organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2,4-Di­phenyl-3-aza­bi­cyclo­[3.3.1]nonan-9-ylidenehydrazono)-1,3-thia­zolidin-4-one

aDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India
*Correspondence e-mail: chemkabilan@rediffmail.com

(Received 29 December 2008; accepted 14 February 2009; online 25 February 2009)

In the title compound, C23H24N4OS, the piperidine and cyclo­hexane rings adopt twin chair conformations and the phenyl groups occupy equatorial positions. The dihedral angle between the two benzene rings is 10.25 (12)°. The crystal structure is stabilized by intermolecular N—H⋯O hydrogen bonds with the formation of centrosymmetric dimers.

Related literature

For background on the thia­zolidinone system, see: Laurent et al. (2004[Laurent, D. R. S., Gao, Q., Wu, D. & Serrano-Wu, M. H. (2004). Tetrahedron Lett. 45, 1907-1910.]). For the biological activities of thia­zolidinones, see: Shih & Ke (2004[Shih, M. H. & Ke, F. Y. (2004). Bioorg. Med. Chem. 12, 4633-4643.]), For bicyclic compounds, see: Jeyaraman & Avila, (1981[Jeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149-174.]). For ring conformational analysis, see: Cremer & Pople, (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C23H24N4OS

  • Mr = 404.53

  • Monoclinic, P 21 /n

  • a = 8.3183 (3) Å

  • b = 10.8435 (4) Å

  • c = 22.7417 (8) Å

  • β = 92.483 (2)°

  • V = 2049.36 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.956, Tmax = 0.974

  • 31153 measured reflections

  • 7820 independent reflections

  • 4068 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.203

  • S = 1.04

  • 7820 reflections

  • 270 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O1i 0.83 (2) 2.03 (2) 2.847 (2) 169 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thiazolidinones are an interesting backbone unit in medicinal chemistry and is responsible for numerous pharmacological and biological properties (Shih & Ke, 2004; Laurent et al., 2004), which inspires our research interest in this area towards the synthesis of thiazolidinone unit. The importance of bicyclic compounds as intermediates in the synthesis of a several physiologically active compounds have reviewed by Jeyaraman & Avila, (1981). Moreover, these bridged bicyclic compounds exhibit twin chair, chair–boat or twin boat conformations to be elucidated possessing interesting stereochemistry. In order to investigate the change in molecular conformation of piperidine and cyclohexane ring, the present investigation was made and confirmed by X–ray diffraction study.

We found, that six–membered heterocyclic piperidine ring (Fig. 1) adopt normal chair conformation with the puckering parameters (Cremer & Pople, 1975) being q1 and q2 are 0.0714 (19) Å and -0.567 (19) Å, respectively. The total puckering amplitude, QT=0.572 (19) Å; θ=173.03 (19)°. Similarly, the cyclohexane ring is also adopt normal chair conformation with the puckering parameters being q1 and q2 are 0.121 (2)Å and 0.552 (2) Å, respectively. The puckering amplitude, QT=0.562 (2) Å, θ=12.5 (2)°. The planar phenyl rings occupy equatorial orientation of the piperidine ring and its subtending angle between the phenyl ring and the best plane of the piperidine ring is 10.25 (12)°. The crystal structure is stabilized by intermolecular N4—H4A···O1i hydrogen bonds (Fig. 2) with formation of centrosymmetrical dimers. Symmetry code: (i) -x+1, -y+1, -z+1.

Related literature top

For background on the thiazolidinone system, see: Laurent et al. (2004). For the biological activities of thiazolidinones, see: Shih & Ke (2004), For bicyclic compounds, see: Jeyaraman & Avila, (1981). For ring conformational analysis, see: Cremer & Pople, (1975).

Experimental top

To the boiling solution of the bicyclic thiosemicarbazone (0.01 mol) in ethanolic–chloroform (1:1 / v:v), ethylbromoacetate (0.01 mol), sodium acetate trihydrate (0.02 mol) and acetic acid few drops were added and refluxed for about 5–6 h. After the completion of reaction, excess of solvent was removed under reduced pressure and poured into water. After usual work–up, the solid was separated and purified by column chromatography using benzene–ethyl acetate (9:1 / v:v) as eluent on neutral alumina. Colourless crystals were grown by slow evaporation method using ethanol as solvent. 1H NMR (δ p.p.m.), DMSO–d6: 4.39 (s, 1H, H2a); 4.26 (s, 1H, H4a); 3.56 (s, 1H, H5e); 2.57 (s, 1H, H1e); 3.74 (s, 2H, S—CH2); 2.82 (m, 1H, H7a); 1.44 (m, 5H, H6e, H8e, H7e, H6a and H8a); 2.09 (s, 1H, NH at 3); 11.60 (bs, 1H, NH exchangeable); 7.25–7.60 & 7.80 (m, 10H aryl protons): 13C NMR (δ p.p.m.) DMSO–d6: 64.94 (C2); 63.57 (C4); 45.91 (C1); 39.88 (C5); 28.65 (C8); 27.28 (C6); 21.37 (C7); 32.92 (S—CH2); 173.98 (Cδb O); 163.00 (Cδb N) 142.54 (C2' & C4'); 128.16, 127.02, 126.95, 126.83, 126.77 (other aryl carbons).

Refinement top

The H–atoms were bonded with C atoms were placed in calculated positions and were refined using a riding model, with aromatic C—H = 0.93 Å, methine C—H = 0.98 Å, methylene C—H = 0.97 Å. The displacement parameters were set for these H atoms as Uiso(H) = 1.2Ueq(C). The other H atoms were found from difference Fourier map and were refined isopropically.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of title compound with the atom numbering scheme. Displacement ellipsoids drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing of molecules in the unit cell. Hydrogen bonds are shown by dotted lines.
2-(2,4-Diphenyl-3-azabicyclo[3.3.1]nonan-9-ylidenehydrazono)- 1,3-thiazolidin-4-one top
Crystal data top
C23H24N4OSF(000) = 856
Mr = 404.53Dx = 1.311 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4403 reflections
a = 8.3183 (3) Åθ = 3.9–24.7°
b = 10.8435 (4) ŵ = 0.18 mm1
c = 22.7417 (8) ÅT = 293 K
β = 92.483 (2)°Block, colourless
V = 2049.36 (13) Å30.25 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
7820 independent reflections
Radiation source: Fine-focus sealed tube4068 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 33.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker 1999)
h = 1212
Tmin = 0.956, Tmax = 0.974k = 1616
31153 measured reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: Direct
Least-squares matrix: FullSecondary atom site location: Difmap
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: Geom
wR(F2) = 0.203H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.1023P)2]
where P = (Fo2 + 2Fc2)/3
7820 reflections(Δ/σ)max = 0.001
270 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C23H24N4OSV = 2049.36 (13) Å3
Mr = 404.53Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.3183 (3) ŵ = 0.18 mm1
b = 10.8435 (4) ÅT = 293 K
c = 22.7417 (8) Å0.25 × 0.20 × 0.15 mm
β = 92.483 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
7820 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 1999)
4068 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.974Rint = 0.053
31153 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.203H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.42 e Å3
7820 reflectionsΔρmin = 0.33 e Å3
270 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > \ s(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6862 (2)0.50259 (17)0.44666 (8)0.0387 (4)
C20.8215 (2)0.52229 (19)0.40590 (9)0.0463 (5)
H2A0.78010.55540.36860.056*
H2B0.87490.44470.39850.056*
C30.8430 (2)0.64074 (17)0.50239 (8)0.0377 (4)
C41.0586 (2)0.83875 (17)0.58582 (8)0.0400 (4)
C51.2108 (2)0.91183 (18)0.58360 (9)0.0439 (4)
H51.25480.90150.54460.053*
C61.3309 (3)0.8579 (2)0.62995 (11)0.0559 (6)
H6A1.35940.77490.61820.067*
H6B1.42830.90720.63100.067*
C71.2677 (3)0.8535 (2)0.69020 (11)0.0627 (7)
H7A1.26720.93630.70630.075*
H7B1.33950.80380.71520.075*
C81.0981 (3)0.8002 (2)0.69143 (10)0.0556 (5)
H8A1.05540.81660.72970.067*
H8B1.10410.71140.68670.067*
C90.9813 (2)0.85244 (18)0.64362 (8)0.0430 (4)
H90.88180.80390.64280.052*
C101.1700 (2)1.04873 (17)0.59233 (8)0.0421 (4)
H101.10151.07600.55870.050*
C111.3226 (2)1.12617 (17)0.59453 (9)0.0442 (4)
C121.4047 (3)1.1425 (2)0.54321 (11)0.0620 (6)
H121.36481.10830.50800.074*
C131.5469 (3)1.2102 (2)0.54460 (14)0.0733 (8)
H131.60151.22070.51010.088*
C141.6069 (3)1.2609 (3)0.59510 (15)0.0796 (9)
H141.70201.30610.59540.095*
C151.5281 (3)1.2454 (3)0.64502 (14)0.0804 (8)
H151.56911.28070.67980.096*
C161.3867 (3)1.1777 (2)0.64548 (11)0.0612 (6)
H161.33491.16710.68060.073*
C170.9389 (2)0.98974 (18)0.65116 (8)0.0420 (4)
H170.86081.01270.61960.050*
C180.8625 (2)1.01140 (19)0.70932 (9)0.0433 (4)
C190.7131 (3)0.9629 (3)0.71957 (12)0.0766 (9)
H190.65860.91910.68970.092*
C200.6425 (3)0.9775 (3)0.77257 (13)0.0835 (9)
H200.54240.94230.77830.100*
C210.7169 (3)1.0423 (2)0.81652 (11)0.0594 (6)
H210.66751.05440.85200.071*
C220.8654 (3)1.0897 (2)0.80792 (10)0.0584 (6)
H220.91841.13370.83810.070*
C230.9384 (3)1.0737 (2)0.75539 (9)0.0534 (5)
H231.04101.10550.75090.064*
N11.08146 (19)1.06644 (15)0.64602 (7)0.0421 (4)
N21.01593 (19)0.77332 (15)0.54109 (7)0.0433 (4)
N30.87175 (19)0.70686 (16)0.54817 (7)0.0456 (4)
N40.70888 (19)0.56801 (14)0.49729 (7)0.0403 (4)
O10.57154 (16)0.43634 (14)0.43526 (6)0.0525 (4)
S10.96100 (5)0.62925 (5)0.44083 (2)0.04262 (15)
H1A1.049 (3)1.149 (2)0.6472 (10)0.060 (7)*
H4A0.635 (3)0.569 (2)0.5206 (11)0.062 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0368 (8)0.0358 (9)0.0432 (10)0.0020 (7)0.0019 (7)0.0086 (8)
C20.0459 (10)0.0462 (11)0.0470 (11)0.0060 (9)0.0046 (8)0.0151 (9)
C30.0384 (8)0.0344 (9)0.0400 (10)0.0012 (7)0.0040 (7)0.0051 (7)
C40.0427 (9)0.0348 (9)0.0418 (10)0.0007 (7)0.0065 (8)0.0070 (8)
C50.0460 (10)0.0370 (10)0.0485 (11)0.0033 (8)0.0007 (8)0.0112 (8)
C60.0490 (11)0.0369 (11)0.0804 (16)0.0033 (9)0.0145 (11)0.0086 (10)
C70.0733 (15)0.0435 (12)0.0682 (15)0.0093 (11)0.0331 (13)0.0022 (10)
C80.0817 (15)0.0359 (11)0.0484 (12)0.0033 (10)0.0067 (11)0.0013 (9)
C90.0486 (10)0.0375 (10)0.0425 (10)0.0076 (8)0.0023 (8)0.0073 (8)
C100.0488 (10)0.0380 (10)0.0392 (10)0.0028 (8)0.0005 (8)0.0013 (8)
C110.0522 (10)0.0300 (9)0.0508 (11)0.0024 (8)0.0074 (9)0.0009 (8)
C120.0833 (16)0.0441 (12)0.0604 (14)0.0053 (11)0.0242 (12)0.0023 (10)
C130.0814 (17)0.0487 (14)0.093 (2)0.0055 (13)0.0471 (16)0.0057 (14)
C140.0651 (15)0.0590 (16)0.117 (3)0.0164 (13)0.0349 (16)0.0108 (16)
C150.0707 (15)0.0826 (19)0.089 (2)0.0358 (14)0.0130 (14)0.0197 (16)
C160.0637 (13)0.0619 (14)0.0589 (14)0.0231 (11)0.0139 (11)0.0126 (12)
C170.0425 (9)0.0408 (10)0.0420 (10)0.0008 (8)0.0049 (8)0.0053 (8)
C180.0391 (9)0.0439 (11)0.0464 (11)0.0021 (8)0.0045 (8)0.0072 (8)
C190.0392 (11)0.120 (2)0.0705 (16)0.0151 (13)0.0006 (11)0.0420 (16)
C200.0465 (12)0.121 (3)0.0839 (19)0.0169 (15)0.0155 (12)0.0345 (18)
C210.0557 (12)0.0656 (15)0.0574 (13)0.0076 (11)0.0095 (10)0.0089 (12)
C220.0664 (14)0.0641 (14)0.0443 (12)0.0100 (11)0.0024 (10)0.0130 (10)
C230.0533 (11)0.0563 (13)0.0504 (12)0.0155 (10)0.0000 (10)0.0109 (10)
N10.0483 (8)0.0304 (8)0.0479 (9)0.0011 (7)0.0056 (7)0.0043 (7)
N20.0424 (8)0.0402 (9)0.0468 (9)0.0052 (7)0.0035 (7)0.0089 (7)
N30.0466 (8)0.0466 (9)0.0435 (9)0.0090 (7)0.0003 (7)0.0097 (7)
N40.0378 (8)0.0414 (9)0.0421 (9)0.0047 (7)0.0053 (7)0.0088 (7)
O10.0470 (7)0.0553 (9)0.0553 (9)0.0150 (6)0.0028 (6)0.0171 (7)
S10.0391 (2)0.0403 (3)0.0487 (3)0.00407 (19)0.00437 (19)0.0065 (2)
Geometric parameters (Å, º) top
C1—O11.213 (2)C11—C161.373 (3)
C1—N41.359 (2)C11—C121.389 (3)
C1—C21.504 (3)C12—C131.391 (4)
C2—S11.8009 (19)C12—H120.9300
C2—H2A0.9700C13—C141.349 (4)
C2—H2B0.9700C13—H130.9300
C3—N31.278 (2)C14—C151.346 (4)
C3—N41.367 (2)C14—H140.9300
C3—S11.7487 (18)C15—C161.387 (3)
C4—N21.278 (2)C15—H150.9300
C4—C91.496 (3)C16—H160.9300
C4—C51.496 (3)C17—N11.458 (2)
C5—C61.537 (3)C17—C181.510 (3)
C5—C101.538 (3)C17—H170.9800
C5—H50.9800C18—C231.377 (3)
C6—C71.489 (3)C18—C191.379 (3)
C6—H6A0.9700C19—C201.372 (3)
C6—H6B0.9700C19—H190.9300
C7—C81.526 (3)C20—C211.350 (4)
C7—H7A0.9700C20—H200.9300
C7—H7B0.9700C21—C221.360 (3)
C8—C91.535 (3)C21—H210.9300
C8—H8A0.9700C22—C231.375 (3)
C8—H8B0.9700C22—H220.9300
C9—C171.541 (3)C23—H230.9300
C9—H90.9800N1—H1A0.94 (3)
C10—N11.466 (2)N2—N31.414 (2)
C10—C111.521 (3)N4—H4A0.83 (2)
C10—H100.9800
O1—C1—N4124.69 (17)C16—C11—C12118.0 (2)
O1—C1—C2123.70 (17)C16—C11—C10123.06 (18)
N4—C1—C2111.60 (15)C12—C11—C10118.9 (2)
C1—C2—S1107.74 (13)C11—C12—C13119.8 (3)
C1—C2—H2A110.2C11—C12—H12120.1
S1—C2—H2A110.2C13—C12—H12120.1
C1—C2—H2B110.2C14—C13—C12121.2 (2)
S1—C2—H2B110.2C14—C13—H13119.4
H2A—C2—H2B108.5C12—C13—H13119.4
N3—C3—N4121.05 (17)C15—C14—C13119.4 (2)
N3—C3—S1126.91 (14)C15—C14—H14120.3
N4—C3—S1112.04 (13)C13—C14—H14120.3
N2—C4—C9129.74 (17)C14—C15—C16121.1 (3)
N2—C4—C5118.26 (17)C14—C15—H15119.4
C9—C4—C5111.96 (15)C16—C15—H15119.4
C4—C5—C6107.51 (17)C11—C16—C15120.5 (2)
C4—C5—C10108.35 (16)C11—C16—H16119.8
C6—C5—C10114.83 (16)C15—C16—H16119.8
C4—C5—H5108.7N1—C17—C18110.86 (15)
C6—C5—H5108.7N1—C17—C9110.57 (15)
C10—C5—H5108.7C18—C17—C9110.78 (16)
C7—C6—C5113.48 (18)N1—C17—H17108.2
C7—C6—H6A108.9C18—C17—H17108.2
C5—C6—H6A108.9C9—C17—H17108.2
C7—C6—H6B108.9C23—C18—C19116.5 (2)
C5—C6—H6B108.9C23—C18—C17123.12 (18)
H6A—C6—H6B107.7C19—C18—C17120.33 (18)
C6—C7—C8113.11 (19)C20—C19—C18121.8 (2)
C6—C7—H7A109.0C20—C19—H19119.1
C8—C7—H7A109.0C18—C19—H19119.1
C6—C7—H7B109.0C21—C20—C19120.7 (2)
C8—C7—H7B109.0C21—C20—H20119.6
H7A—C7—H7B107.8C19—C20—H20119.6
C7—C8—C9113.88 (18)C20—C21—C22118.7 (2)
C7—C8—H8A108.8C20—C21—H21120.7
C9—C8—H8A108.8C22—C21—H21120.7
C7—C8—H8B108.8C21—C22—C23121.1 (2)
C9—C8—H8B108.8C21—C22—H22119.5
H8A—C8—H8B107.7C23—C22—H22119.5
C4—C9—C8107.61 (17)C22—C23—C18121.2 (2)
C4—C9—C17107.63 (16)C22—C23—H23119.4
C8—C9—C17114.75 (16)C18—C23—H23119.4
C4—C9—H9108.9C17—N1—C10115.60 (15)
C8—C9—H9108.9C17—N1—H1A108.1 (14)
C17—C9—H9108.9C10—N1—H1A107.7 (14)
N1—C10—C11110.42 (15)C4—N2—N3113.58 (17)
N1—C10—C5110.85 (16)C3—N3—N2108.82 (16)
C11—C10—C5110.40 (16)C1—N4—C3117.12 (16)
N1—C10—H10108.4C1—N4—H4A118.2 (17)
C11—C10—H10108.4C3—N4—H4A124.0 (17)
C5—C10—H10108.4C3—S1—C291.47 (8)
O1—C1—C2—S1178.98 (16)C4—C9—C17—N155.7 (2)
N4—C1—C2—S11.0 (2)C8—C9—C17—N164.0 (2)
N2—C4—C5—C6114.0 (2)C4—C9—C17—C18179.00 (15)
C9—C4—C5—C664.1 (2)C8—C9—C17—C1859.3 (2)
N2—C4—C5—C10121.3 (2)N1—C17—C18—C2313.3 (3)
C9—C4—C5—C1060.5 (2)C9—C17—C18—C23109.8 (2)
C4—C5—C6—C755.1 (2)N1—C17—C18—C19169.9 (2)
C10—C5—C6—C765.6 (2)C9—C17—C18—C1966.9 (3)
C5—C6—C7—C847.2 (2)C23—C18—C19—C201.0 (4)
C6—C7—C8—C946.0 (3)C17—C18—C19—C20177.9 (3)
N2—C4—C9—C8115.1 (2)C18—C19—C20—C211.2 (5)
C5—C4—C9—C862.8 (2)C19—C20—C21—C222.0 (5)
N2—C4—C9—C17120.7 (2)C20—C21—C22—C230.8 (4)
C5—C4—C9—C1761.4 (2)C21—C22—C23—C181.4 (4)
C7—C8—C9—C452.2 (2)C19—C18—C23—C222.2 (3)
C7—C8—C9—C1767.6 (2)C17—C18—C23—C22179.0 (2)
C4—C5—C10—N153.5 (2)C18—C17—N1—C10177.21 (15)
C6—C5—C10—N166.7 (2)C9—C17—N1—C1054.0 (2)
C4—C5—C10—C11176.21 (16)C11—C10—N1—C17175.50 (16)
C6—C5—C10—C1156.0 (2)C5—C10—N1—C1752.8 (2)
N1—C10—C11—C1615.8 (3)C9—C4—N2—N31.4 (3)
C5—C10—C11—C16107.2 (2)C5—C4—N2—N3179.20 (16)
N1—C10—C11—C12166.51 (18)N4—C3—N3—N2179.13 (16)
C5—C10—C11—C1270.6 (2)S1—C3—N3—N21.1 (2)
C16—C11—C12—C130.4 (3)C4—N2—N3—C3177.32 (17)
C10—C11—C12—C13178.2 (2)O1—C1—N4—C3178.36 (18)
C11—C12—C13—C140.1 (4)C2—C1—N4—C31.6 (2)
C12—C13—C14—C150.2 (4)N3—C3—N4—C1178.78 (18)
C13—C14—C15—C160.3 (5)S1—C3—N4—C11.5 (2)
C12—C11—C16—C150.9 (4)N3—C3—S1—C2179.58 (19)
C10—C11—C16—C15178.7 (2)N4—C3—S1—C20.67 (15)
C14—C15—C16—C110.9 (5)C1—C2—S1—C30.16 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O1i0.83 (2)2.03 (2)2.847 (2)169 (2)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC23H24N4OS
Mr404.53
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.3183 (3), 10.8435 (4), 22.7417 (8)
β (°) 92.483 (2)
V3)2049.36 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker 1999)
Tmin, Tmax0.956, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
31153, 7820, 4068
Rint0.053
(sin θ/λ)max1)0.771
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.203, 1.04
No. of reflections7820
No. of parameters270
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.33

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O1i0.83 (2)2.03 (2)2.847 (2)169 (2)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors are grateful to Dr Babu Varghese, Senior Scientist, Indian Institute of Technology Madras, for his valuable suggestions and for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149–174.  CrossRef CAS Web of Science Google Scholar
First citationLaurent, D. R. S., Gao, Q., Wu, D. & Serrano-Wu, M. H. (2004). Tetrahedron Lett. 45, 1907–1910.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShih, M. H. & Ke, F. Y. (2004). Bioorg. Med. Chem. 12, 4633–4643.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds