metal-organic compounds
1,3-Benzothiazolium tetrachloridoaurate(III) tetrahydrofuran solvate
aDepartment of Chemistry, University of Stellenbosch, Private Bag X1, Matieland, South Africa
*Correspondence e-mail: lianger@sun.ac.za
In the 7H6NS)[AuCl4]·C4H8O, the [AuCl4]− anion shows a typical square-planar geometry. Numerous weak C—H⋯Cl hydrogen bonds between [AuCl4]− and the 1,3-benzothiazolium units form layers comprised of 24-membered rings in which hydrogen-bonded tetrahydrofuran (THF) solvent molecules are accommodated. C—H⋯Cl interactions between THF and [AuCl4]− from adjacent layers result in bilayers. These are further stabilized by π–π interactions between the thiazole and benzene rings [centroid–centroid distance = 3.971 (3) Å], resulting in the formation of a three-dimensional supramolecular assembly.
of the title ionic compound (CRelated literature
For background, see: Hagos et al. (2008). For related compounds, see: Huynh et al. (2006); Yen et al. (2006, 2008). For bond-length data, see Adé et al. (2004); Asaji et al. (2004); Makotchenko et al. (2006). For related literature, see: Brammer et al. (2001).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour 2001); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809003572/ng2541sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809003572/ng2541Isup2.hkl
1,3-Benzothiazole (0.10 g, 0.76 mmol) in acetonitrile (5 ml) was treated with HAuCl4.4H2O (0.31 g, 0.76 mmol) in water (5 ml) at room temperature (2.5 h). The reaction mixture was stripped of solvent and extracted with a mixture of dichloromethane and THF (1:1, 150 ml). Then the solvent was removed under reduced pressure to yield a yellow residue. Orange crystals suitable for single-crystal X-ray analysis were obtained from a THF solution layered with n-pentane at 253 K.
H6 atom (for NH) was located in a difference map and refined with a restrained N—H distance of 0.86 (5) Å, and with Uiso(H) = 1.2Ueq(N). The remaining H atoms were positioned geometrically, with C—H = 0.95 and 0.99 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). The highest peak and deepest hole in the final difference Fourier map are located at 0.88 Å and 0.95 Å from atom Au1, respectively.
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. Capped-stick representation showing the formation of layers consisting of R56(24) rings (shown in black). Dashed orange lines represent C—H···Cl hydrogen bonds. | |
Fig. 3. Representation of the bilayers (red-green) with pillar-like connections (yellow dashed lines) extended in the third dimension by π-π interactions (blue dashed lines) viewed down [010]. |
(C7H6NS)[AuCl4]·C4H8O | Z = 2 |
Mr = 547.06 | F(000) = 516 |
Triclinic, P1 | Dx = 2.263 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.3213 (7) Å | Cell parameters from 3347 reflections |
b = 10.3498 (10) Å | θ = 2.4–28.1° |
c = 11.8783 (12) Å | µ = 9.95 mm−1 |
α = 99.331 (1)° | T = 100 K |
β = 107.579 (1)° | Block, orange |
γ = 104.483 (2)° | 0.30 × 0.20 × 0.10 mm |
V = 802.75 (14) Å3 |
Bruker APEX CCD area-detector diffractometer | 3504 independent reflections |
Radiation source: fine-focus sealed tube | 3325 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.013 |
ω scans | θmax = 28.3°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) | h = −9→9 |
Tmin = 0.101, Tmax = 0.371 | k = −13→13 |
4957 measured reflections | l = −14→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.064 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0432P)2 + 0.5801P] where P = (Fo2 + 2Fc2)/3 |
3504 reflections | (Δ/σ)max < 0.001 |
175 parameters | Δρmax = 2.27 e Å−3 |
1 restraint | Δρmin = −1.00 e Å−3 |
(C7H6NS)[AuCl4]·C4H8O | γ = 104.483 (2)° |
Mr = 547.06 | V = 802.75 (14) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.3213 (7) Å | Mo Kα radiation |
b = 10.3498 (10) Å | µ = 9.95 mm−1 |
c = 11.8783 (12) Å | T = 100 K |
α = 99.331 (1)° | 0.30 × 0.20 × 0.10 mm |
β = 107.579 (1)° |
Bruker APEX CCD area-detector diffractometer | 3504 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) | 3325 reflections with I > 2σ(I) |
Tmin = 0.101, Tmax = 0.371 | Rint = 0.013 |
4957 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 1 restraint |
wR(F2) = 0.064 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 2.27 e Å−3 |
3504 reflections | Δρmin = −1.00 e Å−3 |
175 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Au1 | 0.00874 (2) | 0.215338 (16) | 0.234396 (14) | 0.01707 (7) | |
Cl1 | 0.03040 (19) | −0.00191 (12) | 0.22763 (11) | 0.0318 (3) | |
Cl2 | −0.26390 (17) | 0.12764 (11) | 0.05577 (10) | 0.0235 (2) | |
Cl3 | −0.00788 (18) | 0.43396 (11) | 0.24088 (10) | 0.0249 (2) | |
Cl4 | 0.27948 (17) | 0.29983 (13) | 0.41246 (10) | 0.0287 (2) | |
C5 | 0.6777 (7) | 0.7714 (5) | 0.9404 (4) | 0.0215 (9) | |
H5 | 0.6992 | 0.8678 | 0.9629 | 0.026* | |
N6 | 0.5448 (6) | 0.6896 (4) | 0.8362 (3) | 0.0207 (8) | |
H6 | 0.477 (7) | 0.718 (5) | 0.778 (4) | 0.025* | |
C7 | 0.5351 (7) | 0.5514 (4) | 0.8204 (4) | 0.0178 (8) | |
C8 | 0.4115 (7) | 0.4415 (5) | 0.7204 (4) | 0.0233 (9) | |
H8 | 0.3166 | 0.4541 | 0.6517 | 0.028* | |
C9 | 0.4313 (8) | 0.3142 (5) | 0.7244 (4) | 0.0276 (10) | |
H9 | 0.3487 | 0.2370 | 0.6571 | 0.033* | |
C10 | 0.5711 (8) | 0.2954 (5) | 0.8257 (5) | 0.0276 (10) | |
H10 | 0.5811 | 0.2056 | 0.8254 | 0.033* | |
C11 | 0.6940 (7) | 0.4035 (5) | 0.9253 (4) | 0.0231 (9) | |
H11 | 0.7888 | 0.3903 | 0.9936 | 0.028* | |
C12 | 0.6738 (6) | 0.5330 (4) | 0.9220 (4) | 0.0182 (8) | |
S13 | 0.80728 (17) | 0.68998 (12) | 1.03100 (10) | 0.0219 (2) | |
O14 | 0.3180 (5) | 0.7755 (3) | 0.6536 (3) | 0.0219 (7) | |
C15 | 0.3808 (7) | 0.9178 (5) | 0.6497 (4) | 0.0227 (9) | |
H15B | 0.5216 | 0.9468 | 0.6520 | 0.027* | |
H15A | 0.3715 | 0.9791 | 0.7195 | 0.027* | |
C16 | 0.2358 (8) | 0.9226 (5) | 0.5300 (5) | 0.0286 (10) | |
H16B | 0.2955 | 1.0014 | 0.5009 | 0.034* | |
H16A | 0.1068 | 0.9286 | 0.5372 | 0.034* | |
C17 | 0.2060 (9) | 0.7850 (5) | 0.4458 (5) | 0.0335 (12) | |
H17A | 0.0746 | 0.7534 | 0.3772 | 0.040* | |
H17B | 0.3159 | 0.7918 | 0.4127 | 0.040* | |
C18 | 0.2116 (7) | 0.6889 (5) | 0.5298 (4) | 0.0241 (9) | |
H18B | 0.0726 | 0.6352 | 0.5198 | 0.029* | |
H18A | 0.2830 | 0.6236 | 0.5108 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Au1 | 0.01437 (9) | 0.01940 (10) | 0.01510 (9) | 0.00527 (6) | 0.00270 (6) | 0.00332 (6) |
Cl1 | 0.0340 (7) | 0.0253 (6) | 0.0289 (6) | 0.0156 (5) | −0.0022 (5) | 0.0042 (5) |
Cl2 | 0.0220 (5) | 0.0200 (5) | 0.0205 (5) | 0.0076 (4) | −0.0028 (4) | 0.0022 (4) |
Cl3 | 0.0284 (6) | 0.0196 (5) | 0.0221 (5) | 0.0062 (4) | 0.0045 (4) | 0.0038 (4) |
Cl4 | 0.0211 (5) | 0.0370 (6) | 0.0194 (5) | 0.0097 (5) | −0.0013 (4) | 0.0004 (5) |
C5 | 0.025 (2) | 0.019 (2) | 0.023 (2) | 0.0104 (18) | 0.0086 (19) | 0.0063 (18) |
N6 | 0.0214 (19) | 0.0210 (19) | 0.0190 (18) | 0.0094 (16) | 0.0037 (15) | 0.0059 (15) |
C7 | 0.017 (2) | 0.020 (2) | 0.016 (2) | 0.0064 (17) | 0.0048 (17) | 0.0062 (17) |
C8 | 0.024 (2) | 0.025 (2) | 0.015 (2) | 0.0063 (19) | 0.0024 (18) | 0.0030 (18) |
C9 | 0.034 (3) | 0.020 (2) | 0.020 (2) | 0.007 (2) | 0.002 (2) | −0.0006 (18) |
C10 | 0.034 (3) | 0.021 (2) | 0.026 (2) | 0.013 (2) | 0.005 (2) | 0.0068 (19) |
C11 | 0.025 (2) | 0.021 (2) | 0.022 (2) | 0.0102 (19) | 0.0023 (18) | 0.0085 (18) |
C12 | 0.014 (2) | 0.020 (2) | 0.017 (2) | 0.0045 (17) | 0.0016 (16) | 0.0039 (17) |
S13 | 0.0206 (5) | 0.0221 (5) | 0.0177 (5) | 0.0071 (4) | 0.0009 (4) | 0.0025 (4) |
O14 | 0.0250 (17) | 0.0173 (15) | 0.0198 (16) | 0.0060 (13) | 0.0031 (13) | 0.0058 (12) |
C15 | 0.025 (2) | 0.020 (2) | 0.024 (2) | 0.0075 (19) | 0.0089 (19) | 0.0080 (18) |
C16 | 0.035 (3) | 0.025 (2) | 0.028 (3) | 0.013 (2) | 0.009 (2) | 0.010 (2) |
C17 | 0.041 (3) | 0.027 (3) | 0.025 (3) | 0.007 (2) | 0.005 (2) | 0.007 (2) |
C18 | 0.023 (2) | 0.025 (2) | 0.020 (2) | 0.0081 (19) | 0.0012 (18) | 0.0032 (18) |
Au1—Cl4 | 2.2733 (11) | C11—C12 | 1.390 (6) |
Au1—Cl1 | 2.2835 (12) | C11—H11 | 0.9500 |
Au1—Cl2 | 2.2850 (11) | C12—S13 | 1.741 (4) |
Au1—Cl3 | 2.2864 (11) | O14—C15 | 1.443 (5) |
C5—N6 | 1.310 (6) | O14—C18 | 1.450 (5) |
C5—S13 | 1.686 (4) | C15—C16 | 1.513 (6) |
C5—H5 | 0.9500 | C15—H15B | 0.9900 |
N6—C7 | 1.392 (6) | C15—H15A | 0.9900 |
N6—H6 | 0.86 (5) | C16—C17 | 1.525 (7) |
C7—C8 | 1.387 (6) | C16—H16B | 0.9900 |
C7—C12 | 1.398 (6) | C16—H16A | 0.9900 |
C8—C9 | 1.368 (7) | C17—C18 | 1.518 (7) |
C8—H8 | 0.9500 | C17—H17A | 0.9900 |
C9—C10 | 1.402 (7) | C17—H17B | 0.9900 |
C9—H9 | 0.9500 | C18—H18B | 0.9900 |
C10—C11 | 1.373 (7) | C18—H18A | 0.9900 |
C10—H10 | 0.9500 | ||
Cl4—Au1—Cl1 | 90.14 (4) | C11—C12—S13 | 128.7 (3) |
Cl4—Au1—Cl2 | 179.27 (4) | C7—C12—S13 | 110.4 (3) |
Cl1—Au1—Cl2 | 89.16 (4) | C5—S13—C12 | 90.5 (2) |
Cl4—Au1—Cl3 | 89.45 (4) | C15—O14—C18 | 109.0 (3) |
Cl1—Au1—Cl3 | 179.07 (4) | O14—C15—C16 | 104.8 (4) |
Cl2—Au1—Cl3 | 91.25 (4) | O14—C15—H15B | 110.8 |
N6—C5—S13 | 114.0 (3) | C16—C15—H15B | 110.8 |
N6—C5—H5 | 123.0 | O14—C15—H15A | 110.8 |
S13—C5—H5 | 123.0 | C16—C15—H15A | 110.8 |
C5—N6—C7 | 114.4 (4) | H15B—C15—H15A | 108.9 |
C5—N6—H6 | 124 (4) | C15—C16—C17 | 101.8 (4) |
C7—N6—H6 | 121 (4) | C15—C16—H16B | 111.4 |
C8—C7—N6 | 127.8 (4) | C17—C16—H16B | 111.4 |
C8—C7—C12 | 121.4 (4) | C15—C16—H16A | 111.4 |
N6—C7—C12 | 110.8 (4) | C17—C16—H16A | 111.4 |
C9—C8—C7 | 117.5 (4) | H16B—C16—H16A | 109.3 |
C9—C8—H8 | 121.3 | C18—C17—C16 | 102.9 (4) |
C7—C8—H8 | 121.3 | C18—C17—H17A | 111.2 |
C8—C9—C10 | 121.4 (5) | C16—C17—H17A | 111.2 |
C8—C9—H9 | 119.3 | C18—C17—H17B | 111.2 |
C10—C9—H9 | 119.3 | C16—C17—H17B | 111.2 |
C11—C10—C9 | 121.7 (4) | H17A—C17—H17B | 109.1 |
C11—C10—H10 | 119.2 | O14—C18—C17 | 106.7 (4) |
C9—C10—H10 | 119.2 | O14—C18—H18B | 110.4 |
C10—C11—C12 | 117.2 (4) | C17—C18—H18B | 110.4 |
C10—C11—H11 | 121.4 | O14—C18—H18A | 110.4 |
C12—C11—H11 | 121.4 | C17—C18—H18A | 110.4 |
C11—C12—C7 | 120.9 (4) | H18B—C18—H18A | 108.6 |
S13—C5—N6—C7 | 0.3 (5) | N6—C7—C12—C11 | −178.5 (4) |
C5—N6—C7—C8 | −179.6 (5) | C8—C7—C12—S13 | 179.4 (4) |
C5—N6—C7—C12 | −0.3 (5) | N6—C7—C12—S13 | 0.1 (5) |
N6—C7—C8—C9 | 178.7 (5) | N6—C5—S13—C12 | −0.2 (4) |
C12—C7—C8—C9 | −0.5 (7) | C11—C12—S13—C5 | 178.6 (4) |
C7—C8—C9—C10 | 0.0 (8) | C7—C12—S13—C5 | 0.0 (4) |
C8—C9—C10—C11 | 0.1 (9) | C18—O14—C15—C16 | 24.2 (5) |
C9—C10—C11—C12 | 0.2 (8) | O14—C15—C16—C17 | −37.1 (5) |
C10—C11—C12—C7 | −0.6 (7) | C15—C16—C17—C18 | 35.6 (5) |
C10—C11—C12—S13 | −179.0 (4) | C15—O14—C18—C17 | −1.1 (5) |
C8—C7—C12—C11 | 0.8 (7) | C16—C17—C18—O14 | −22.0 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N6—H6···O14 | 0.86 (5) | 1.87 (5) | 2.728 (5) | 177 (6) |
C5—H5···Cl2i | 0.95 | 2.65 | 3.588 (5) | 170 |
C8—H8···Cl4 | 0.95 | 2.93 | 3.447 (5) | 116 |
C9—H9···Cl4 | 0.95 | 3.00 | 3.498 (5) | 114 |
C10—H10···Cl2ii | 0.95 | 2.96 | 3.541 (6) | 121 |
C11—H11···Cl2ii | 0.95 | 2.90 | 3.498 (5) | 122 |
C11—H11···Cl3ii | 0.95 | 2.77 | 3.639 (5) | 154 |
C15—H15B···Cl1iii | 0.99 | 3.02 | 3.922 (6) | 153 |
C18—H18A···Cl4iii | 0.99 | 2.91 | 3.547 (6) | 123 |
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | (C7H6NS)[AuCl4]·C4H8O |
Mr | 547.06 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 7.3213 (7), 10.3498 (10), 11.8783 (12) |
α, β, γ (°) | 99.331 (1), 107.579 (1), 104.483 (2) |
V (Å3) | 802.75 (14) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 9.95 |
Crystal size (mm) | 0.30 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Bruker APEX CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1997) |
Tmin, Tmax | 0.101, 0.371 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4957, 3504, 3325 |
Rint | 0.013 |
(sin θ/λ)max (Å−1) | 0.666 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.064, 1.05 |
No. of reflections | 3504 |
No. of parameters | 175 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 2.27, −1.00 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour 2001).
D—H···A | D—H | H···A | D···A | D—H···A |
N6—H6···O14 | 0.86 (5) | 1.87 (5) | 2.728 (5) | 177 (6) |
C5—H5···Cl2i | 0.95 | 2.65 | 3.588 (5) | 170 |
C8—H8···Cl4 | 0.95 | 2.93 | 3.447 (5) | 116 |
C9—H9···Cl4 | 0.95 | 3.00 | 3.498 (5) | 114 |
C10—H10···Cl2ii | 0.95 | 2.96 | 3.541 (6) | 121 |
C11—H11···Cl2ii | 0.95 | 2.90 | 3.498 (5) | 122 |
C11—H11···Cl3ii | 0.95 | 2.77 | 3.639 (5) | 154 |
C15—H15B···Cl1iii | 0.99 | 3.02 | 3.922 (6) | 153 |
C18—H18A···Cl4iii | 0.99 | 2.91 | 3.547 (6) | 123 |
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) −x+1, −y+1, −z+1. |
Acknowledgements
The authors thank the National Research Foundation of South Africa and the University of Stellenbosch for financial support.
References
Adé, A., Cerrada, E., Contel, M., Laguna, M., Merino, P. & Tejero, T. (2004). J. Organomet. Chem. 689, 1788–1795. Google Scholar
Asaji, T., Akiyama, E., Tajima, F., Eda, K., Hashimoto, M. & Furukawa, Y. (2004). Polyhedron, 23, 1605–1611. Web of Science CSD CrossRef CAS Google Scholar
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191. CrossRef CAS Google Scholar
Brammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277–290. Web of Science CrossRef CAS Google Scholar
Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Hagos, T. K., Nogai, S. D., Dobrzańska, L. & Cronje, S. (2008). Acta Cryst. E64, m1357. Web of Science CSD CrossRef IUCr Journals Google Scholar
Huynh, H. V., Meier, N., Pape, T. & Hahn, F. E. (2006). Organometallics, 25, 3012–3018. Web of Science CSD CrossRef CAS Google Scholar
Makotchenko, E. V., Baidina, I. A. & Naumov, D. Yu. (2006). J. Struct. Chem. 47, 499–503. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yen, S. K., Koh, L. L., Hahn, F. E., Huynh, H. V. & Hor, T. S. A. (2006). Organometallics, 25, 5105–5112. Web of Science CSD CrossRef CAS Google Scholar
Yen, S. K., Koh, L. L., Huynh, H. V. & Hor, T. S. A. (2008). Dalton Trans. pp. 699–706. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
During the course of ongoing studies on the reactions of gold(III) compounds with heterocycles, we have isolated the title ionic compound (I) with a structure resembling that of a 1,3-dimesitylimidazolinium tetrachloro-gold(III) dichloromethane solvate reported earlier (Hagos et al. 2008). The asymmetric unit (Fig. 1) consists of a 1,3-benzothiazolium cation, a tetrachloro-gold(III) anion and a tetrahydrofuran molecule. The structural parameters associated with the 1,3-benzothiazolium moiety agree well with reported values, see for example 3-(2-propenyl)-1,3-benzothiazolium bromide (Huynh et al. 2006), N-benzyl-1,3-benzothiazolium bromide (Yen et al. 2006) and 3-n-propyl-1,3-benzothiazolium bromide monohydrate (Yen et al. 2008). The anionic part displays a typical square-planar geometry around Au and the Au—Cl distances compare well with previously reported values (Adé et al., 2004; Asaji et al., 2004; Makotchenko et al., 2006). All Cl atoms of [AuCl4]- complex participate in the formation of weak C—H···Cl hydrogen bonds (Table 1). Atoms Cl2, Cl3 and Cl4 interact with the 1,3-benzothiazolium cation forming layers consisting of R56(24) rings in which tetrahydrofuran molecules are incorporated by forming hydrogen bonds O6—H6···N14 with a distance of 2.728 (5) Å (Fig. 2). Further C—H···Cl interactions between THF and [AuCl4]- from neighbouring layers (C15—H15B···Cl1 and C18—H18A···Cl4) form pillar-like connections between them, leading to the formation of bilayers. The latter are propagated along [100] by π-π interactions between thiazole and benzene rings [symmetry operation: 1 - x, 1 - y, 2 - z, centroid-centroid distance = 3.971 (3) Å], resulting in a three-dimensional assembly (Fig. 3).