organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N-Di­methyl-4-[(E)-phenyl­imino­meth­yl]aniline

aCollege of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
*Correspondence e-mail: chuandayouji217@163.com

(Received 13 January 2009; accepted 1 February 2009; online 11 February 2009)

The title compound, C15H16N2, contains two aromatic rings linked through an imino group. The mol­ecule exhibits an E configuration with respect to the C=N bond. The dihedral angle between the aromatic rings is 61.96 (1)°.

Related literature

For the physical properties and physiological activity of Schiff bases, see: Hodnett & Dunn (1970[Hodnett, E. M. & Dunn, W. J. (1970). J. Med. Chem. 13, 768-770.]); Nyarku & Mavuso (1998[Nyarku, S. K. & Mavuso, E. (1998). S. Afr. J. Chem. 51, 168-172.]); Tang & Vanslyke (1987[Tang, C. W. & Vanslyke, S. A. (1987). Appl. Phys. Lett. 51, 913-915.]); Yu et al. (2001[Yu, G., Liu, Y. Q. & Song, Y. R. (2001). Synth. Met. 117, 211-214.]). For related structures, see: Ahmet et al. (1994[Ahmet, M. T., Silver, J. & Houlton, A. (1994). Acta Cryst. C50, 1814-1818.]); Nakai et al. (1976[Nakai, H., Shiro, M., Emuzi, K., Sakata, S. & Kubota, T. (1976). Acta Cryst. B32, 1827-1833.]); Wang & Wang (2007[Wang, Q. & Wang, D.-Q. (2007). Acta Cryst. E63, o4838.], 2008[Wang, Q. & Wang, D.-Q. (2008). Acta Cryst. E64, o51.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16N2

  • Mr = 224.30

  • Monoclinic, P 21 /c

  • a = 9.441 (4) Å

  • b = 8.356 (3) Å

  • c = 17.245 (5) Å

  • β = 110.97 (2)°

  • V = 1270.4 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 292 (2) K

  • 0.52 × 0.48 × 0.46 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 3023 measured reflections

  • 2328 independent reflections

  • 1336 reflections with I > 2σ(I)

  • Rint = 0.012

  • 3 standard reflections every 200 reflections intensity decay: 1.8%

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.150

  • S = 1.02

  • 2328 reflections

  • 157 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: DIFRAC (Gabe et al., 1993[Gabe, E. J., White, P. S. & Enright, G. D. (1993). DIFRAC. American Crystallographic Association, Pittsburgh Meeting, Abstract PA 104.]); cell refinement: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); data reduction: NRCVAX; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia,1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff base, because of its unique light, electric, magnetic and other physical material properties (Tang & Vanslyke, 1987; Yu et al., 2001), good coordination chemistry performance, unique anti-bacterial, anti-cancer and other physiological activities (Nyarku & Mavuso, 1998; Hodnett & Dunn, 1970), has aroused broad, systematic and in-depth theoretical and applied research. Several crystal sturctures of schiff bases, which are closely related to the title compound, have been reported (eg., Ahmet et al., 1994; Nakai et al., 1976; Wang & Wang, 2008; Wang & Wang, 2007). We report herein the crystal sturcture of the title schiff base, N,N-dimethyl-4-[(E)-(phenylimino)methyl]benzenamine, (I).

The molecule of the title compound (Fig. 1) adopts an E configuration probably owing to the steric effect. The C(10)–N(2)–C(9)–C(6) and C(7)–C(6)–C(9)–N(2) torsion angles are -176.70 (15) and 9.2 (3)°, respectively. There are no intermolecular hydrogen-bonding interactions in the crystal structure. The packing is essentially stabilized via van der Waals forces.

Related literature top

For background literature, see: Hodnett & Dunn (1970); Nyarku & Mavuso (1998); Tang & Vanslyke (1987); Yu et al. (2001). For related structures, see: Ahmet et al. (1994); Nakai et al. (1976); Wang & Wang (2007, 2008).

Experimental top

To a solution of N,N-dimethyl-4-aminobenzaldehyde (0.75 g, 5 mmol) in ethanol (10 ml) and aniline (0.91 ml, 10 mmol) were added three drops of acetic acid as a catalyst. The mixture was heated to reflux and the reaction monitored by TLC. After completion of the reaction, on cooling to room temperature, crystals were obtained. Colourless crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate solution at room temperature.

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and included in the refinement using a riding model, with Uiso(H) = 1.2Ueq (methylene C, aromatic C), Uiso(H) = 1.5Ueq (methyl C).

Computing details top

Data collection: DIFRAC (Gabe et al., 1993); cell refinement: NRCVAX (Gabe et al., 1989); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.
N,N-Dimethyl-4-[(E)-phenyliminomethyl]aniline top
Crystal data top
C15H16N2F(000) = 480
Mr = 224.30Dx = 1.173 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 20 reflections
a = 9.441 (4) Åθ = 4.4–7.1°
b = 8.356 (3) ŵ = 0.07 mm1
c = 17.245 (5) ÅT = 292 K
β = 110.97 (2)°Block, colourless
V = 1270.4 (8) Å30.52 × 0.48 × 0.46 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.012
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 2.3°
Graphite monochromatorh = 1111
ω/2θ scansk = 100
3023 measured reflectionsl = 2010
2328 independent reflections3 standard reflections every 200 reflections
1336 reflections with I > 2σ(I) intensity decay: 1.8%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.0913P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2328 reflectionsΔρmax = 0.13 e Å3
157 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.032 (10)
Crystal data top
C15H16N2V = 1270.4 (8) Å3
Mr = 224.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.441 (4) ŵ = 0.07 mm1
b = 8.356 (3) ÅT = 292 K
c = 17.245 (5) Å0.52 × 0.48 × 0.46 mm
β = 110.97 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.012
3023 measured reflections3 standard reflections every 200 reflections
2328 independent reflections intensity decay: 1.8%
1336 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.02Δρmax = 0.13 e Å3
2328 reflectionsΔρmin = 0.14 e Å3
157 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.30901 (17)1.50607 (18)0.07311 (10)0.0722 (5)
N20.28787 (18)0.86291 (19)0.13032 (9)0.0668 (5)
C10.3837 (2)1.4806 (2)0.13194 (12)0.0815 (6)
H1A0.48311.43720.10370.122*
H1B0.39241.58070.15720.122*
H1C0.32541.40710.17400.122*
C20.2456 (3)1.6630 (2)0.07117 (15)0.0907 (7)
H2A0.13691.65710.09440.136*
H2B0.28101.73630.10310.136*
H2C0.27681.69970.01480.136*
C30.28724 (19)1.3833 (2)0.02654 (11)0.0587 (5)
C40.2055 (2)1.4036 (2)0.02656 (12)0.0687 (5)
H40.16361.50290.03000.082*
C50.1867 (2)1.2792 (2)0.07319 (12)0.0686 (5)
H50.13291.29650.10820.082*
C60.2449 (2)1.1275 (2)0.07036 (11)0.0616 (5)
C70.3258 (2)1.1071 (2)0.01746 (10)0.0636 (5)
H70.36691.00730.01420.076*
C80.3462 (2)1.2297 (2)0.02946 (11)0.0625 (5)
H80.40041.21150.06430.075*
C90.2222 (2)0.9985 (2)0.12090 (11)0.0681 (5)
H90.15501.01600.14840.082*
C100.2496 (2)0.7447 (2)0.17785 (11)0.0619 (5)
C110.1006 (2)0.7114 (2)0.16925 (12)0.0715 (6)
H110.02170.77020.13210.086*
C120.0694 (2)0.5918 (3)0.21553 (13)0.0795 (6)
H120.03070.57000.20930.095*
C130.1848 (3)0.5041 (2)0.27093 (13)0.0796 (6)
H130.16290.42430.30250.096*
C140.3326 (2)0.5352 (2)0.27936 (12)0.0744 (6)
H140.41100.47570.31650.089*
C150.3645 (2)0.6536 (2)0.23315 (11)0.0682 (5)
H150.46480.67330.23890.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0775 (11)0.0677 (10)0.0723 (11)0.0087 (8)0.0278 (9)0.0044 (8)
N20.0681 (10)0.0769 (11)0.0590 (9)0.0019 (8)0.0270 (8)0.0015 (8)
C10.0882 (14)0.0911 (14)0.0695 (12)0.0005 (11)0.0338 (11)0.0092 (11)
C20.0945 (16)0.0719 (13)0.1018 (16)0.0086 (11)0.0305 (14)0.0059 (12)
C30.0538 (10)0.0656 (11)0.0530 (10)0.0001 (8)0.0146 (8)0.0077 (9)
C40.0696 (12)0.0667 (11)0.0716 (12)0.0094 (9)0.0276 (10)0.0083 (10)
C50.0684 (12)0.0816 (14)0.0637 (11)0.0060 (10)0.0333 (10)0.0109 (10)
C60.0620 (11)0.0713 (12)0.0535 (10)0.0026 (9)0.0231 (9)0.0057 (9)
C70.0682 (12)0.0637 (11)0.0630 (11)0.0070 (9)0.0285 (10)0.0066 (9)
C80.0669 (12)0.0682 (12)0.0580 (11)0.0063 (9)0.0290 (9)0.0048 (9)
C90.0657 (12)0.0836 (14)0.0594 (11)0.0019 (10)0.0278 (9)0.0064 (10)
C100.0642 (12)0.0724 (11)0.0528 (10)0.0030 (10)0.0255 (9)0.0095 (9)
C110.0607 (12)0.0852 (14)0.0656 (12)0.0022 (10)0.0191 (10)0.0030 (11)
C120.0657 (12)0.0961 (15)0.0779 (13)0.0151 (11)0.0271 (11)0.0076 (12)
C130.0881 (15)0.0816 (14)0.0746 (13)0.0110 (12)0.0358 (12)0.0003 (11)
C140.0770 (13)0.0800 (13)0.0680 (12)0.0054 (11)0.0281 (10)0.0050 (11)
C150.0619 (12)0.0796 (12)0.0680 (12)0.0011 (10)0.0291 (10)0.0036 (11)
Geometric parameters (Å, º) top
N1—C31.363 (2)C6—C71.394 (2)
N1—C11.444 (2)C6—C91.449 (3)
N1—C21.447 (2)C7—C81.361 (2)
N2—C91.274 (2)C7—H70.9300
N2—C101.411 (2)C8—H80.9300
C1—H1A0.9600C9—H90.9300
C1—H1B0.9600C10—C151.388 (3)
C1—H1C0.9600C10—C111.388 (3)
C2—H2A0.9600C11—C121.375 (3)
C2—H2B0.9600C11—H110.9300
C2—H2C0.9600C12—C131.375 (3)
C3—C41.403 (2)C12—H120.9300
C3—C81.407 (2)C13—C141.375 (3)
C4—C51.364 (2)C13—H130.9300
C4—H40.9300C14—C151.370 (3)
C5—C61.389 (2)C14—H140.9300
C5—H50.9300C15—H150.9300
C3—N1—C1121.18 (15)C8—C7—C6121.63 (16)
C3—N1—C2121.17 (16)C8—C7—H7119.2
C1—N1—C2117.39 (17)C6—C7—H7119.2
C9—N2—C10118.88 (16)C7—C8—C3121.55 (16)
N1—C1—H1A109.5C7—C8—H8119.2
N1—C1—H1B109.5C3—C8—H8119.2
H1A—C1—H1B109.5N2—C9—C6124.65 (17)
N1—C1—H1C109.5N2—C9—H9117.7
H1A—C1—H1C109.5C6—C9—H9117.7
H1B—C1—H1C109.5C15—C10—C11118.49 (18)
N1—C2—H2A109.5C15—C10—N2118.89 (16)
N1—C2—H2B109.5C11—C10—N2122.57 (18)
H2A—C2—H2B109.5C12—C11—C10120.17 (19)
N1—C2—H2C109.5C12—C11—H11119.9
H2A—C2—H2C109.5C10—C11—H11119.9
H2B—C2—H2C109.5C13—C12—C11120.63 (19)
N1—C3—C4121.86 (16)C13—C12—H12119.7
N1—C3—C8121.37 (16)C11—C12—H12119.7
C4—C3—C8116.77 (17)C12—C13—C14119.64 (19)
C5—C4—C3120.70 (16)C12—C13—H13120.2
C5—C4—H4119.7C14—C13—H13120.2
C3—C4—H4119.7C15—C14—C13120.05 (19)
C4—C5—C6122.56 (16)C15—C14—H14120.0
C4—C5—H5118.7C13—C14—H14120.0
C6—C5—H5118.7C14—C15—C10121.00 (18)
C5—C6—C7116.79 (17)C14—C15—H15119.5
C5—C6—C9120.79 (17)C10—C15—H15119.5
C7—C6—C9122.42 (17)
C1—N1—C3—C4175.41 (16)C10—N2—C9—C6176.70 (15)
C2—N1—C3—C41.3 (3)C5—C6—C9—N2170.32 (18)
C1—N1—C3—C84.7 (3)C7—C6—C9—N29.2 (3)
C2—N1—C3—C8178.74 (17)C9—N2—C10—C15137.72 (18)
N1—C3—C4—C5179.28 (17)C9—N2—C10—C1144.8 (2)
C8—C3—C4—C50.6 (3)C15—C10—C11—C120.7 (3)
C3—C4—C5—C60.7 (3)N2—C10—C11—C12178.17 (16)
C4—C5—C6—C70.5 (3)C10—C11—C12—C130.2 (3)
C4—C5—C6—C9179.94 (17)C11—C12—C13—C140.8 (3)
C5—C6—C7—C80.3 (3)C12—C13—C14—C150.4 (3)
C9—C6—C7—C8179.89 (17)C13—C14—C15—C100.5 (3)
C6—C7—C8—C30.4 (3)C11—C10—C15—C141.0 (3)
N1—C3—C8—C7179.43 (16)N2—C10—C15—C14178.61 (16)
C4—C3—C8—C70.5 (3)

Experimental details

Crystal data
Chemical formulaC15H16N2
Mr224.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)292
a, b, c (Å)9.441 (4), 8.356 (3), 17.245 (5)
β (°) 110.97 (2)
V3)1270.4 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.52 × 0.48 × 0.46
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3023, 2328, 1336
Rint0.012
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.150, 1.02
No. of reflections2328
No. of parameters157
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.14

Computer programs: DIFRAC (Gabe et al., 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia,1997).

 

Acknowledgements

The authors thank Mr Zhi-Hua Mao, Sichuan University, for the X-ray data collection.

References

First citationAhmet, M. T., Silver, J. & Houlton, A. (1994). Acta Cryst. C50, 1814–1818.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J., White, P. S. & Enright, G. D. (1993). DIFRAC. American Crystallographic Association, Pittsburgh Meeting, Abstract PA 104.  Google Scholar
First citationHodnett, E. M. & Dunn, W. J. (1970). J. Med. Chem. 13, 768–770.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNakai, H., Shiro, M., Emuzi, K., Sakata, S. & Kubota, T. (1976). Acta Cryst. B32, 1827–1833.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationNyarku, S. K. & Mavuso, E. (1998). S. Afr. J. Chem. 51, 168–172.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, C. W. & Vanslyke, S. A. (1987). Appl. Phys. Lett. 51, 913–915.  CrossRef CAS Web of Science Google Scholar
First citationWang, Q. & Wang, D.-Q. (2007). Acta Cryst. E63, o4838.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Q. & Wang, D.-Q. (2008). Acta Cryst. E64, o51.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, G., Liu, Y. Q. & Song, Y. R. (2001). Synth. Met. 117, 211–214.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds