organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Bromo-4-chloro-6-[(E)-p-tolyl­imino­meth­yl]phenol

aDepartment of Chemistry, Baoji University of Arts and Science, Baoji, Shaanxi 721007, People's Republic of China
*Correspondence e-mail: zhangxinli6008@163.com

(Received 1 January 2009; accepted 2 February 2009; online 11 February 2009)

The mol­ecule of the title compound, C14H11BrClNO, displays an E configuration with respect to the imine C=N double bond. The two aromatic rings are essentially coplanar, forming a dihedral angle of 7.9 (2)°. An intra­molecular O—H⋯N hydrogen bond stabilizes the crystal structure.

Related literature

For the role of Schiff base ligands in catalysis and electron transfer in living organisms, see: Ueno et al. (2006[Ueno, T., Yokoi, N., Unno, M., Matsui, T., Tokita, Y., Yamada, M., Ikeda-Saito, M., Nakajima, H. & Watanabe, Y. (2006). PNAS, 103, 9416-9421.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11BrClNO

  • Mr = 324.60

  • Triclinic, [P \overline 1]

  • a = 8.1354 (14) Å

  • b = 8.6844 (17) Å

  • c = 11.3740 (18) Å

  • α = 76.040 (2)°

  • β = 73.652 (12)°

  • γ = 62.458 (12)°

  • V = 677.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.22 mm−1

  • T = 298 (2) K

  • 0.43 × 0.18 × 0.09 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.332, Tmax = 0.745

  • 3500 measured reflections

  • 2351 independent reflections

  • 1412 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.129

  • S = 1.00

  • 2351 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.84 2.574 (4) 148

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, there has been a growing interest in Schiff base ligands because of their applications, such as catalysts and non-linear optical materials. In recent years, they were found to play an important role in the catalysis and electron transfer of the living organisms (Ueno et al., 2006). This stimulated our interest in this field. As an extension of the work on the structural characterization of Schiff base compounds, the crystal structure of the title compound is reported here.

The molecular structure and crystal packing of the title compound are illustrated in Figure 1 and 2, respectively. Bond lengths and angles are not unusual, with the C1N1 bond distance (1.263 (5) Å) slightly shorter than a normal CN. The molecule is essentially planar, the maximum deviation from the planarity being 0.167 (6) Å for atom C10. The dihedral angle between the two aromatic rings is 7.9 (2) °. An intramolecular O—H···N hydrogen bond (Table 1) stabilizes the crystal structure.

Related literature top

For the role of Schiff base ligands in the catalysis and electron transfer of living organisms, see: Ueno et al. (2006).

Experimental top

3-Bromo-5-chlorosalicylaldehyde (0.1 mmol, 23.6 mg) and p-toluidine (0.1 mmol, 10.7 mg) were dissolved in methanol (10 ml). The mixture was stirred at room temperature for 10 min and then filtered. After allowing the filtrate to stand in air for 3 d, yellow block-shaped crystals of the title compound suitable for X-ray analysis were formed by slow evaporation of the solvent. The crystals were collected, washed with methanol and dried in a vacuum desiccator using anhydrous CaCl2 (yield 54%).

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93-0.96 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C, O) for methyl and hydroxy H atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability ellipsoids. H atoms are shown as spheres of arbitrary radii. The dashed line represents a hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis.
2-Bromo-4-chloro-6-[(E)-p-tolyliminomethyl]phenol top
Crystal data top
C14H11BrClNOZ = 2
Mr = 324.60F(000) = 324
Triclinic, P1Dx = 1.590 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1354 (14) ÅCell parameters from 1148 reflections
b = 8.6844 (17) Åθ = 2.7–24.9°
c = 11.3740 (18) ŵ = 3.22 mm1
α = 76.040 (2)°T = 298 K
β = 73.652 (12)°Block-shaped, yellow
γ = 62.458 (12)°0.43 × 0.18 × 0.09 mm
V = 677.9 (2) Å3
Data collection top
Siemens SMART CCD area-detector
diffractometer
2351 independent reflections
Radiation source: fine-focus sealed tube1412 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
h = 99
Tmin = 0.332, Tmax = 0.745k = 610
3500 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.065P)2]
where P = (Fo2 + 2Fc2)/3
2351 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C14H11BrClNOγ = 62.458 (12)°
Mr = 324.60V = 677.9 (2) Å3
Triclinic, P1Z = 2
a = 8.1354 (14) ÅMo Kα radiation
b = 8.6844 (17) ŵ = 3.22 mm1
c = 11.3740 (18) ÅT = 298 K
α = 76.040 (2)°0.43 × 0.18 × 0.09 mm
β = 73.652 (12)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2351 independent reflections
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
1412 reflections with I > 2σ(I)
Tmin = 0.332, Tmax = 0.745Rint = 0.028
3500 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.00Δρmax = 0.51 e Å3
2351 reflectionsΔρmin = 0.43 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.62666 (9)0.48664 (8)0.11313 (5)0.0881 (3)
Cl10.2620 (2)1.09756 (16)0.31821 (13)0.0714 (4)
O10.7924 (4)0.3591 (4)0.3427 (3)0.0554 (9)
H10.83670.32720.40540.083*
N10.8449 (5)0.3835 (5)0.5491 (3)0.0414 (9)
C10.7224 (6)0.5406 (6)0.5417 (4)0.0434 (11)
H1A0.69020.60500.60580.052*
C20.6298 (6)0.6243 (6)0.4356 (4)0.0381 (10)
C30.6708 (6)0.5270 (6)0.3398 (4)0.0387 (10)
C40.5770 (6)0.6130 (6)0.2422 (4)0.0439 (11)
C50.4522 (6)0.7843 (6)0.2351 (4)0.0457 (11)
H50.39160.83800.16830.055*
C60.4168 (6)0.8776 (6)0.3294 (4)0.0467 (11)
C70.5034 (6)0.7974 (6)0.4289 (4)0.0476 (11)
H70.47630.86080.49250.057*
C80.9370 (6)0.3016 (6)0.6518 (4)0.0416 (11)
C90.9271 (7)0.3898 (7)0.7423 (4)0.0553 (13)
H90.85520.51020.73940.066*
C101.0267 (7)0.2956 (8)0.8377 (4)0.0619 (14)
H101.02010.35490.89810.074*
C111.1339 (7)0.1177 (7)0.8446 (4)0.0541 (13)
C121.1407 (7)0.0343 (7)0.7539 (4)0.0604 (14)
H121.21220.08620.75710.072*
C131.0454 (6)0.1229 (6)0.6584 (4)0.0522 (12)
H131.05400.06230.59810.063*
C141.2405 (8)0.0205 (8)0.9481 (4)0.0813 (18)
H14A1.21690.10111.00210.122*
H14B1.37350.03360.91440.122*
H14C1.19900.06790.99380.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1111 (6)0.0784 (5)0.0686 (4)0.0123 (4)0.0436 (4)0.0269 (3)
Cl10.0773 (9)0.0392 (7)0.0848 (9)0.0057 (7)0.0321 (8)0.0064 (6)
O10.058 (2)0.0406 (19)0.0586 (19)0.0026 (17)0.0275 (16)0.0109 (15)
N10.037 (2)0.042 (2)0.046 (2)0.0165 (19)0.0143 (17)0.0014 (17)
C10.047 (3)0.046 (3)0.042 (2)0.023 (3)0.010 (2)0.005 (2)
C20.036 (2)0.041 (3)0.043 (2)0.021 (2)0.010 (2)0.002 (2)
C30.033 (2)0.039 (3)0.046 (2)0.015 (2)0.011 (2)0.004 (2)
C40.043 (3)0.047 (3)0.042 (2)0.015 (2)0.011 (2)0.011 (2)
C50.042 (3)0.048 (3)0.048 (3)0.020 (2)0.017 (2)0.004 (2)
C60.045 (3)0.042 (3)0.053 (3)0.020 (2)0.015 (2)0.002 (2)
C70.051 (3)0.040 (3)0.055 (3)0.018 (2)0.015 (2)0.009 (2)
C80.034 (2)0.052 (3)0.041 (2)0.023 (2)0.012 (2)0.004 (2)
C90.056 (3)0.053 (3)0.055 (3)0.019 (3)0.024 (2)0.002 (2)
C100.062 (3)0.087 (4)0.052 (3)0.040 (3)0.019 (3)0.008 (3)
C110.049 (3)0.068 (4)0.047 (3)0.031 (3)0.020 (2)0.016 (3)
C120.061 (3)0.047 (3)0.069 (3)0.021 (3)0.029 (3)0.016 (3)
C130.053 (3)0.048 (3)0.055 (3)0.018 (3)0.019 (2)0.003 (2)
C140.080 (4)0.110 (5)0.061 (3)0.052 (4)0.037 (3)0.028 (3)
Geometric parameters (Å, º) top
Br1—C41.885 (4)C7—H70.9300
Cl1—C61.732 (5)C8—C131.381 (6)
O1—C31.329 (5)C8—C91.389 (6)
O1—H10.8200C9—C101.399 (6)
N1—C11.263 (5)C9—H90.9300
N1—C81.425 (5)C10—C111.374 (7)
C1—C21.462 (5)C10—H100.9300
C1—H1A0.9300C11—C121.372 (7)
C2—C71.372 (6)C11—C141.506 (6)
C2—C31.411 (5)C12—C131.376 (6)
C3—C41.387 (5)C12—H120.9300
C4—C51.357 (6)C13—H130.9300
C5—C61.386 (6)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—C71.370 (6)C14—H14C0.9600
C3—O1—H1109.5C13—C8—N1116.6 (4)
C1—N1—C8122.3 (4)C9—C8—N1124.4 (4)
N1—C1—C2121.9 (4)C8—C9—C10119.3 (5)
N1—C1—H1A119.0C8—C9—H9120.4
C2—C1—H1A119.0C10—C9—H9120.4
C7—C2—C3120.0 (4)C11—C10—C9121.8 (5)
C7—C2—C1120.0 (4)C11—C10—H10119.1
C3—C2—C1119.9 (4)C9—C10—H10119.1
O1—C3—C4120.8 (4)C12—C11—C10117.6 (4)
O1—C3—C2121.9 (4)C12—C11—C14122.0 (5)
C4—C3—C2117.3 (4)C10—C11—C14120.4 (5)
C5—C4—C3122.8 (4)C11—C12—C13122.2 (5)
C5—C4—Br1118.7 (3)C11—C12—H12118.9
C3—C4—Br1118.5 (3)C13—C12—H12118.9
C4—C5—C6118.7 (4)C12—C13—C8120.2 (5)
C4—C5—H5120.7C12—C13—H13119.9
C6—C5—H5120.7C8—C13—H13119.9
C7—C6—C5120.5 (4)C11—C14—H14A109.5
C7—C6—Cl1120.9 (4)C11—C14—H14B109.5
C5—C6—Cl1118.5 (3)H14A—C14—H14B109.5
C6—C7—C2120.6 (4)C11—C14—H14C109.5
C6—C7—H7119.7H14A—C14—H14C109.5
C2—C7—H7119.7H14B—C14—H14C109.5
C13—C8—C9119.0 (4)
C8—N1—C1—C2179.4 (4)Cl1—C6—C7—C2178.2 (3)
N1—C1—C2—C7177.3 (4)C3—C2—C7—C60.4 (6)
N1—C1—C2—C32.6 (6)C1—C2—C7—C6179.5 (4)
C7—C2—C3—O1179.9 (4)C1—N1—C8—C13170.2 (4)
C1—C2—C3—O10.1 (6)C1—N1—C8—C911.1 (6)
C7—C2—C3—C40.8 (6)C13—C8—C9—C100.2 (7)
C1—C2—C3—C4179.3 (4)N1—C8—C9—C10178.8 (4)
O1—C3—C4—C5179.8 (4)C8—C9—C10—C110.1 (7)
C2—C3—C4—C51.0 (6)C9—C10—C11—C120.1 (7)
O1—C3—C4—Br10.2 (6)C9—C10—C11—C14179.5 (4)
C2—C3—C4—Br1179.5 (3)C10—C11—C12—C130.2 (7)
C3—C4—C5—C60.1 (7)C14—C11—C12—C13179.2 (4)
Br1—C4—C5—C6179.5 (3)C11—C12—C13—C80.5 (7)
C4—C5—C6—C71.3 (6)C9—C8—C13—C120.5 (7)
C4—C5—C6—Cl1178.4 (3)N1—C8—C13—C12179.2 (4)
C5—C6—C7—C21.4 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.842.574 (4)148

Experimental details

Crystal data
Chemical formulaC14H11BrClNO
Mr324.60
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.1354 (14), 8.6844 (17), 11.3740 (18)
α, β, γ (°)76.040 (2), 73.652 (12), 62.458 (12)
V3)677.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)3.22
Crystal size (mm)0.43 × 0.18 × 0.09
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Siemens, 1996)
Tmin, Tmax0.332, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
3500, 2351, 1412
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.129, 1.00
No. of reflections2351
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.43

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.842.574 (4)148.0
 

Acknowledgements

The author gratefully acknowledges support from a research project (No. 08JZ09) of the Phytochemistry Key Laboratory of Shaanxi Province.

References

First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationUeno, T., Yokoi, N., Unno, M., Matsui, T., Tokita, Y., Yamada, M., Ikeda-Saito, M., Nakajima, H. & Watanabe, Y. (2006). PNAS, 103, 9416–9421.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds