metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[1,3-Bis(2-eth­oxy­phen­yl)triazenido]chloridomercury(II)

aDepartment of Chemistry, Islamic Azad University, Karaj Branch, Karaj, Iran, and bFaculty of Chemistry, Tarbiat Moallem University, Tehran, Iran
*Correspondence e-mail: rofouei_mk@yahoo.com

(Received 7 February 2009; accepted 15 February 2009; online 21 February 2009)

In the title compound, [Hg(C16H18N3O2)Cl], the HgII atom is four-coordinated in a tetra­hedral geometry by two N atoms from the 1,3-chelating and one O atom of a 1,3-bis­(2-ethoxy­phen­yl)triazenido ligand and one terminal chloride ion. The dihedral angle between the aromatic rings is 1.72 (14)°. In the crystal C—H⋯π stacking inter­actions occur.

Related literature

For related structures, see: Rofouei et al. 2008[Rofouei, M. K., Melardi, M. R., Barkhi, M. & Khalili Ghaydar, H. R. (2008). Anal. Sci. 24, x81-x82.]; Melardi et al. 2007[Melardi, M. R., Rofouei, M. K. & Massomi, J. (2007). Anal. Sci. 23, x67-x68.].

[Scheme 1]

Experimental

Crystal data
  • [Hg(C16H18N3O2)Cl]

  • Mr = 520.37

  • Monoclinic, P 21 /n

  • a = 10.1600 (5) Å

  • b = 7.3802 (4) Å

  • c = 22.5655 (11) Å

  • β = 97.817 (1)°

  • V = 1676.30 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 9.35 mm−1

  • T = 100 K

  • 0.15 × 0.12 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (APEX2; Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.280, Tmax = 0.479

  • 19713 measured reflections

  • 4451 independent reflections

  • 4009 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.049

  • S = 1.01

  • 4451 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.98 e Å−3

  • Δρmin = −1.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3ACg1i 0.95 2.87 3.598 (3) 134
C15—H15BCg1ii 0.99 2.68 3.511 (3) 142
Symmetry codes: (i) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z. Cg1 is the centroid of the C1–C6 ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently we have reported the synthesis and crystal structure of [1,3-bis(2-methoxyphenyl)triazene with HgII as ML2 structure [Rofouei et al., 2008] and [1,3-bis(2-methoxybenzene)triazene with HgII as ML structure [Melardi et al., 2007]. In this article we report the synthesis and crystal structure of the title compound, (I).

In the title compound, the HgII atom is four-coordinated in a tetrahedral configuration by two N atoms from the chelating (1,3) and one O atom of ethoxyphenyl triazenido ligand and one terminal Cl atom leading to an asymmetric molecule (Fig. 1). There are interesting C—H···π stacking interactions between CH groups and aromatic phenyl rings with C—H···π distances of 2.869 Å for C3—H3A···Cg1 (5/2 - x, 1/2 + y, 1/2 - z) and 2.681 Å for C15—H15B···Cg1 (2 - x, 1 - y, -z) (Cg1 is centroid of C1—C6 ring) as presented in Fig. 2. The unit cell packing of the title compound showing stacking of molecules is presented at Fig. 3.

Related literature top

For related structures, see: Rofouei et al. 2008; Melardi et al. 2007.

Experimental top

A solution of [1,3-bis(2-ethoxyphenyl)triazene] (1 mmol, 0.285 g) in acetonitril (10 ml) and triethylamin (0.3 ml) was added to a solution of HgCl2 (1 mmol, 0.271 g) in methanol (10 ml) yielded the title compound. The suitable crystals for X-ray analysis were obtained from a solution of ethyl acetate after one week. m.p. = 449-451 K.

Refinement top

All hydrogen atoms were included in the refinement at calculated positions in isotropic approximation in riding mode with distances C—H = 0.95, 0.99 and 0.98 Å for aryl, methylene and methyl groups, respectively, and Uiso(H) parameters equal to 1.2Ueq(C) for methylene and aryl groups and equal to 1.5Ueq(C) for methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex. Thermal ellipsoids are drawn at 50% probability level.
[Figure 2] Fig. 2. C—H···π Stacking interactions between CH groups and aromatic phenyl rings centroid.
[Figure 3] Fig. 3. Unit cell packing diagram of the title complex.
[1,3-Bis(2-ethoxyphenyl)triazenido]chloridomercury(II) top
Crystal data top
[Hg(C16H18N3O2)Cl]F(000) = 992
Mr = 520.37Dx = 2.062 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8520 reflections
a = 10.1600 (5) Åθ = 3–29°
b = 7.3802 (4) ŵ = 9.35 mm1
c = 22.5655 (11) ÅT = 100 K
β = 97.817 (1)°Prism, colorless
V = 1676.30 (15) Å30.15 × 0.12 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4451 independent reflections
Radiation source: fine-focus sealed tube4009 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 29.0°, θmin = 1.8°
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
h = 1313
Tmin = 0.280, Tmax = 0.479k = 1010
19713 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.049H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.02P)2 + 2P]
where P = (Fo2 + 2Fc2)/3
4451 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.98 e Å3
0 restraintsΔρmin = 1.19 e Å3
Crystal data top
[Hg(C16H18N3O2)Cl]V = 1676.30 (15) Å3
Mr = 520.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.1600 (5) ŵ = 9.35 mm1
b = 7.3802 (4) ÅT = 100 K
c = 22.5655 (11) Å0.15 × 0.12 × 0.08 mm
β = 97.817 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4451 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
4009 reflections with I > 2σ(I)
Tmin = 0.280, Tmax = 0.479Rint = 0.036
19713 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.049H-atom parameters constrained
S = 1.01Δρmax = 0.98 e Å3
4451 reflectionsΔρmin = 1.19 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.849438 (10)0.312052 (15)0.054958 (5)0.01838 (4)
Cl10.65126 (8)0.35249 (12)0.09032 (4)0.03193 (18)
O11.0251 (2)0.5538 (3)0.20153 (9)0.0187 (4)
O20.82363 (19)0.1411 (3)0.05286 (9)0.0174 (4)
N11.0926 (2)0.4172 (3)0.10284 (10)0.0159 (4)
N21.1288 (2)0.3584 (3)0.05434 (11)0.0160 (5)
N31.0261 (2)0.2874 (3)0.01919 (11)0.0158 (5)
C11.1957 (3)0.4946 (4)0.14348 (12)0.0154 (5)
C21.1558 (3)0.5710 (4)0.19570 (12)0.0162 (5)
C31.2500 (3)0.6550 (4)0.23737 (13)0.0195 (6)
H3A1.22360.70970.27200.023*
C41.3828 (3)0.6591 (4)0.22844 (13)0.0198 (6)
H4A1.44640.71740.25690.024*
C51.4232 (3)0.5785 (4)0.17820 (13)0.0197 (6)
H5A1.51430.57900.17280.024*
C61.3297 (3)0.4974 (4)0.13598 (13)0.0175 (5)
H6A1.35720.44320.10150.021*
C70.9817 (3)0.6273 (4)0.25429 (14)0.0237 (6)
H7A0.99540.76010.25590.028*
H7B1.03240.57270.29050.028*
C80.8362 (3)0.5833 (5)0.25128 (16)0.0304 (7)
H8A0.80210.63400.28640.046*
H8B0.82420.45150.25070.046*
H8C0.78740.63590.21480.046*
C91.0519 (3)0.2108 (4)0.03482 (12)0.0153 (5)
C100.9451 (3)0.1305 (4)0.07242 (12)0.0148 (5)
C110.9671 (3)0.0489 (4)0.12541 (12)0.0183 (5)
H11A0.89500.00380.15080.022*
C121.0944 (3)0.0436 (4)0.14161 (13)0.0204 (6)
H12A1.10910.01470.17770.024*
C131.1995 (3)0.1227 (4)0.10547 (13)0.0210 (6)
H13A1.28600.11970.11700.025*
C141.1789 (3)0.2072 (4)0.05198 (13)0.0183 (6)
H14A1.25120.26210.02740.022*
C150.7136 (3)0.0536 (4)0.08871 (13)0.0190 (5)
H15A0.73190.07730.09250.023*
H15B0.69930.10720.12930.023*
C160.5924 (3)0.0808 (5)0.05819 (15)0.0258 (6)
H16A0.51880.00860.07850.039*
H16B0.56770.20920.05980.039*
H16C0.61170.04230.01630.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.01754 (6)0.02133 (6)0.01728 (6)0.00076 (4)0.00604 (4)0.00146 (4)
Cl10.0241 (4)0.0361 (4)0.0390 (5)0.0002 (3)0.0165 (3)0.0071 (3)
O10.0217 (10)0.0216 (10)0.0140 (9)0.0016 (8)0.0065 (8)0.0038 (8)
O20.0142 (9)0.0238 (10)0.0144 (9)0.0025 (7)0.0026 (8)0.0018 (8)
N10.0206 (11)0.0148 (11)0.0119 (10)0.0023 (9)0.0014 (9)0.0006 (9)
N20.0193 (11)0.0152 (11)0.0130 (11)0.0024 (9)0.0007 (9)0.0007 (8)
N30.0156 (11)0.0189 (12)0.0127 (11)0.0012 (9)0.0016 (9)0.0002 (9)
C10.0193 (13)0.0121 (12)0.0142 (12)0.0003 (10)0.0000 (10)0.0001 (10)
C20.0207 (13)0.0132 (12)0.0146 (12)0.0013 (10)0.0020 (10)0.0011 (10)
C30.0268 (15)0.0160 (14)0.0150 (13)0.0007 (11)0.0010 (11)0.0007 (10)
C40.0259 (14)0.0145 (13)0.0171 (13)0.0006 (11)0.0046 (11)0.0019 (10)
C50.0171 (13)0.0196 (14)0.0212 (14)0.0009 (11)0.0017 (11)0.0021 (11)
C60.0208 (13)0.0164 (13)0.0151 (13)0.0027 (10)0.0017 (11)0.0013 (10)
C70.0329 (17)0.0215 (14)0.0182 (14)0.0011 (12)0.0095 (13)0.0021 (11)
C80.0306 (17)0.0317 (18)0.0326 (18)0.0023 (14)0.0175 (14)0.0018 (14)
C90.0179 (13)0.0167 (13)0.0115 (12)0.0016 (10)0.0023 (10)0.0017 (10)
C100.0160 (12)0.0141 (12)0.0146 (12)0.0005 (10)0.0028 (10)0.0031 (10)
C110.0224 (13)0.0196 (13)0.0128 (12)0.0014 (11)0.0016 (10)0.0001 (11)
C120.0226 (14)0.0243 (15)0.0150 (13)0.0047 (11)0.0050 (11)0.0011 (11)
C130.0182 (13)0.0262 (15)0.0191 (14)0.0052 (11)0.0043 (11)0.0004 (12)
C140.0161 (12)0.0239 (15)0.0148 (13)0.0010 (10)0.0016 (10)0.0004 (11)
C150.0166 (12)0.0210 (14)0.0186 (13)0.0030 (11)0.0006 (10)0.0012 (11)
C160.0169 (13)0.0344 (17)0.0268 (16)0.0021 (12)0.0053 (12)0.0041 (13)
Geometric parameters (Å, º) top
Hg1—N32.074 (2)C7—C81.507 (5)
Hg1—Cl12.2840 (8)C7—H7A0.9900
Hg1—N12.674 (2)C7—H7B0.9900
Hg1—O22.721 (2)C8—H8A0.9800
O1—C21.358 (3)C8—H8B0.9800
O1—C71.431 (3)C8—H8C0.9800
O2—C101.368 (3)C9—C141.397 (4)
O2—C151.441 (3)C9—C101.413 (4)
N1—N21.277 (3)C10—C111.384 (4)
N1—C11.415 (3)C11—C121.391 (4)
N2—N31.329 (3)C11—H11A0.9500
N3—C91.400 (4)C12—C131.382 (4)
C1—C61.395 (4)C12—H12A0.9500
C1—C21.415 (4)C13—C141.399 (4)
C2—C31.393 (4)C13—H13A0.9500
C3—C41.391 (4)C14—H14A0.9500
C3—H3A0.9500C15—C161.503 (4)
C4—C51.391 (4)C15—H15A0.9900
C4—H4A0.9500C15—H15B0.9900
C5—C61.386 (4)C16—H16A0.9800
C5—H5A0.9500C16—H16B0.9800
C6—H6A0.9500C16—H16C0.9800
N3—Hg1—Cl1176.60 (7)C8—C7—H7B110.3
N3—Hg1—N151.80 (8)H7A—C7—H7B108.6
Cl1—Hg1—N1129.12 (5)C7—C8—H8A109.5
N3—Hg1—O266.09 (8)C7—C8—H8B109.5
Cl1—Hg1—O2112.99 (5)H8A—C8—H8B109.5
N1—Hg1—O2117.86 (6)C7—C8—H8C109.5
Hg1—O2—C10109.48 (8)H8A—C8—H8C109.5
Hg1—O2—C15133.07 (16)H8B—C8—H8C109.5
C2—O1—C7117.4 (2)C14—C9—N3122.6 (3)
C10—O2—C15117.3 (2)C14—C9—C10119.2 (3)
N2—N1—C1114.7 (2)N3—C9—C10118.2 (2)
N2—N1—Hg185.01 (16)O2—C10—C11124.2 (2)
C1—N1—Hg1160.18 (18)O2—C10—C9115.8 (2)
N1—N2—N3110.6 (2)C11—C10—C9120.0 (3)
N2—N3—C9117.0 (2)C10—C11—C12120.3 (3)
N2—N3—Hg1112.58 (18)C10—C11—H11A119.9
C9—N3—Hg1130.44 (19)C12—C11—H11A119.9
C6—C1—C2119.4 (3)C13—C12—C11120.3 (3)
C6—C1—N1125.2 (3)C13—C12—H12A119.9
C2—C1—N1115.5 (2)C11—C12—H12A119.9
O1—C2—C3124.6 (3)C12—C13—C14120.2 (3)
O1—C2—C1116.0 (2)C12—C13—H13A119.9
C3—C2—C1119.4 (3)C14—C13—H13A119.9
C4—C3—C2120.2 (3)C9—C14—C13120.0 (3)
C4—C3—H3A119.9C9—C14—H14A120.0
C2—C3—H3A119.9C13—C14—H14A120.0
C3—C4—C5120.6 (3)O2—C15—C16107.7 (2)
C3—C4—H4A119.7O2—C15—H15A110.2
C5—C4—H4A119.7C16—C15—H15A110.2
C6—C5—C4119.6 (3)O2—C15—H15B110.2
C6—C5—H5A120.2C16—C15—H15B110.2
C4—C5—H5A120.2H15A—C15—H15B108.5
C5—C6—C1120.8 (3)C15—C16—H16A109.5
C5—C6—H6A119.6C15—C16—H16B109.5
C1—C6—H6A119.6H16A—C16—H16B109.5
O1—C7—C8107.0 (3)C15—C16—H16C109.5
O1—C7—H7A110.3H16A—C16—H16C109.5
C8—C7—H7A110.3H16B—C16—H16C109.5
O1—C7—H7B110.3
N3—Hg1—O2—C100.40 (16)N1—C1—C2—C3178.1 (2)
Cl1—Hg1—O2—C10176.84 (15)O1—C2—C3—C4177.3 (3)
N1—Hg1—O2—C101.31 (18)C1—C2—C3—C41.8 (4)
N3—Hg1—O2—C15175.4 (2)C2—C3—C4—C50.5 (4)
Cl1—Hg1—O2—C158.2 (2)C3—C4—C5—C61.6 (4)
N1—Hg1—O2—C15173.7 (2)C4—C5—C6—C10.5 (4)
N3—Hg1—N1—N21.55 (15)C2—C1—C6—C51.8 (4)
Cl1—Hg1—N1—N2174.26 (12)N1—C1—C6—C5179.3 (3)
O2—Hg1—N1—N23.54 (17)C2—O1—C7—C8177.5 (2)
N3—Hg1—N1—C1177.1 (6)N2—N3—C9—C140.1 (4)
Cl1—Hg1—N1—C11.3 (6)Hg1—N3—C9—C14179.6 (2)
O2—Hg1—N1—C1179.1 (5)N2—N3—C9—C10178.6 (2)
C1—N1—N2—N3179.6 (2)Hg1—N3—C9—C102.0 (4)
Hg1—N1—N2—N32.03 (19)C15—O2—C10—C113.1 (4)
N1—N2—N3—C9177.6 (2)C15—O2—C10—C9177.3 (2)
N1—N2—N3—Hg12.8 (3)C14—C9—C10—O2179.4 (2)
N1—Hg1—N3—N21.61 (15)N3—C9—C10—O22.1 (4)
N1—Hg1—N3—C9178.9 (3)C14—C9—C10—C110.3 (4)
N2—N1—C1—C65.0 (4)N3—C9—C10—C11178.2 (2)
Hg1—N1—C1—C6179.8 (4)O2—C10—C11—C12179.6 (3)
N2—N1—C1—C2176.1 (2)C9—C10—C11—C120.7 (4)
Hg1—N1—C1—C20.9 (7)C10—C11—C12—C131.2 (4)
C7—O1—C2—C30.0 (4)C11—C12—C13—C140.6 (5)
C7—O1—C2—C1179.1 (2)N3—C9—C14—C13177.6 (3)
C6—C1—C2—O1176.3 (2)C10—C9—C14—C130.9 (4)
N1—C1—C2—O12.7 (4)C12—C13—C14—C90.4 (4)
C6—C1—C2—C32.9 (4)C10—O2—C15—C16179.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cg1i0.952.873.598 (3)134
C15—H15B···Cg1ii0.992.683.511 (3)142
Symmetry codes: (i) x+5/2, y+1/2, z+1/2; (ii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula[Hg(C16H18N3O2)Cl]
Mr520.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.1600 (5), 7.3802 (4), 22.5655 (11)
β (°) 97.817 (1)
V3)1676.30 (15)
Z4
Radiation typeMo Kα
µ (mm1)9.35
Crystal size (mm)0.15 × 0.12 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(APEX2; Bruker, 2005)
Tmin, Tmax0.280, 0.479
No. of measured, independent and
observed [I > 2σ(I)] reflections
19713, 4451, 4009
Rint0.036
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.049, 1.01
No. of reflections4451
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.98, 1.19

Computer programs: APEX2 (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cg1i0.952.873.598 (3)134
C15—H15B···Cg1ii0.992.683.511 (3)142
Symmetry codes: (i) x+5/2, y+1/2, z+1/2; (ii) x+2, y+1, z.
 

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationMelardi, M. R., Rofouei, M. K. & Massomi, J. (2007). Anal. Sci. 23, x67–x68.  CAS Google Scholar
First citationRofouei, M. K., Melardi, M. R., Barkhi, M. & Khalili Ghaydar, H. R. (2008). Anal. Sci. 24, x81–x82.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds