.783 (3)0.066 (9)*
N60.0038 (2)0.61218 (18)0.84158 (19)0.0391 (5)
O10.0186 (2)0.73101 (16)0.84536 (19)0.0515 (5)
O20.1471 (2)0.56484 (18)0.8772 (2)0.0582 (6)
O30.1190 (3)0.54094 (17)0.7991 (2)0.0596 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0308 (11)0.0347 (12)0.0391 (11)0.0002 (8)0.0019 (8)0.0011 (9)
C20.0326 (12)0.0345 (12)0.0426 (12)0.0011 (9)0.0030 (9)0.0022 (9)
C30.0316 (11)0.0309 (11)0.0394 (11)0.0013 (8)0.0010 (9)0.0007 (8)
C40.0425 (14)0.0299 (12)0.0722 (16)0.0060 (9)0.0120 (12)0.0034 (11)
N10.0307 (10)0.0306 (10)0.0478 (11)0.0016 (7)0.0035 (8)0.0007 (8)
N20.0337 (10)0.0280 (10)0.0493 (11)0.0009 (7)0.0056 (8)0.0022 (8)
N30.0315 (10)0.0263 (9)0.0488 (11)0.0008 (7)0.0054 (8)0.0018 (7)
N40.0322 (11)0.0284 (11)0.0629 (13)0.0031 (8)0.0070 (9)0.0015 (8)
N50.0351 (11)0.0422 (13)0.0661 (13)0.0015 (9)0.0122 (9)0.0049 (10)
N60.0357 (11)0.0339 (10)0.0474 (11)0.0038 (8)0.0007 (8)0.0017 (8)
O10.0459 (10)0.0359 (10)0.0719 (12)0.0047 (7)0.0045 (8)0.0026 (8)
O20.0414 (11)0.0514 (12)0.0796 (14)0.0133 (8)0.0134 (9)0.0030 (9)
O30.0468 (11)0.0408 (10)0.0896 (14)0.0073 (8)0.0107 (10)0.0001 (9)
Geometric parameters (Å, º) top
C1—N11.311 (3)C4—H4B0.9600
C1—N51.321 (3)C4—H4C0.9600
C1—N21.371 (3)N2—H20.88 (2)
C2—N31.298 (3)N4—H4D0.87 (2)
C2—N21.356 (3)N4—H4E0.87 (3)
C2—C41.481 (3)N5—H5A0.888 (10)
C3—N41.322 (3)N5—H5B0.900 (10)
C3—N11.337 (3)N6—O21.236 (2)
C3—N31.375 (3)N6—O11.241 (2)
C4—H4A0.9600N6—O31.249 (3)
N1—C1—N5121.8 (2)C1—N1—C3116.22 (18)
N1—C1—N2121.5 (2)C2—N2—C1118.7 (2)
N5—C1—N2116.6 (2)C2—N2—H2126 (2)
N3—C2—N2122.7 (2)C1—N2—H2115 (2)
N3—C2—C4121.6 (2)C2—N3—C3115.26 (18)
N2—C2—C4115.7 (2)C3—N4—H4D119.0 (17)
N4—C3—N1119.2 (2)C3—N4—H4E117.7 (17)
N4—C3—N3115.2 (2)H4D—N4—H4E123 (2)
N1—C3—N3125.6 (2)C1—N5—H5A114.3 (16)
C2—C4—H4A109.5C1—N5—H5B118 (2)
C2—C4—H4B109.5H5A—N5—H5B128 (3)
H4A—C4—H4B109.5O2—N6—O1120.34 (19)
C2—C4—H4C109.5O2—N6—O3120.2 (2)
H4A—C4—H4C109.5O1—N6—O3119.42 (18)
H4B—C4—H4C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O30.88 (2)2.62 (2)3.414 (3)150 (3)
N2—H2···O20.88 (2)2.00 (3)2.831 (3)156 (3)
N4—H4D···O1i0.87 (2)2.17 (2)3.031 (3)175 (2)
N4—H4E···N3ii0.87 (3)2.24 (3)3.105 (3)177 (2)
N5—H5B···O30.90 (1)2.20 (1)3.083 (3)167 (3)
N5—H5A···O3iii0.89 (1)2.13 (1)3.014 (3)174 (3)
N5—H5A···O1iii0.89 (1)2.49 (2)3.046 (3)121 (2)
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+2; (iii) x1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC4H8N5+·NO3
Mr188.16
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)7.667 (1), 10.338 (2), 9.977 (1)
β (°) 93.384 (2)
V3)789.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.13 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4763, 1867, 1202
Rint0.070
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.178, 1.00
No. of reflections1867
No. of parameters138
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.38

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O30.88 (2)2.62 (2)3.414 (3)150 (3)
N2—H2···O20.88 (2)2.00 (3)2.831 (3)156 (3)
N4—H4D···O1i0.87 (2)2.17 (2)3.031 (3)175 (2)
N4—H4E···N3ii0.87 (3)2.24 (3)3.105 (3)177 (2)
N5—H5B···O30.90 (1)2.20 (1)3.083 (3)167 (3)
N5—H5A···O3iii0.89 (1)2.13 (1)3.014 (3)174 (3)
N5—H5A···O1iii0.89 (1)2.49 (2)3.046 (3)121 (2)
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+2; (iii) x1/2, y1/2, z+3/2.
 

Acknowledgements

WH acknowledges the National Natural Science Foundation of China (No. 20871065) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, for financial aid.

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKaczmarek, M., Radecka-Paryzek, W. & Kubicki, M. (2008). Acta Cryst. E64, o269.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPerpétuo, G. J. & Janczak, J. (2007). Acta Cryst. C63, o271–o273.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPortalone, G. & Colapietro, M. (2007). Acta Cryst. C63, o655–o658.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWijaya, K., Moers, O., Henschel, D., Blaschette, A. & Jones, P. G. (2004). Z. Naturforsch. Teil B, 59, 747–756.  CAS Google Scholar
First citationXiao, Z.-H. (2008). Acta Cryst. E64, o411.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds