organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cyclo­hexa­ne­spiro-2′-[2′,3′,6′,7′-tetra­hydro-1′H-cyclo­penta­[d]pyrimidin]-4′(5′H)-one

aSchool of Chemical Engineering and Environment, Beijing Institue of Technology, Beijing 100081, People's Republic of China
*Correspondence e-mail: shidaxin@bit.edu.cn

(Received 7 January 2009; accepted 15 February 2009; online 28 February 2009)

The title compound, C12H18N2O, was synthesized by the reaction of cyclo­hexa­none and 2-amino­cyclo­pent-1-enecarbonitrile. In the mol­ecule of the title compound, the six-carbon ring displays a chair conformation, the six-membered 1,3-diaza ring and the cyclo­pentene ring both assume envelope conformations. Supra­molecular aggregation is achieved by N—H⋯O hydrogen bonds.

Related literature

For general background on the biological activity of pyrimidinones, see: Schramm et al. (1984[Schramm, S., Schmitz, E. & Gruengemann, E. (1984). J. Prakt. Chem. (Leipzig), 326, 279-286.]); Wen et al. (2002[Wen, H. J., Hao, W. Y. & Gong, B. Y. (2002). Zhongguo Kangshengsu ZaZhi, 27, 644-646.]); For related structures, see: Yu et al. (1992[Yu, M. J., McCowan, I. R., Mason, N. R., Deeter, J. B. & Mendelsohn, L. G. (1992). J. Med. Chem. 35, 2543-2542.]); Zhang, Li, Shi et al. (2008[Zhang, L., Li, J., Shi, D., Zhang, L. & Fan, Y. (2008). Acta Cryst. E64, o448.]); Zhang, Li, Yang et al. (2008[Zhang, L., Li, J., Yang, X., Shi, D. & Chen, J. (2008). Acta Cryst. E64, o450.]).

[Scheme 1]

Experimental

Crystal data
  • C12H18N2O

  • Mr = 206.28

  • Monoclinic, P 21 /n

  • a = 10.294 (2) Å

  • b = 10.461 (2) Å

  • c = 10.659 (2) Å

  • β = 112.70 (3)°

  • V = 1059.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 113 K

  • 0.24 × 0.20 × 0.08 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.980, Tmax = 0.993

  • 6976 measured reflections

  • 1862 independent reflections

  • 1632 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.103

  • S = 1.13

  • 1862 reflections

  • 144 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.899 (9) 1.993 (9) 2.8832 (14) 169.9 (14)
N2—H2⋯O1ii 0.899 (9) 2.080 (11) 2.9458 (17) 161.3 (15)
Symmetry codes: (i) -x, -y+1, -z; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrimidin-4(5H)-ones are valuable synthetic intermediates, and represent a common structure found in various biologically active compounds Schramm et al., 1984). Functionalization of the pyrimidin-4(5H)-one group offers an attractive method for the generation of derivatives which may constitute interesting medicinal and biological properties. For example, spiro[cyclohexane-1,2'(1'H)-quinazolin]-4'(3'H)-one shows immunosuppressive, antifungal, and antitumor activity (Wen et al., 2002).

Molecules of the title compound (Fig. 1) are linked by N1—H···O1 and N2—H···O1 H-bonds , as shown in Fig. 2 and have a similar conformation as (s)-2-(3-nitrophenyl)-1,2-dihydro-quinazolin-4(3H)-one (Zhang, Li & Shi et al., 2008). The 1,3-diaza ring assumes envelope conformation, similar to that found in 4(3H)-quinazolinone derivatives (Zhang, Li & Yang et al., 2008; Yu et al., 1992). The cyclopentene exists in an envelope formation, and cyclohexane displays a chair conformation.

Related literature top

For general background on biological activity, see: Schramm et al. (1984); Wen et al. (2002); For related structures, see: Yu et al. (1992); Zhang, Li, Shi et al. (2008); Zhang, Li, Yang et al. (2008).

Experimental top

A solution of 2-aminocyclopent-1-enecarbonitrile (10 mmol, 1.08 g) and sodium methanolate (10 mmol, 0.54 g) in cyclohexanone (2 ml), was refluxed for 2 h. The reaction mixture was cooled to 293 K and kept at this temperature for an additional 12 h. The solvent was filtered in vacuo to give 2-cyclohexyl-2,3,6,7-tetrahydro-1H-cyclopenta[d]pyrimidin- 4(5H)-one. The product was recrystallizated from ethanol to give clearless crytals. M.p. 513–514 K; IR (KBr): 3201 (N—H), 3074, 2931 (C—H), 1707 (C=O) cm-1; 1H-NMR(DMSO, p.p.m.): 1.50 (6H, m), 1.74–1.81 (4H, m), 2.28 (2H, t), 2.38 (2H, t), 2.50 (2H, m), 6.57 (1H,s), 6.86 (1H, s). 50 mg of the product was dissolved in ethyl acetate (5 ml) and the solution was kept at room temperature for 4 days to give colorless single crystals.

Refinement top

H atoms attached to C were included in calculated positions with a riding model (C—H distance = 0.97 Å), while the N—H hydrogens were refined with N—H distance restraints of 0.90 Å. Uiso values were set to 1.2Ueq of the carrier atom.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, drawn with 30% probability ellipsoids.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along a axis.
Cyclohexanespiro-2'-[2',3',6',7'-tetrahydro-1'H- cyclopenta[d]pyrimidin]-4'(5'H)-one top
Crystal data top
C12H18N2OF(000) = 448
Mr = 206.28Dx = 1.294 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3035 reflections
a = 10.294 (2) Åθ = 2.8–27.8°
b = 10.461 (2) ŵ = 0.08 mm1
c = 10.659 (2) ÅT = 113 K
β = 112.70 (3)°Plate, colorless
V = 1059.0 (4) Å30.24 × 0.20 × 0.08 mm
Z = 4
Data collection top
Rigaku Saturn
diffractometer
1862 independent reflections
Radiation source: rotating anode1632 reflections with I > 2σ(I)
Confocal multilayer optics monochromatorRint = 0.034
Detector resolution: 14.63 pixels mm-1θmax = 25.0°, θmin = 2.8°
ω scansh = 1212
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2006)
k = 1212
Tmin = 0.980, Tmax = 0.993l = 1212
6976 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.058P)2 + 0.1813P]
where P = (Fo2 + 2Fc2)/3
1862 reflections(Δ/σ)max < 0.001
144 parametersΔρmax = 0.22 e Å3
2 restraintsΔρmin = 0.22 e Å3
Crystal data top
C12H18N2OV = 1059.0 (4) Å3
Mr = 206.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.294 (2) ŵ = 0.08 mm1
b = 10.461 (2) ÅT = 113 K
c = 10.659 (2) Å0.24 × 0.20 × 0.08 mm
β = 112.70 (3)°
Data collection top
Rigaku Saturn
diffractometer
1862 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2006)
1632 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.993Rint = 0.034
6976 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0372 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.22 e Å3
1862 reflectionsΔρmin = 0.22 e Å3
144 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.14346 (9)0.42583 (8)0.02403 (9)0.0163 (2)
N10.08172 (11)0.34945 (10)0.09960 (11)0.0152 (3)
N20.16234 (11)0.18929 (10)0.26816 (11)0.0165 (3)
C10.05332 (13)0.34458 (11)0.09213 (13)0.0137 (3)
C20.08039 (13)0.24658 (11)0.17362 (13)0.0152 (3)
C30.21300 (13)0.22403 (12)0.19860 (14)0.0179 (3)
H3A0.29190.20440.11470.021*
H3B0.23640.29760.24120.021*
C40.17249 (14)0.10798 (13)0.29541 (15)0.0219 (3)
H4A0.21580.11430.36140.026*
H4B0.20310.02910.24470.026*
C50.01109 (13)0.11111 (13)0.36688 (14)0.0196 (3)
H5A0.01850.15580.45310.023*
H5B0.02820.02550.38200.023*
C60.03058 (13)0.18298 (11)0.26602 (13)0.0152 (3)
C70.17877 (12)0.24061 (11)0.14698 (13)0.0142 (3)
C80.14163 (13)0.13822 (12)0.03476 (14)0.0165 (3)
H8A0.04860.10450.01810.020*
H8B0.13860.17760.04870.020*
C90.24726 (14)0.02825 (12)0.07214 (14)0.0206 (3)
H9A0.22100.03230.00250.025*
H9B0.24510.01590.15130.025*
C100.39614 (13)0.07713 (13)0.10258 (15)0.0212 (3)
H10A0.46210.00640.13030.025*
H10B0.40070.11470.02120.025*
C110.43647 (13)0.17692 (13)0.21547 (14)0.0194 (3)
H11A0.52870.21120.22980.023*
H11B0.44220.13640.29930.023*
C120.32970 (12)0.28661 (12)0.18128 (14)0.0171 (3)
H12A0.35610.34450.25820.021*
H12B0.33330.33400.10450.021*
H10.1032 (15)0.4130 (12)0.0541 (14)0.025 (4)*
H20.2347 (13)0.1526 (15)0.3359 (14)0.034 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0151 (5)0.0148 (4)0.0169 (5)0.0014 (4)0.0038 (4)0.0029 (4)
N10.0145 (6)0.0128 (5)0.0185 (6)0.0001 (4)0.0066 (5)0.0035 (5)
N20.0131 (6)0.0219 (6)0.0142 (6)0.0028 (4)0.0050 (5)0.0048 (5)
C10.0142 (6)0.0128 (6)0.0121 (7)0.0016 (5)0.0030 (5)0.0031 (5)
C20.0147 (6)0.0144 (6)0.0171 (7)0.0002 (5)0.0067 (5)0.0001 (5)
C30.0161 (6)0.0178 (6)0.0211 (7)0.0003 (5)0.0087 (5)0.0006 (6)
C40.0209 (7)0.0242 (7)0.0239 (8)0.0002 (6)0.0125 (6)0.0058 (6)
C50.0210 (7)0.0214 (7)0.0188 (8)0.0034 (6)0.0105 (6)0.0054 (6)
C60.0178 (7)0.0140 (6)0.0152 (7)0.0009 (5)0.0080 (5)0.0017 (5)
C70.0134 (6)0.0146 (6)0.0144 (7)0.0003 (5)0.0052 (5)0.0021 (5)
C80.0161 (7)0.0167 (6)0.0157 (7)0.0015 (5)0.0052 (5)0.0003 (5)
C90.0243 (7)0.0160 (6)0.0214 (8)0.0009 (5)0.0087 (6)0.0021 (5)
C100.0208 (7)0.0234 (7)0.0219 (8)0.0052 (6)0.0110 (6)0.0003 (6)
C110.0134 (6)0.0256 (7)0.0197 (7)0.0017 (5)0.0068 (5)0.0002 (6)
C120.0151 (7)0.0182 (6)0.0190 (7)0.0021 (5)0.0076 (5)0.0026 (5)
Geometric parameters (Å, º) top
O1—C11.2612 (15)C5—H5B0.9700
N1—C11.3623 (16)C7—C121.5299 (17)
N1—C71.4698 (16)C7—C81.5399 (18)
N1—H10.899 (9)C8—C91.5265 (18)
N2—C61.3494 (17)C8—H8A0.9700
N2—C71.4676 (17)C8—H8B0.9700
N2—H20.899 (9)C9—C101.5271 (19)
C1—C21.4387 (17)C9—H9A0.9700
C2—C61.3599 (18)C9—H9B0.9700
C2—C31.5068 (17)C10—C111.5246 (19)
C3—C41.5429 (19)C10—H10A0.9700
C3—H3A0.9700C10—H10B0.9700
C3—H3B0.9700C11—C121.5324 (18)
C4—C51.5380 (19)C11—H11A0.9700
C4—H4A0.9700C11—H11B0.9700
C4—H4B0.9700C12—H12A0.9700
C5—C61.5036 (18)C12—H12B0.9700
C5—H5A0.9700
C1—N1—C7122.29 (10)N1—C7—C12109.36 (10)
C1—N1—H1117.0 (9)N2—C7—C8110.53 (10)
C7—N1—H1118.8 (9)N1—C7—C8109.86 (10)
C6—N2—C7117.35 (11)C12—C7—C8109.22 (10)
C6—N2—H2120.6 (11)C9—C8—C7112.53 (11)
C7—N2—H2121.4 (11)C9—C8—H8A109.1
O1—C1—N1121.07 (11)C7—C8—H8A109.1
O1—C1—C2123.83 (11)C9—C8—H8B109.1
N1—C1—C2114.98 (11)C7—C8—H8B109.1
C6—C2—C1118.79 (11)H8A—C8—H8B107.8
C6—C2—C3111.14 (11)C8—C9—C10111.01 (11)
C1—C2—C3128.16 (11)C8—C9—H9A109.4
C2—C3—C4102.23 (10)C10—C9—H9A109.4
C2—C3—H3A111.3C8—C9—H9B109.4
C4—C3—H3A111.3C10—C9—H9B109.4
C2—C3—H3B111.3H9A—C9—H9B108.0
C4—C3—H3B111.3C11—C10—C9110.02 (11)
H3A—C3—H3B109.2C11—C10—H10A109.7
C5—C4—C3106.03 (10)C9—C10—H10A109.7
C5—C4—H4A110.5C11—C10—H10B109.7
C3—C4—H4A110.5C9—C10—H10B109.7
C5—C4—H4B110.5H10A—C10—H10B108.2
C3—C4—H4B110.5C10—C11—C12111.91 (11)
H4A—C4—H4B108.7C10—C11—H11A109.2
C6—C5—C4102.01 (11)C12—C11—H11A109.2
C6—C5—H5A111.4C10—C11—H11B109.2
C4—C5—H5A111.4C12—C11—H11B109.2
C6—C5—H5B111.4H11A—C11—H11B107.9
C4—C5—H5B111.4C7—C12—C11112.98 (10)
H5A—C5—H5B109.2C7—C12—H12A109.0
N2—C6—C2123.11 (12)C11—C12—H12A109.0
N2—C6—C5125.07 (11)C7—C12—H12B109.0
C2—C6—C5111.77 (11)C11—C12—H12B109.0
N2—C7—N1106.97 (10)H12A—C12—H12B107.8
N2—C7—C12110.86 (11)
C7—N1—C1—O1163.93 (11)C4—C5—C6—C216.59 (14)
C7—N1—C1—C219.87 (17)C6—N2—C7—N140.32 (14)
O1—C1—C2—C6165.34 (12)C6—N2—C7—C12159.48 (11)
N1—C1—C2—C610.73 (17)C6—N2—C7—C879.26 (13)
O1—C1—C2—C32.6 (2)C1—N1—C7—N244.20 (15)
N1—C1—C2—C3173.52 (12)C1—N1—C7—C12164.32 (11)
C6—C2—C3—C415.01 (14)C1—N1—C7—C875.81 (14)
C1—C2—C3—C4178.87 (13)N2—C7—C8—C967.76 (13)
C2—C3—C4—C524.67 (14)N1—C7—C8—C9174.42 (10)
C3—C4—C5—C625.13 (14)C12—C7—C8—C954.46 (14)
C7—N2—C6—C215.31 (18)C7—C8—C9—C1057.49 (15)
C7—N2—C6—C5167.51 (12)C8—C9—C10—C1156.57 (15)
C1—C2—C6—N212.96 (19)C9—C10—C11—C1255.28 (15)
C3—C2—C6—N2178.51 (11)N2—C7—C12—C1169.13 (14)
C1—C2—C6—C5164.56 (11)N1—C7—C12—C11173.17 (11)
C3—C2—C6—C51.00 (15)C8—C7—C12—C1152.91 (15)
C4—C5—C6—N2165.96 (12)C10—C11—C12—C754.85 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.90 (1)1.99 (1)2.8832 (14)170 (1)
N2—H2···O1ii0.90 (1)2.08 (1)2.9458 (17)161 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H18N2O
Mr206.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)10.294 (2), 10.461 (2), 10.659 (2)
β (°) 112.70 (3)
V3)1059.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.24 × 0.20 × 0.08
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2006)
Tmin, Tmax0.980, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
6976, 1862, 1632
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.103, 1.13
No. of reflections1862
No. of parameters144
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.22

Computer programs: CrystalClear (Rigaku/MSC, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.899 (9)1.993 (9)2.8832 (14)169.9 (14)
N2—H2···O1ii0.899 (9)2.080 (11)2.9458 (17)161.3 (15)
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We thank the Beijing Institute of Technology for financial support.

References

First citationRigaku/MSC (2006). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSchramm, S., Schmitz, E. & Gruengemann, E. (1984). J. Prakt. Chem. (Leipzig), 326, 279–286.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWen, H. J., Hao, W. Y. & Gong, B. Y. (2002). Zhongguo Kangshengsu ZaZhi, 27, 644–646.  CAS Google Scholar
First citationYu, M. J., McCowan, I. R., Mason, N. R., Deeter, J. B. & Mendelsohn, L. G. (1992). J. Med. Chem. 35, 2543–2542.  PubMed Web of Science Google Scholar
First citationZhang, L., Li, J., Shi, D., Zhang, L. & Fan, Y. (2008). Acta Cryst. E64, o448.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, L., Li, J., Yang, X., Shi, D. & Chen, J. (2008). Acta Cryst. E64, o450.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds