organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages o554-o555

3-(2-Acetamido­phen­yl)sydnone

aDepartment of Chemistry, Wright State University, 3640 Colonel Glenn Hwy, Dayton, Ohio 45435, USA
*Correspondence e-mail: david.grossie@wright.edu

(Received 5 February 2009; accepted 11 February 2009; online 21 February 2009)

Sydnones are unusual mesoionic compounds containing a five-membered heterocyclic ring. Generally for stability, substitution at the N-3 position by an aromatic fragment is necessary. In the title compound, C10H9N3O3, the aromatic substitutent is 2-acetamido­phenyl. The two planar ring fragments are twisted relative to one another, with a inter­planar angle of 63.13 (5)°. The mol­ecules are packed into the unit cell via ππ inter­actions between the phenyl rings [inter­planar separation = 3.4182 (4) Å] and between the sydnone rings [inter­planar separation = 3.2095 (4) Å]. N—H⋯O and C—H⋯O hydrogen bonding is also found inter­nally and externally to the mol­ecule.

Related literature

For more information on the sydnone family of compounds, see: Ohta & Kato (1969[Ohta, M. & Kato, H. (1969). Nonbenzenoid Aromatics, edited by J. P. Snyder, pp. 117-248. New York: Academic Press. .]). For the synthesis and structural information, see: Grossie et al. (1992[Grossie, D. A. & Turnbull, K. (1992). Acta Cryst. C48, 377-379.], 2001[Grossie, D. A., Turnbull, K. & Krein, D. M. (2001). Acta Cryst. E57, o985-o987.], 2007[Grossie, D. A., Sun, L. & Turnbull, K. (2007). Acta Cryst. E63, o2042-o2043.]); Riddle et al. 2004a[Riddle, G. B., Grossie, D. A. & Turnbull, K. (2004a). Acta Cryst. E60, o977-o978.],b[Riddle, G. B., Grossie, D. A. & Turnbull, K. (2004b). Acta Cryst. E60, o1568-o1570.],c[Riddle, G. B., Grossie, D. A. & Turnbull, K. (2004c). Acta Cryst. E60, o258-o259.]; Hope & Thiessen (1968[Hope, H. & Thiessen, W. E. (1968). In The Structures of 4,4′-Dichloro-3,3′-ethylenebissydnone and 3,3′-Ethylenebys-sydnone. Department of Chemistry, University of California, USA.]); Hodson & Turnbull (1985[Hodson, S. J. & Turnbull, K. (1985). In Bromination of 3-(2-Aminophenyl)sydnone and Related Compounds. Department of Chemistry, Wright State University, Dayton, Ohio, USA.]); Baker & Ollis (1957[Baker, W. & Ollis, W. D. (1957). Q. Rev. Chem. Soc. 11, 15-29.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For related literature, see: Kier & Roche (1966[Kier, L. B. & Roche, E. B. (1966). J. Pharm. Sci. 55, 807-12.]); Matsunaga (1957[Matsunaga, Y. (1957). Bull. Chem. Soc. Jpn, 30, 227-230.]); Ollis & Ramsden (1976[Ollis, W. D. & Ramsden, C. A. (1976). Adv. Heterocycl. Chem. 19, 1-122.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9N3O3

  • Mr = 219.20

  • Monoclinic, P 21 /c

  • a = 7.7348 (4) Å

  • b = 13.7212 (7) Å

  • c = 9.6698 (5) Å

  • β = 106.083 (1)°

  • V = 986.10 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 173 K

  • 0.45 × 0.40 × 0.26 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS, SMART and SAINT-Plus, Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.895, Tmax = 0.970

  • 8741 measured reflections

  • 3053 independent reflections

  • 2711 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.108

  • S = 1.05

  • 3053 reflections

  • 150 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N12—H12⋯O17Ai 0.876 (15) 2.056 (15) 2.9272 (10) 173.2 (14)
C4—H4⋯O5ii 0.96 2.28 3.1860 (12) 156
C13—H13⋯O17A 0.96 2.29 2.8587 (14) 117
C15—H15⋯O5iii 0.96 2.41 3.3612 (14) 173
C16—H16⋯O5iv 0.96 2.57 3.4700 (13) 157
C18—H18B⋯O17Ai 0.98 2.54 3.3201 (12) 136
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+2, -y, -z+1.

Data collection: SMART (Bruker, 2003[Bruker (2003). SADABS, SMART and SAINT-Plus, Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SADABS, SMART and SAINT-Plus, Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and OSCAIL X, (McArdle, 2008[McArdle, P. (2008). OSCAIL X. National University of Ireland, Ireland.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sydnones are the most widely studied members of the general class of mesoionic compounds (Ohta & Kato, 1969). They are the products of dehydration of N–nitroso–α–aminoacids (Hope & Thiessen, 1968), and they undergo facile electrophilic aromatic subtitution on the sydnone ring. The selectivity on the sydnone ring (and not the aryl ring) can be attributed to the activated nature of the sydnone ring (Matsunaga, 1957) and its deactivating effect upon the attached aryl ring (the N3 position bears a considerable fractional positive charge (Kier & Roche, 1966)).

The 3–(2–acetamidophenyl)sydnone was synthesized to investigate its bromination and to probe the parameters controlling the site of electrophilic attack, both from mechanistic and synthetic standpoints. The sydnone ring is found to be planar. The ring bond distances O–N, N–N, N–C and C–C are similar to those of related compounds. However, the C—O bond distance of 1.4158 (12)Å, is longer than that of the C—O bond in a furane ring. As mentioned in previous paper (Hodson & Turnbull, 1985), the exocyclic CO distance (1.2181 (12)Å) does not support the formulation of Baker & Ollis (1957), which involves the delocalization of a positive charge on the ring, and a negative charge on the exocyclic oxygen.

The molecules pack along the body diagonal within the unit cell, in symmetry related pairs with the phenyl rings lying parallel to each other, separated by a distance of 3.4182 (4)Å. The pairs of molecules are further paired through interaction of the sydnone rings in adjacent molecules, which are positioned parallel to each other at a distance of 3.2095 (4)Å. The molecules are connected laterally through hydrogen bonding between the sydnone and acetamide O atoms and phenyl, and amide H atoms. Hydrogen bond parameters are tabulated in Table 1.

As expected the sydnone ring was similar in metrical parameters to sydnone structures previously determined, in this laboratory (Grossie et al., 1992, 2001, 2007; Riddle et al. 2004a,b,c) and as found in the Cambridge Structural Database vers. 5.30 (Allen, 2002).

Related literature top

For more information on the sydnone family of compounds, see: Ohta & Kato (1969). For the synthesis and structural information, see: Grossie et al. (1992, 2001, 2007); Riddle et al. 2004a,b,c; Hope & Thiessen (1968); Hodson & Turnbull (1985); Baker & Ollis (1957). For a description of the Cambridge Structural Database, see: Allen (2002). For related literature, seE: Kier & Roche (1966); Matsunaga (1957); Ollis & Ramsden (1976).

Experimental top

3–(2–Aminophenyl)sydnone (0.5 g, 2.82 mmol) was dissolved in acetic anhydride (10 ml) and stirred for 20 h. Evaporation on standing overnight gave a light yellow oil which was crystallized from methylene chloride/petroleum ether to give 3–(2–acetamidophenyl)sydnone (0.42 g, 68%), mp 349–351 K; IR–spectra: 3310, 3290 (N—H str), 3130 (sydnone C—H str), 1740 (sydnone CO str) cm-1. The 1H NMR (CDCl3): δ 2.0 (s, 3H), 6.83 (s, 1H), 7.65 (m, 4H), 9.65 (s, 1H). Anal. Calcd. for C10H9N3O3: C, 54.79; H, 4.11; N, 19.18. Found; C, 54.90; H, 4.17; N, 18.89.

Refinement top

The amide H atom was located in a different Fourier map and refined with an isotropic displacement parameter. The positional parameters were allow to refine freely. The methyl and benzene H atoms were included in geometrically calculated positions, with C—H distances of 0.98Å and 0.96Å, respectively, and Uiso(H) = 1.3Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008) and OSCAIL X, (McArdle, 2008); software used to prepare material for publication: enCIFer (Allen et al., 2004), publCIF (Westrip, 2009) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of title compound with the atom numbering scheme. The displacement ellipsoids are drawn at 50% probability level. The H atoms are presented as a small spheres of arbitrary radius.
3-(2-Acetamidophenyl)sydnone top
Crystal data top
C10H9N3O3F(000) = 456
Mr = 219.20Dx = 1.477 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4272 reflections
a = 7.7348 (4) Åθ = 2.7–31.7°
b = 13.7212 (7) ŵ = 0.11 mm1
c = 9.6698 (5) ÅT = 173 K
β = 106.083 (1)°Block, white
V = 986.10 (9) Å30.45 × 0.40 × 0.26 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
3053 independent reflections
Radiation source: Fine–focus sealed tube2711 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 32.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1111
Tmin = 0.895, Tmax = 0.970k = 1914
8741 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: Direct
Least-squares matrix: FullSecondary atom site location: Difmap
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: Geom
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.058P)2 + 0.315P]
where P = (Fo2 + 2Fc2)/3
3053 reflections(Δ/σ)max < 0.001
150 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C10H9N3O3V = 986.10 (9) Å3
Mr = 219.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7348 (4) ŵ = 0.11 mm1
b = 13.7212 (7) ÅT = 173 K
c = 9.6698 (5) Å0.45 × 0.40 × 0.26 mm
β = 106.083 (1)°
Data collection top
Bruker SMART APEXII
diffractometer
3053 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2711 reflections with I > 2σ(I)
Tmin = 0.895, Tmax = 0.970Rint = 0.017
8741 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.44 e Å3
3053 reflectionsΔρmin = 0.24 e Å3
150 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Least–Squares Planes. Sydnone Ring. Defining atoms: O1 0.004 (1)Å, N2 -0.003 (1)Å, N3 0.000 (1)Å, C4 0.003 (1)Å, C5 -0.004 (1)Å; other atoms: O5 0.002 (1)Å, C11 0.081 (1)Å. Phenyl Ring. Defining atoms: C11 0.009 (1)Å, C12 -0.004 (1)Å, C13 -0.003 (1)Å, C14 0.006 (1)Å, C15 -0.002 (1)Å, C16 -0.006 (1)Å; other atoms: O17A 0.710 (1)Å, N12 -0.120 (1)Å, C17 0.159 (1)Å, C18 -0.233 (1)Å.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.84105 (9)0.07745 (5)0.51445 (7)0.01803 (16)
N30.82573 (10)0.08267 (6)0.29241 (8)0.01461 (16)
N20.76980 (11)0.03010 (6)0.38528 (9)0.01838 (18)
C40.92672 (12)0.16064 (7)0.34726 (10)0.01603 (18)
H40.97910.20670.29590.021*
C50.94005 (12)0.16089 (7)0.49604 (10)0.01573 (18)
O51.01261 (10)0.21147 (6)0.59934 (8)0.01993 (16)
C110.78190 (12)0.04762 (7)0.14601 (9)0.01569 (18)
C120.67371 (12)0.10348 (7)0.03402 (10)0.01569 (18)
N120.59485 (11)0.19068 (6)0.06408 (8)0.01579 (16)
H120.579 (2)0.1987 (11)0.1492 (16)0.024 (3)*
C130.63770 (14)0.06464 (8)0.10516 (10)0.0210 (2)
H130.56440.10050.18530.027*
C140.70713 (15)0.02531 (8)0.12794 (11)0.0231 (2)
H140.68200.05030.22420.030*
C150.81211 (14)0.08014 (8)0.01474 (11)0.0219 (2)
H150.85820.14250.03220.028*
C160.84924 (13)0.04322 (7)0.12408 (11)0.01917 (19)
H160.92070.08000.20400.025*
C170.52287 (12)0.26254 (7)0.03227 (10)0.01474 (17)
O17A0.53832 (10)0.26491 (6)0.15559 (7)0.02026 (16)
C180.42424 (13)0.34120 (8)0.02328 (10)0.01933 (19)
H18A0.50420.39720.05440.025*
H18B0.38580.31620.10500.025*
H18C0.31840.36150.05340.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0216 (3)0.0193 (4)0.0135 (3)0.0025 (3)0.0055 (2)0.0016 (2)
N30.0158 (3)0.0144 (4)0.0133 (3)0.0005 (3)0.0036 (3)0.0016 (3)
N20.0218 (4)0.0187 (4)0.0148 (3)0.0033 (3)0.0053 (3)0.0015 (3)
C40.0183 (4)0.0157 (4)0.0143 (4)0.0019 (3)0.0049 (3)0.0007 (3)
C50.0166 (4)0.0155 (4)0.0155 (4)0.0016 (3)0.0051 (3)0.0020 (3)
O50.0242 (3)0.0201 (4)0.0155 (3)0.0006 (3)0.0055 (3)0.0021 (3)
C110.0169 (4)0.0170 (4)0.0130 (4)0.0004 (3)0.0038 (3)0.0013 (3)
C120.0174 (4)0.0159 (4)0.0137 (4)0.0007 (3)0.0043 (3)0.0008 (3)
N120.0201 (4)0.0167 (4)0.0108 (3)0.0029 (3)0.0047 (3)0.0003 (3)
C130.0250 (5)0.0219 (5)0.0144 (4)0.0030 (4)0.0027 (3)0.0028 (3)
C140.0282 (5)0.0223 (5)0.0186 (4)0.0013 (4)0.0060 (4)0.0062 (4)
C150.0243 (5)0.0175 (5)0.0244 (5)0.0015 (3)0.0074 (4)0.0042 (4)
C160.0201 (4)0.0160 (5)0.0208 (4)0.0016 (3)0.0047 (3)0.0004 (3)
C170.0148 (4)0.0163 (4)0.0130 (4)0.0016 (3)0.0037 (3)0.0000 (3)
O17A0.0294 (4)0.0199 (4)0.0130 (3)0.0011 (3)0.0084 (3)0.0009 (3)
C180.0219 (4)0.0201 (5)0.0174 (4)0.0059 (3)0.0078 (3)0.0027 (3)
Geometric parameters (Å, º) top
O1—N21.3801 (10)N12—H120.871 (15)
O1—C51.4158 (12)C13—C141.3878 (15)
N3—N21.3150 (11)C13—H130.9600
N3—C41.3440 (12)C14—C151.3897 (15)
N3—C111.4437 (12)C14—H140.9600
C4—C51.4136 (12)C15—C161.3883 (14)
C4—H40.9600C15—H150.9600
C5—O51.2181 (12)C16—H160.9600
C11—C161.3897 (14)C17—O17A1.2314 (11)
C11—C121.3994 (13)C17—C181.5041 (14)
C12—C131.4018 (13)C18—H18A0.9800
C12—N121.4093 (12)C18—H18B0.9800
N12—C171.3649 (12)C18—H18C0.9800
N2—O1—C5111.17 (7)C14—C13—H13119.7
N2—N3—C4115.61 (8)C12—C13—H13119.7
N2—N3—C11117.04 (8)C13—C14—C15121.59 (9)
C4—N3—C11127.23 (8)C13—C14—H14119.2
N3—N2—O1103.62 (7)C15—C14—H14119.2
N3—C4—C5105.91 (8)C16—C15—C14118.90 (9)
N3—C4—H4127.0C16—C15—H15120.6
C5—C4—H4127.0C14—C15—H15120.6
O5—C5—C4136.32 (9)C15—C16—C11119.27 (9)
O5—C5—O1120.00 (8)C15—C16—H16120.4
C4—C5—O1103.68 (8)C11—C16—H16120.4
C16—C11—C12122.84 (9)O17A—C17—N12123.33 (9)
C16—C11—N3116.89 (8)O17A—C17—C18121.46 (9)
C12—C11—N3120.26 (8)N12—C17—C18115.21 (8)
C11—C12—C13116.86 (9)C17—C18—H18A109.5
C11—C12—N12120.37 (8)C17—C18—H18B109.5
C13—C12—N12122.58 (8)H18A—C18—H18B109.5
C17—N12—C12126.20 (8)C17—C18—H18C109.5
C17—N12—H12114.7 (10)H18A—C18—H18C109.5
C12—N12—H12118.8 (10)H18B—C18—H18C109.5
C14—C13—C12120.52 (9)
C4—N3—N2—O10.25 (11)N3—C11—C12—C13179.79 (9)
C11—N3—N2—O1176.13 (7)C16—C11—C12—N12173.82 (9)
C5—O1—N2—N30.65 (10)N3—C11—C12—N125.04 (14)
N2—N3—C4—C50.24 (11)C11—C12—N12—C17163.84 (9)
C11—N3—C4—C5176.19 (8)C13—C12—N12—C1721.28 (15)
N3—C4—C5—O5179.52 (11)C11—C12—C13—C140.22 (15)
N3—C4—C5—O10.61 (10)N12—C12—C13—C14174.83 (10)
N2—O1—C5—O5179.93 (8)C12—C13—C14—C150.73 (17)
N2—O1—C5—C40.80 (10)C13—C14—C15—C160.59 (17)
N2—N3—C11—C1660.99 (12)C14—C15—C16—C110.50 (16)
C4—N3—C11—C16114.91 (11)C12—C11—C16—C151.51 (15)
N2—N3—C11—C12117.94 (10)N3—C11—C16—C15179.60 (9)
C4—N3—C11—C1266.16 (13)C12—N12—C17—O17A9.29 (15)
C16—C11—C12—C131.34 (15)C12—N12—C17—C18171.74 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12···O17Ai0.876 (15)2.056 (15)2.9272 (10)173.2 (14)
C4—H4···O5ii0.962.283.1860 (12)156
C13—H13···O17A0.962.292.8587 (14)117
C15—H15···O5iii0.962.413.3612 (14)173
C16—H16···O5iv0.962.573.4700 (13)157
C18—H18B···O17Ai0.982.543.3201 (12)136
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+2, y1/2, z+1/2; (iv) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC10H9N3O3
Mr219.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)7.7348 (4), 13.7212 (7), 9.6698 (5)
β (°) 106.083 (1)
V3)986.10 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.45 × 0.40 × 0.26
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.895, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
8741, 3053, 2711
Rint0.017
(sin θ/λ)max1)0.745
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.108, 1.05
No. of reflections3053
No. of parameters150
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.24

Computer programs: SMART (Bruker, 2003), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008) and OSCAIL X, (McArdle, 2008), enCIFer (Allen et al., 2004), publCIF (Westrip, 2009) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12···O17Ai0.876 (15)2.056 (15)2.9272 (10)173.2 (14)
C4—H4···O5ii0.962.283.1860 (12)156
C13—H13···O17A0.962.292.8587 (14)117
C15—H15···O5iii0.962.413.3612 (14)173
C16—H16···O5iv0.962.573.4700 (13)157
C18—H18B···O17Ai0.982.543.3201 (12)136
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+2, y1/2, z+1/2; (iv) x+2, y, z+1.
 

Acknowledgements

The authors acknowledge the diffractometer time granted by A. Hunter, Youngstown State University.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBaker, W. & Ollis, W. D. (1957). Q. Rev. Chem. Soc. 11, 15–29.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2003). SADABS, SMART and SAINT–Plus, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGrossie, D. A., Sun, L. & Turnbull, K. (2007). Acta Cryst. E63, o2042–o2043.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGrossie, D. A. & Turnbull, K. (1992). Acta Cryst. C48, 377–379.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGrossie, D. A., Turnbull, K. & Krein, D. M. (2001). Acta Cryst. E57, o985–o987.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHodson, S. J. & Turnbull, K. (1985). In Bromination of 3-(2-Aminophenyl)sydnone and Related Compounds. Department of Chemistry, Wright State University, Dayton, Ohio, USA.  Google Scholar
First citationHope, H. & Thiessen, W. E. (1968). In The Structures of 4,4′-Dichloro-3,3′-ethylenebissydnone and 3,3′-Ethylenebys-sydnone. Department of Chemistry, University of California, USA.  Google Scholar
First citationKier, L. B. & Roche, E. B. (1966). J. Pharm. Sci. 55, 807–12.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMatsunaga, Y. (1957). Bull. Chem. Soc. Jpn, 30, 227–230.  CrossRef CAS Web of Science Google Scholar
First citationMcArdle, P. (2008). OSCAIL X. National University of Ireland, Ireland.  Google Scholar
First citationOhta, M. & Kato, H. (1969). Nonbenzenoid Aromatics, edited by J. P. Snyder, pp. 117–248. New York: Academic Press. .  Google Scholar
First citationOllis, W. D. & Ramsden, C. A. (1976). Adv. Heterocycl. Chem. 19, 1–122.  CrossRef CAS Google Scholar
First citationRiddle, G. B., Grossie, D. A. & Turnbull, K. (2004a). Acta Cryst. E60, o977–o978.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRiddle, G. B., Grossie, D. A. & Turnbull, K. (2004b). Acta Cryst. E60, o1568–o1570.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRiddle, G. B., Grossie, D. A. & Turnbull, K. (2004c). Acta Cryst. E60, o258–o259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages o554-o555
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds