organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Tosyl-1-oxa-4-aza­spiro­[4.5]deca-6,9-dien-8-one

aDepartment of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China, bGuangzhou Yuantong Pharmaceutical Technology Co Ltd, Guangzhou 510610, People's Republic of China, and cDepartment of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
*Correspondence e-mail: hwc@scu.edu.cn

(Received 6 January 2009; accepted 13 January 2009; online 28 February 2009)

In the mol­ecule of the title compound, C15H15NO4S, the two six-membered rings are almost parallel to each other [dihedral angle = 1.87 (9)°] and perpendicular to the mean plane through the five-membered ring [dihedral angles of 89.98 (10) and 89.04 (10)°]. The crystal structure is stabilized by inter­molecular C—H⋯O hydrogen-bonding inter­actions.

Related literature

For general background to the catalytic oxidation of phenol derivatives using transition metal complexes, see: Bernini et al. (2006[Bernini, R., Mincione, E., Barontini, M., Fabrizi, G., Pasqualetti, M. & Tempesta, S. (2006). Tetrahedron, 62, 7733-7737.)]); Cheung et al. (2005[Cheung, W.-H., Yip, W.-P., Yu, W.-Y. & Che, C.-M. (2005). Can. J. Chem. 83, 521-526.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO4S

  • Mr = 305.34

  • Monoclinic, P 21 /c

  • a = 11.882 (3) Å

  • b = 14.973 (6) Å

  • c = 8.369 (5) Å

  • β = 107.00 (3)°

  • V = 1423.9 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 294 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2996 measured reflections

  • 2625 independent reflections

  • 1526 reflections with I > 2σ(I)

  • Rint = 0.008

  • 3 standard reflections every 300 reflections intensity decay: 1.6%

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.119

  • S = 1.02

  • 2625 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O4i 0.93 2.48 3.211 (4) 134
C15—H15B⋯O2ii 0.96 2.57 3.520 (5) 171
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y, z+1.

Data collection: DIFRAC (Gabe & White, 1993[Gabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our studies aimed to prepare a substituted quinone from the corresponding aromatic ether by catalytic oxidation using transition metal complexes (Cheung et al., 2005; Bernini et al.,2006), the title compound was unexpectedly obtained in about 70% yield. In the molecule of the title compound (Fig. 1) the C1–C6 and C9–C14 six-membered rings are almost parallel to each other(dihedral angle 1.87 (9)°) and perpendicular to the mean plane through the O1/N1/C1/C7/C8 ring, forming dihedral angles of 89.98 (10) and 89.04 (10)°, respectively. The five-membered ring adopts an envelope conformation, with puckering parameters Q2 = 0.269 (3) Å and ϕ2 =104.4 (6)° ((Cremer & Pople, 1975). The crystal structure (Fig. 2) is enforced by intermolecular C—H···O hydrogen bonds (Table 1).

Related literature top

For general background to the catalytic oxidation of phenol derivatives using transition metal complexes, see: Bernini et al. (2006); Cheung et al. (2005). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A solution of 2-phenoxyethyl-p-toluenesulfon amide (1 mmol) and indobenzene diacetate (1.5 mmol) in dichloromethane was charged in a reaction flask and 4 A molecular sieves was added. Then, the mixture was stirred at 303 K under a nitrogen atmosphere for 4 h. After cooling to room temperature, the resulting mixture was filtered and the solvent was removed under vacuo. The residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (5:1 v/v) as the eluent. Colorless crystals suitable for X-ray analysis were obtained by slow evaporation in a cyclohexane/ether solution (5:1 v/v) at room temperature.

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and refined using a riding model, with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC (Gabe & White, 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound approximately viewed along the b axis.
4-Tosyl-1-oxa-4-azaspiro[4.5]deca-6,9-dien-8-one top
Crystal data top
C15H15NO4SF(000) = 640
Mr = 305.34Dx = 1.424 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.882 (3) ÅCell parameters from 22 reflections
b = 14.973 (6) Åθ = 4.5–7.7°
c = 8.369 (5) ŵ = 0.24 mm1
β = 107.00 (3)°T = 294 K
V = 1423.9 (11) Å3Block, colourless
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.008
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 1.8°
Graphite monochromatorh = 143
ω/2–θ scansk = 180
2996 measured reflectionsl = 910
2625 independent reflections3 standard reflections every 300 reflections
1526 reflections with I > 2σ(I) intensity decay: 1.6%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0523P)2 + 0.2087P]
where P = (Fo2 + 2Fc2)/3
2625 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C15H15NO4SV = 1423.9 (11) Å3
Mr = 305.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.882 (3) ŵ = 0.24 mm1
b = 14.973 (6) ÅT = 294 K
c = 8.369 (5) Å0.30 × 0.25 × 0.20 mm
β = 107.00 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.008
2996 measured reflections3 standard reflections every 300 reflections
2625 independent reflections intensity decay: 1.6%
1526 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.02Δρmax = 0.30 e Å3
2625 reflectionsΔρmin = 0.27 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.28106 (6)0.58803 (5)0.06825 (9)0.0407 (2)
O10.09259 (19)0.57997 (15)0.3866 (3)0.0638 (7)
O20.1639 (2)0.7616 (2)0.1273 (4)0.1088 (11)
O30.20120 (17)0.62375 (14)0.1501 (3)0.0500 (5)
O40.35194 (17)0.51210 (13)0.1369 (3)0.0531 (6)
N10.20196 (18)0.55681 (15)0.1165 (3)0.0408 (6)
C10.0935 (2)0.60359 (18)0.2213 (4)0.0420 (7)
C20.0995 (3)0.70272 (19)0.2139 (4)0.0448 (7)
H20.16500.73080.23040.054*
C30.0165 (3)0.7524 (2)0.1852 (4)0.0532 (8)
H30.02390.81420.18690.064*
C40.0868 (3)0.7143 (3)0.1509 (5)0.0648 (10)
C50.0943 (3)0.6167 (2)0.1518 (4)0.0612 (9)
H50.15870.58970.13010.073*
C60.0124 (3)0.5663 (2)0.1826 (4)0.0523 (8)
H60.02070.50460.18020.063*
C70.1620 (3)0.5036 (2)0.3849 (4)0.0662 (10)
H7A0.19500.50480.47800.079*
H7B0.11510.44980.39260.079*
C80.2563 (3)0.5062 (2)0.2247 (4)0.0613 (9)
H8A0.27790.44650.18150.074*
H8B0.32570.53640.23650.074*
C90.3779 (2)0.67304 (18)0.0454 (3)0.0383 (7)
C100.3497 (3)0.7621 (2)0.0559 (4)0.0493 (8)
H100.27950.77800.07650.059*
C110.4264 (3)0.8267 (2)0.0357 (4)0.0536 (9)
H110.40720.88650.04310.064*
C120.5312 (3)0.8055 (2)0.0047 (4)0.0472 (8)
C130.5568 (3)0.7168 (2)0.0071 (4)0.0535 (8)
H130.62660.70120.02880.064*
C140.4821 (2)0.6503 (2)0.0123 (4)0.0487 (8)
H140.50120.59070.00340.058*
C150.6133 (3)0.8785 (2)0.0157 (4)0.0669 (10)
H15A0.57170.91870.10210.100*
H15B0.67830.85260.04560.100*
H15C0.64210.91050.08750.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0436 (4)0.0356 (4)0.0419 (4)0.0024 (4)0.0108 (3)0.0011 (4)
O10.0715 (15)0.0670 (15)0.0453 (13)0.0231 (13)0.0053 (11)0.0080 (12)
O20.0677 (17)0.102 (2)0.170 (3)0.0206 (17)0.0560 (19)0.020 (2)
O30.0541 (12)0.0512 (12)0.0523 (13)0.0066 (10)0.0274 (11)0.0068 (10)
O40.0538 (13)0.0428 (12)0.0567 (13)0.0034 (10)0.0068 (10)0.0121 (10)
N10.0385 (13)0.0350 (13)0.0467 (14)0.0030 (10)0.0090 (11)0.0056 (11)
C10.0415 (16)0.0367 (17)0.0463 (17)0.0037 (13)0.0106 (13)0.0020 (13)
C20.0433 (17)0.0389 (17)0.055 (2)0.0021 (14)0.0191 (15)0.0070 (15)
C30.0524 (19)0.0370 (17)0.069 (2)0.0035 (15)0.0153 (17)0.0028 (16)
C40.046 (2)0.073 (3)0.077 (3)0.0122 (19)0.0189 (18)0.006 (2)
C50.0384 (18)0.068 (2)0.076 (2)0.0077 (17)0.0154 (17)0.014 (2)
C60.0427 (17)0.0369 (17)0.070 (2)0.0053 (15)0.0056 (16)0.0093 (16)
C70.056 (2)0.074 (3)0.062 (2)0.0135 (19)0.0072 (18)0.0205 (19)
C80.0557 (19)0.063 (2)0.062 (2)0.0097 (18)0.0110 (17)0.0179 (18)
C90.0354 (16)0.0394 (16)0.0388 (16)0.0060 (13)0.0088 (13)0.0004 (13)
C100.0471 (18)0.0431 (18)0.065 (2)0.0050 (14)0.0273 (16)0.0088 (16)
C110.064 (2)0.0366 (17)0.067 (2)0.0055 (16)0.0306 (18)0.0081 (16)
C120.0453 (18)0.050 (2)0.0463 (19)0.0113 (15)0.0135 (15)0.0031 (15)
C130.0389 (17)0.060 (2)0.064 (2)0.0015 (16)0.0178 (16)0.0038 (18)
C140.0379 (16)0.0429 (18)0.063 (2)0.0027 (14)0.0107 (15)0.0012 (15)
C150.062 (2)0.070 (2)0.073 (2)0.0234 (19)0.0262 (19)0.007 (2)
Geometric parameters (Å, º) top
S1—O31.427 (2)C7—C81.478 (4)
S1—O41.431 (2)C7—H7A0.9700
S1—N11.626 (2)C7—H7B0.9700
S1—C91.763 (3)C8—H8A0.9700
O1—C71.409 (4)C8—H8B0.9700
O1—C11.424 (4)C9—C101.384 (4)
O2—C41.218 (4)C9—C141.388 (4)
N1—C81.469 (4)C10—C111.372 (4)
N1—C11.503 (3)C10—H100.9300
C1—C21.487 (4)C11—C121.381 (4)
C1—C61.496 (4)C11—H110.9300
C2—C31.313 (4)C12—C131.373 (4)
C2—H20.9300C12—C151.508 (4)
C3—C41.455 (4)C13—C141.374 (4)
C3—H30.9300C13—H130.9300
C4—C51.463 (5)C14—H140.9300
C5—C61.314 (4)C15—H15A0.9600
C5—H50.9300C15—H15B0.9600
C6—H60.9300C15—H15C0.9600
O3—S1—O4120.05 (13)O1—C7—H7B110.5
O3—S1—N1106.48 (12)C8—C7—H7B110.5
O4—S1—N1105.19 (12)H7A—C7—H7B108.7
O3—S1—C9109.16 (13)N1—C8—C7102.7 (2)
O4—S1—C9106.92 (13)N1—C8—H8A111.2
N1—S1—C9108.57 (13)C7—C8—H8A111.2
C7—O1—C1110.7 (2)N1—C8—H8B111.2
C8—N1—C1109.7 (2)C7—C8—H8B111.2
C8—N1—S1119.94 (18)H8A—C8—H8B109.1
C1—N1—S1125.44 (18)C10—C9—C14119.7 (3)
O1—C1—C2106.0 (2)C10—C9—S1120.7 (2)
O1—C1—C6110.4 (2)C14—C9—S1119.5 (2)
C2—C1—C6113.4 (2)C11—C10—C9119.3 (3)
O1—C1—N1102.3 (2)C11—C10—H10120.4
C2—C1—N1114.7 (2)C9—C10—H10120.4
C6—C1—N1109.3 (2)C10—C11—C12121.9 (3)
C3—C2—C1123.0 (3)C10—C11—H11119.0
C3—C2—H2118.5C12—C11—H11119.0
C1—C2—H2118.5C13—C12—C11117.8 (3)
C2—C3—C4122.4 (3)C13—C12—C15121.9 (3)
C2—C3—H3118.8C11—C12—C15120.2 (3)
C4—C3—H3118.8C12—C13—C14121.9 (3)
O2—C4—C3121.4 (4)C12—C13—H13119.1
O2—C4—C5122.2 (3)C14—C13—H13119.1
C3—C4—C5116.3 (3)C13—C14—C9119.4 (3)
C6—C5—C4121.8 (3)C13—C14—H14120.3
C6—C5—H5119.1C9—C14—H14120.3
C4—C5—H5119.1C12—C15—H15A109.5
C5—C6—C1123.0 (3)C12—C15—H15B109.5
C5—C6—H6118.5H15A—C15—H15B109.5
C1—C6—H6118.5C12—C15—H15C109.5
O1—C7—C8105.9 (3)H15A—C15—H15C109.5
O1—C7—H7A110.5H15B—C15—H15C109.5
C8—C7—H7A110.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O4i0.932.483.211 (4)134
C15—H15B···O2ii0.962.573.520 (5)171
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H15NO4S
Mr305.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)11.882 (3), 14.973 (6), 8.369 (5)
β (°) 107.00 (3)
V3)1423.9 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2996, 2625, 1526
Rint0.008
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.119, 1.02
No. of reflections2625
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.27

Computer programs: DIFRAC (Gabe & White, 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O4i0.932.483.211 (4)134
C15—H15B···O2ii0.962.573.520 (5)171
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z+1.
 

Acknowledgements

This work was financially supported by the Industry–Academia–Research Combination Project of the Ministry of Education of China and Guangdong Province (No.2007B090400016)

References

First citationBernini, R., Mincione, E., Barontini, M., Fabrizi, G., Pasqualetti, M. & Tempesta, S. (2006). Tetrahedron, 62, 7733–7737.)  Web of Science CrossRef CAS Google Scholar
First citationCheung, W.-H., Yip, W.-P., Yu, W.-Y. & Che, C.-M. (2005). Can. J. Chem. 83, 521–526.  Web of Science CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds