organic compounds
9-(Methylsulfanyl)acridinium trifluoromethanesulfonate
aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl
In the 14H12NS+·CF3SO3−, N—H⋯O hydrogen bonds link cations and anions into ion pairs. Inversely oriented ion pairs form stacks through multidirectional π–π interactions among the acridine units. The features a network of C—H⋯O interactions among stacks and also long-range electrostatic interactions among ions. In the packing of the molecules, the acridine units are nearly parallel in stacks or inclined at an angle of 33.07 (2)° in the four adjacent stacks with which they interact via weak C—H⋯O interactions. The methylsulfanyl group is twisted through an angle of 60.53 (2)° with respect to the acridine ring.
of the title compound, CRelated literature
For general background, see: Wróblewska et al. (2004); Zomer & Jacquemijns (2001). For related structures, see: Meszko et al. (2002); Mrozek et al. (2002); Storoniak et al. (2000). For molecular interactions, see: Aakeröy et al. (1992); Bianchi et al. (2004); Hunter et al. (2001); Spek (2009); Steiner (1991). For the synthesis, see: Berny et al. (1992); Sato (1996).
Experimental
Crystal data
|
Data collection
|
Refinement
|
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809004978/ng2540sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809004978/ng2540Isup2.hkl
9-(Methylthio)acridinium trifluoromethanesulfonate was synthesized in two steps. First, 9-thioacridinone was synthesized by heating with stirring a mixture of 9(10H)-acridinone, tetraphosphorus decasulfide and freshly distilled pyridine at 100°C for 1 h (Berny et al., 1992). The reactant mixture was subsequently poured into 30% aq ammonia and the resulting precipitate of 9-thioacridinone filtered off. This compound was then treated with a fivefold molar excess of methyl triluoromethanesulfonate dissolved in dichloromethane for 3 h (Ar athmosphere, room temperature) (Sato, 1996). The crude 9-(methylthio)acridinium trifluoromethanesulfonate thus formed was dissolved in a small amount of ethanol, filtered, and again precipitated with a 25 v/v excess of diethyl ether (yield: 87%). Yellow crystals suitable for X-ray investigations were grown from absolute ethanol solution (m.p. 421–423 K).
H atoms involved in C–H···O interactions were located in a difference map and refined without constrains. H atoms involved in N–H···O interaction were located in a difference map and refined using the N—H distance restraint of 0.86 (2) Å. Other H atoms were positioned geometrically, with C—H = 0.93 Å (aromatic) and 0.96 Å (methyl), and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) (aromatic) or Uiso(H) = 1.5Ueq(C) (methyl).
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. The N10–H10···O19 hydrogen bond is represented by a dashed line. Cg1, Cg2 and Cg3 denote the ring centroids. | |
Fig. 2. The arrangement of the ions in the crystal structure. The N–H···O and C–H···O hydrogen bonds are represented by dashed lines, the π-π contacts by dotted lines. H atoms not involved in the interactions have been omitted. [Symmetry codes: (i) -x + 1, y + 1/2, -z + 3/2; (ii) -x, -y + 2, -z + 1; (iii) -x + 1, -y + 2, -z + 1.] | |
Fig. 3. Stacks of the ion pairs in the crystal structure viewed along the a axis. The N–H···O and C–H···O interactions are represented by dashed lines. H atoms not involved in interactions have been omitted. |
C14H12NS+·CF3SO3− | F(000) = 768 |
Mr = 375.40 | Dx = 1.557 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5491 reflections |
a = 7.2992 (2) Å | θ = 3.1–29.2° |
b = 17.3090 (6) Å | µ = 0.38 mm−1 |
c = 13.0582 (4) Å | T = 295 K |
β = 103.910 (3)° | Block, yellow |
V = 1601.42 (9) Å3 | 0.45 × 0.4 × 0.2 mm |
Z = 4 |
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 1944 reflections with I > 2σ(I) |
Radiation source: Enhance (Mo) X-ray Source | Rint = 0.028 |
Graphite monochromator | θmax = 25.1°, θmin = 3.1° |
Detector resolution: 10.4002 pixels mm-1 | h = −8→8 |
ω scans | k = −20→20 |
13308 measured reflections | l = −15→15 |
2841 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.161 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.1054P)2] where P = (Fo2 + 2Fc2)/3 |
2841 reflections | (Δ/σ)max = 0.001 |
226 parameters | Δρmax = 0.51 e Å−3 |
1 restraint | Δρmin = −0.35 e Å−3 |
C14H12NS+·CF3SO3− | V = 1601.42 (9) Å3 |
Mr = 375.40 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.2992 (2) Å | µ = 0.38 mm−1 |
b = 17.3090 (6) Å | T = 295 K |
c = 13.0582 (4) Å | 0.45 × 0.4 × 0.2 mm |
β = 103.910 (3)° |
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 1944 reflections with I > 2σ(I) |
13308 measured reflections | Rint = 0.028 |
2841 independent reflections |
R[F2 > 2σ(F2)] = 0.050 | 1 restraint |
wR(F2) = 0.161 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.51 e Å−3 |
2841 reflections | Δρmin = −0.35 e Å−3 |
226 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | −0.0169 (4) | 1.03470 (19) | 0.2103 (2) | 0.0567 (7) | |
H1 | −0.0740 | 1.0824 | 0.1916 | 0.068* | |
C2 | −0.0343 (4) | 0.9785 (2) | 0.1374 (2) | 0.0702 (9) | |
H2 | −0.1039 | 0.9879 | 0.0690 | 0.084* | |
C3 | 0.0508 (5) | 0.9058 (2) | 0.1626 (3) | 0.0751 (10) | |
H3 | 0.0404 | 0.8684 | 0.1103 | 0.090* | |
C4 | 0.1478 (4) | 0.8897 (2) | 0.2624 (3) | 0.0630 (8) | |
H4 | 0.2023 | 0.8414 | 0.2791 | 0.076* | |
C5 | 0.3767 (3) | 0.9596 (2) | 0.6240 (2) | 0.0577 (8) | |
H5 | 0.4190 | 0.9092 | 0.6380 | 0.069* | |
C6 | 0.4067 (4) | 1.0138 (2) | 0.7023 (2) | 0.0657 (9) | |
H6 | 0.4717 | 0.9998 | 0.7700 | 0.079* | |
C7 | 0.3425 (4) | 1.0895 (2) | 0.6832 (3) | 0.0670 (9) | |
H7 | 0.380 (4) | 1.127 (2) | 0.742 (3) | 0.079 (10)* | |
C8 | 0.2485 (4) | 1.11202 (18) | 0.5862 (2) | 0.0573 (7) | |
H8 | 0.2070 | 1.1628 | 0.5750 | 0.069* | |
C9 | 0.1176 (3) | 1.07880 (15) | 0.3956 (2) | 0.0442 (6) | |
N10 | 0.2546 (3) | 0.93052 (14) | 0.44086 (19) | 0.0478 (6) | |
H10 | 0.300 (4) | 0.8858 (12) | 0.462 (2) | 0.071 (10)* | |
C11 | 0.0877 (3) | 1.02193 (16) | 0.3156 (2) | 0.0453 (6) | |
C12 | 0.1652 (3) | 0.94706 (16) | 0.3405 (2) | 0.0455 (6) | |
C13 | 0.2116 (3) | 1.05863 (16) | 0.49974 (19) | 0.0438 (6) | |
C14 | 0.2796 (3) | 0.98202 (16) | 0.5208 (2) | 0.0441 (6) | |
S15 | 0.03215 (12) | 1.17329 (5) | 0.36941 (8) | 0.0731 (3) | |
C16 | 0.1546 (5) | 1.2067 (2) | 0.2729 (3) | 0.0770 (10) | |
H16A | 0.1099 | 1.2572 | 0.2488 | 0.116* | |
H16B | 0.1314 | 1.1716 | 0.2142 | 0.116* | |
H16C | 0.2877 | 1.2089 | 0.3044 | 0.116* | |
S17 | 0.36383 (10) | 0.71528 (5) | 0.50824 (6) | 0.0577 (3) | |
O18 | 0.4183 (4) | 0.6911 (2) | 0.6130 (2) | 0.1215 (12) | |
O19 | 0.4246 (4) | 0.79237 (14) | 0.4965 (3) | 0.1040 (10) | |
O20 | 0.1780 (3) | 0.6955 (2) | 0.4545 (2) | 0.1045 (10) | |
C21 | 0.5109 (6) | 0.6611 (3) | 0.4413 (4) | 0.0960 (13) | |
F22 | 0.4700 (5) | 0.6751 (3) | 0.3414 (3) | 0.193 (2) | |
F23 | 0.4819 (6) | 0.5867 (2) | 0.4487 (4) | 0.2000 (19) | |
F24 | 0.6911 (3) | 0.67460 (17) | 0.4790 (3) | 0.1366 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0519 (15) | 0.068 (2) | 0.0489 (15) | 0.0013 (14) | 0.0100 (12) | 0.0050 (15) |
C2 | 0.0620 (18) | 0.096 (3) | 0.0504 (17) | −0.0082 (18) | 0.0092 (14) | −0.0036 (18) |
C3 | 0.0695 (19) | 0.092 (3) | 0.067 (2) | −0.0095 (19) | 0.0227 (17) | −0.031 (2) |
C4 | 0.0542 (16) | 0.059 (2) | 0.077 (2) | 0.0015 (14) | 0.0176 (15) | −0.0158 (16) |
C5 | 0.0438 (14) | 0.070 (2) | 0.0586 (18) | −0.0061 (13) | 0.0101 (13) | 0.0162 (16) |
C6 | 0.0537 (16) | 0.095 (3) | 0.0466 (17) | −0.0186 (17) | 0.0077 (13) | 0.0052 (17) |
C7 | 0.0646 (18) | 0.086 (3) | 0.0510 (18) | −0.0206 (18) | 0.0156 (15) | −0.0155 (18) |
C8 | 0.0582 (16) | 0.0533 (19) | 0.0639 (19) | −0.0093 (13) | 0.0218 (14) | −0.0097 (14) |
C9 | 0.0383 (12) | 0.0407 (16) | 0.0555 (16) | 0.0005 (11) | 0.0151 (11) | 0.0019 (12) |
N10 | 0.0417 (11) | 0.0395 (14) | 0.0618 (15) | 0.0004 (10) | 0.0118 (10) | 0.0048 (12) |
C11 | 0.0379 (12) | 0.0494 (17) | 0.0499 (15) | 0.0018 (11) | 0.0129 (11) | 0.0016 (12) |
C12 | 0.0375 (12) | 0.0475 (17) | 0.0534 (16) | −0.0055 (11) | 0.0144 (11) | −0.0059 (13) |
C13 | 0.0400 (12) | 0.0448 (16) | 0.0496 (15) | −0.0082 (11) | 0.0166 (11) | −0.0039 (12) |
C14 | 0.0353 (12) | 0.0488 (17) | 0.0489 (15) | −0.0069 (11) | 0.0113 (11) | 0.0023 (12) |
S15 | 0.0800 (6) | 0.0507 (6) | 0.0909 (7) | 0.0178 (4) | 0.0248 (5) | 0.0059 (4) |
C16 | 0.083 (2) | 0.056 (2) | 0.087 (2) | −0.0126 (17) | 0.0096 (19) | 0.0185 (17) |
S17 | 0.0620 (5) | 0.0550 (5) | 0.0527 (5) | −0.0016 (3) | 0.0070 (3) | 0.0084 (3) |
O18 | 0.124 (2) | 0.173 (3) | 0.0551 (15) | −0.023 (2) | −0.0018 (15) | 0.0306 (16) |
O19 | 0.1003 (18) | 0.0507 (16) | 0.172 (3) | 0.0158 (13) | 0.0536 (18) | 0.0300 (16) |
O20 | 0.0605 (14) | 0.159 (3) | 0.0864 (18) | −0.0124 (15) | 0.0026 (13) | −0.0175 (17) |
C21 | 0.077 (3) | 0.081 (3) | 0.122 (4) | 0.005 (2) | 0.007 (2) | −0.023 (3) |
F22 | 0.144 (3) | 0.345 (6) | 0.097 (2) | 0.028 (3) | 0.044 (2) | −0.063 (3) |
F23 | 0.177 (3) | 0.085 (2) | 0.331 (6) | −0.001 (2) | 0.047 (3) | −0.088 (3) |
F24 | 0.0666 (14) | 0.132 (2) | 0.199 (3) | 0.0187 (13) | 0.0096 (15) | −0.057 (2) |
C1—C2 | 1.346 (4) | C9—C11 | 1.414 (4) |
C1—C11 | 1.421 (4) | C9—S15 | 1.754 (3) |
C1—H1 | 0.9300 | N10—C12 | 1.347 (3) |
C2—C3 | 1.407 (5) | N10—C14 | 1.351 (3) |
C2—H2 | 0.9300 | N10—H10 | 0.860 (18) |
C3—C4 | 1.354 (4) | C11—C12 | 1.420 (4) |
C3—H3 | 0.9300 | C13—C14 | 1.419 (4) |
C4—C12 | 1.407 (4) | S15—C16 | 1.807 (4) |
C4—H4 | 0.9300 | C16—H16A | 0.9600 |
C5—C6 | 1.365 (5) | C16—H16B | 0.9600 |
C5—C14 | 1.417 (4) | C16—H16C | 0.9600 |
C5—H5 | 0.9300 | S17—O18 | 1.393 (3) |
C6—C7 | 1.394 (5) | S17—O20 | 1.411 (2) |
C6—H6 | 0.9300 | S17—O19 | 1.426 (3) |
C7—C8 | 1.346 (4) | S17—C21 | 1.803 (5) |
C7—H7 | 1.00 (4) | C21—F22 | 1.289 (6) |
C8—C13 | 1.433 (4) | C21—F23 | 1.312 (5) |
C8—H8 | 0.9300 | C21—F24 | 1.310 (5) |
C9—C13 | 1.412 (4) | ||
C2—C1—C11 | 120.6 (3) | C9—C11—C1 | 124.0 (3) |
C2—C1—H1 | 119.7 | C12—C11—C1 | 117.1 (2) |
C11—C1—H1 | 119.7 | N10—C12—C4 | 119.6 (3) |
C1—C2—C3 | 121.4 (3) | N10—C12—C11 | 119.4 (2) |
C1—C2—H2 | 119.3 | C4—C12—C11 | 121.1 (3) |
C3—C2—H2 | 119.3 | C9—C13—C14 | 119.0 (2) |
C4—C3—C2 | 120.5 (3) | C9—C13—C8 | 123.7 (3) |
C4—C3—H3 | 119.7 | C14—C13—C8 | 117.3 (2) |
C2—C3—H3 | 119.7 | N10—C14—C13 | 119.4 (2) |
C3—C4—C12 | 119.2 (3) | N10—C14—C5 | 119.9 (3) |
C3—C4—H4 | 120.4 | C13—C14—C5 | 120.8 (3) |
C12—C4—H4 | 120.4 | C9—S15—C16 | 102.83 (15) |
C6—C5—C14 | 118.5 (3) | S15—C16—H16A | 109.5 |
C6—C5—H5 | 120.7 | S15—C16—H16B | 109.5 |
C14—C5—H5 | 120.7 | H16A—C16—H16B | 109.5 |
C5—C6—C7 | 121.7 (3) | S15—C16—H16C | 109.5 |
C5—C6—H6 | 119.2 | H16A—C16—H16C | 109.5 |
C7—C6—H6 | 119.2 | H16B—C16—H16C | 109.5 |
C8—C7—C6 | 120.9 (3) | O18—S17—O20 | 115.38 (19) |
C8—C7—H7 | 121 (2) | O18—S17—O19 | 111.4 (2) |
C6—C7—H7 | 117 (2) | O20—S17—O19 | 117.40 (19) |
C7—C8—C13 | 120.8 (3) | O18—S17—C21 | 104.9 (2) |
C7—C8—H8 | 119.6 | O20—S17—C21 | 104.20 (19) |
C13—C8—H8 | 119.6 | O19—S17—C21 | 101.4 (2) |
C13—C9—C11 | 119.5 (2) | F22—C21—F23 | 105.0 (5) |
C13—C9—S15 | 119.1 (2) | F22—C21—F24 | 108.3 (4) |
C11—C9—S15 | 121.4 (2) | F23—C21—F24 | 108.2 (4) |
C12—N10—C14 | 123.7 (2) | F22—C21—S17 | 111.9 (3) |
C12—N10—H10 | 124 (2) | F23—C21—S17 | 110.5 (4) |
C14—N10—H10 | 112 (2) | F24—C21—S17 | 112.7 (3) |
C9—C11—C12 | 118.9 (2) | ||
C11—C1—C2—C3 | −0.4 (5) | S15—C9—C13—C8 | −2.4 (3) |
C1—C2—C3—C4 | 2.2 (5) | C7—C8—C13—C9 | −178.6 (2) |
C2—C3—C4—C12 | −1.0 (5) | C7—C8—C13—C14 | −0.6 (4) |
C14—C5—C6—C7 | 0.8 (4) | C12—N10—C14—C13 | −1.0 (4) |
C5—C6—C7—C8 | −0.2 (5) | C12—N10—C14—C5 | −179.6 (2) |
C6—C7—C8—C13 | 0.1 (4) | C9—C13—C14—N10 | 0.7 (3) |
C13—C9—C11—C12 | −4.4 (3) | C8—C13—C14—N10 | −177.4 (2) |
S15—C9—C11—C12 | 178.03 (18) | C9—C13—C14—C5 | 179.3 (2) |
C13—C9—C11—C1 | 175.3 (2) | C8—C13—C14—C5 | 1.2 (3) |
S15—C9—C11—C1 | −2.3 (3) | C6—C5—C14—N10 | 177.3 (2) |
C2—C1—C11—C9 | 177.8 (3) | C6—C5—C14—C13 | −1.3 (4) |
C2—C1—C11—C12 | −2.5 (4) | C13—C9—S15—C16 | 120.7 (2) |
C14—N10—C12—C4 | 179.4 (2) | C11—C9—S15—C16 | −61.7 (2) |
C14—N10—C12—C11 | −1.4 (4) | O18—S17—C21—F22 | 177.1 (4) |
C3—C4—C12—N10 | 177.3 (3) | O20—S17—C21—F22 | 55.5 (4) |
C3—C4—C12—C11 | −1.9 (4) | O19—S17—C21—F22 | −66.9 (4) |
C9—C11—C12—N10 | 4.2 (4) | O18—S17—C21—F23 | 60.6 (4) |
C1—C11—C12—N10 | −175.6 (2) | O20—S17—C21—F23 | −61.0 (4) |
C9—C11—C12—C4 | −176.7 (2) | O19—S17—C21—F23 | 176.6 (4) |
C1—C11—C12—C4 | 3.6 (4) | O18—S17—C21—F24 | −60.6 (4) |
C11—C9—C13—C14 | 2.0 (3) | O20—S17—C21—F24 | 177.8 (4) |
S15—C9—C13—C14 | 179.63 (17) | O19—S17—C21—F24 | 55.4 (4) |
C11—C9—C13—C8 | −180.0 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O18i | 0.99 (4) | 2.38 (4) | 3.315 (5) | 158 (3) |
N10—H10···O19 | 0.86 (2) | 1.86 (2) | 2.712 (4) | 172 (3) |
Symmetry code: (i) −x+1, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C14H12NS+·CF3SO3− |
Mr | 375.40 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 7.2992 (2), 17.3090 (6), 13.0582 (4) |
β (°) | 103.910 (3) |
V (Å3) | 1601.42 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.38 |
Crystal size (mm) | 0.45 × 0.4 × 0.2 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13308, 2841, 1944 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.161, 1.06 |
No. of reflections | 2841 |
No. of parameters | 226 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.51, −0.35 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEPII (Johnson, 1976), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O18i | 0.99 (4) | 2.38 (4) | 3.315 (5) | 158 (3) |
N10—H10···O19 | 0.86 (2) | 1.86 (2) | 2.712 (4) | 172 (3) |
Symmetry code: (i) −x+1, y+1/2, −z+3/2. |
CgI | CgJ | Cg···Cg | Dihedral angle | Interplanar distance | Offset |
Cg1 | Cg1ii | 3.827 (2) | 0.0 | 3.468 (2) | 1.618 (2) |
Cg1 | Cg3ii | 3.634 (2) | 1.44 | 3.474 (2) | 1.066 (2) |
Cg1 | Cg3iii | 3.810 (2) | 1.44 | 3.412 (2) | 1.695 (2) |
Cg2 | Cg3ii | 3.830 (2) | 3.96 | 3.492 (2) | 1.573 (2) |
Cg3 | Cg1ii | 3.634 (2) | 1.44 | 3.483 (2) | 1.037 (2) |
Cg3 | Cg1iii | 3.810 (2) | 1.44 | 3.386 (2) | 1.747 (2) |
Cg3 | Cg2ii | 3.830 (2) | 3.96 | 3.449 (2) | 1.665 (2) |
Symmetry codes: (ii) -x, -y+2, -z+1; (iii) -x+1, -y+2, -z+1. Notes: Cg1, Cg2 and Cg3 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C5–C8/C13/C14 rings, respectively. Cg···Cg is the distance between ring centroids. The dihedral angle is that between the planes of the rings CgI and CgJ. The interplanar distance is the perpendicular distance of CgI from ring J. The offset is the perpendicular distance of ring I from ring J. |
Acknowledgements
This study was financed by the State Funds for Scientific Research (grant No. N204 123 32/3143, contract No. 3143/H03/2007/32 of the Polish Ministry of Research and Higher Education) for the period 2007–2010. BZ expresses her gratitude for the fellowship from the European Social Fund, the Polish State Budget and the Budget of the Province of Pomerania within the framework of the Priority VIII Human Capital Operational Programme, action 8.2, subaction 8.2.2 `Regional Innovation Strategy', of the `InnoDoktorant' project of the Province of Pomerania – fellowships for PhD students, 1st edition.
References
Aakeröy, C. B., Seddon, K. R. & Leslie, M. (1992). Struct. Chem. 3, 63–65. Google Scholar
Berny, H., Bsiri, N., Charbit, J. J., Galy, A. M., Soyfer, J. C., Galy, J. P., Barbe, J., Sharples, D., Mesa Valle, C. M., Mascaro, C. & Osuna, A. (1992). Arzneim. Forsch. Drug Res. 42, 674–679. CAS Google Scholar
Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559–568. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669. Web of Science CrossRef Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Meszko, J., Sikorski, A., Huta, O. M., Konitz, A. & Błażejowski, J. (2002). Acta Cryst. C58, o669–o671. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mrozek, A., Karolak-Wojciechowska, J., Amiel, P. & Barbe, J. (2002). Acta Cryst. E58, o1065–o1067. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction. (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Sato, N. (1996). Tetrahedron Lett. 37, 8519–8522. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steiner, T. (1991). Chem. Commun. pp. 313–314. Google Scholar
Storoniak, P., Krzymiński, K., Dokurno, P., Konitz, A. & Błażejowski, J. (2000). Aust. J. Chem. 53, 627–633. Web of Science CSD CrossRef CAS Google Scholar
Wróblewska, A., Huta, O. M., Midyanyj, S. V., Patsay, I. O. & Błażejowski, J. (2004). J. Org. Chem. 69, 1607–1614. Web of Science PubMed Google Scholar
Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Acridinium cations containing various substituents at position 9 and alkyl substitutes at the endocyclic N atom (position 10) are susceptible to oxidation by H2O2 or other oxidants in alkaline media, leading to the formation of electronically excited 10-alkyl-9-acridinones capable of emitting light with a quantum yield of several percent (Zomer & Jacquemijns, 2001; Wróblewska et al., 2004). The chemiluminescence phenomenon described above is governed by the features of the substituent at position 9. In the search for derivatives that could exhibit enhanced chemiluminescence, we turned our attention to compounds in which the C atom at position 9 is bound to the S atom. The simplest compound that we were able to synthesize was 9-(methylthio)acridinium trifluoromethanesulfonate. It was obtained by the reaction of 9-thioacridinone (Berny et al., 1992) with methyl trifluoromethanesulfonate, which usually leads to quarternarization of the endocyclic N atom (Sato, 1996). The cation of the reaction product has a protonated endocyclic N atom, enabling it to react with oxidants, thereby facilitating the investigation of chemiluminescence phenomena. This paper presents the crystal structure of the title compound. This is, to our knowledge, only the second report on the crystal structure of an acridine derivatives S-substitued at position 9 (for the first one, see Mrozek et al., 2002).
In the cations of the title compound (Fig. 1), the bond lenghts and angles characterizing the geometry of the acridine skeleton are typical of acridine-based derivatives (Storoniak et al., 2000; Meszko et al., 2002; Mrozek et al., 2002). The C9–S15 and S15–C16 bond lengths (1.754 (3) Å and 1.807 (4) Å, respectively) correlate well with those reported for 9-(thio-2'-methyl-4'-nitrophenyl)acridine (Mrozek et al., 2002). The C9–S15–C16 fragment and the acridine ring system, with an average deviation from planarity of 0.037 (4) Å, are oriented at 60.53 (2)° to each other. The acridine units in the lattice are either parallel (within stacks) or inclined at an angle of 33.07 (2)° (in four adjacent stacks with which they interact via C–H···O hydrogen bonds).
In the crystal structure, N–H···O hydrogen bonds (Aakeröy et al., 1992) link cations and anions in ion pairs (Table 1, Fig. 1). Inversely oriented ion pairs form stacks in which the central ring (Cg1) and the aromatic rings (Cg2 and Cg3) are involved in multidirectional π-π interactions (Table 2, Fig. 2) of an attractive nature (Hunter et al., 2001). The crystal structure is stabilized by a network of C–H···O hydrogen type bonding interactions (Steiner, 1991; Bianchi et al., 2004) between neighbouring stacks (Figs 2 and 3) as well as by long-range electrostatic interactions between ions.