metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di­aqua­(μ-oxalato)(μ-2-oxido­pyridinium-3-carboxyl­ato)praseo­dymium(III)]

aCollege of Chemistry and Environmental Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, People's Republic of China
*Correspondence e-mail: xuyj2009@yahoo.com.cn

(Received 1 February 2009; accepted 16 February 2009; online 21 February 2009)

In the title complex, [Pr(C6H4NO3)(C2O4)(H2O)2]n, each PrIII ion is coordinated by eight O atoms from two 2-oxynicotinate ligands, two oxalate ligands and two water mol­ecules, displaying a distorted bicapped square-anti­prismatic geometry. The carboxyl­ate groups link adjacent praseodymium metal centres, forming layers parallel to the bc plane. The crystal packing is stabilized by inter­molecular O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For a general background on the mol­ecular self-assembly of supra­molecular architectures, see: Mou et al. (2008[Mou, J.-X., Zeng, R.-H., Qiu, Y.-C., Zhang, W.-G., Deng, H. & Zeller, M. (2008). Inorg. Chem. Commun. 11, 1347-1351.]); Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]); Zeng et al. (2007[Zeng, R.-H., Qiu, Y.-C., Cai, Y.-P., Wu, J.-Z. & Deng, H. (2007). Acta Cryst. E63, m1666.]).

[Scheme 1]

Experimental

Crystal data
  • [Pr(C6H4NO3)(C2O4)(H2O)2]

  • Mr = 403.06

  • Triclinic, [P \overline 1]

  • a = 7.5820 (19) Å

  • b = 8.643 (2) Å

  • c = 9.375 (4) Å

  • α = 108.992 (4)°

  • β = 103.925 (4)°

  • γ = 102.043 (3)°

  • V = 535.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.60 mm−1

  • T = 296 K

  • 0.19 × 0.17 × 0.16 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.435, Tmax = 0.485

  • 2751 measured reflections

  • 1888 independent reflections

  • 1753 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.080

  • S = 1.10

  • 1888 reflections

  • 187 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.06 e Å−3

  • Δρmin = −1.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H4W⋯O3 0.83 (3) 2.56 (2) 3.306 (6) 149 (4)
O2W—H3W⋯O7i 0.84 (5) 1.95 (6) 2.764 (6) 164 (7)
O2W—H4W⋯O2Wii 0.83 (3) 2.37 (2) 2.820 (8) 114 (2)
O1W—H2W⋯O2ii 0.85 (6) 2.49 (4) 3.280 (7) 157 (8)
O1W—H1W⋯O3 0.84 (5) 2.34 (6) 2.760 (6) 111 (5)
O1W—H1W⋯O6iii 0.84 (5) 2.24 (3) 3.002 (6) 151 (6)
N1—H1⋯O4iii 0.86 (6) 2.12 (4) 2.878 (7) 146 (6)
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z+2; (iii) -x+1, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Molecular self-assembly of supramolecular architectures has received much attention during recent decades (Zeng et al., 2007; Moulton & Zaworotko, 2001; Mou et al., 2008). The structures and properties of such systems depend on the coordination and geometric preferences of both the central metal ions and the bridging building blocks, as well as the influence of weaker non-covalent interactions, such as hydrogen bonds and π-π stacking interactions. Recently, we obtained the title coordination polymer, which was synthesized under hydrothermal conditions.

As illustrated in Fig. 1, in the structure of the title compound each PrIII centre is in a distorted bicapped square antiprismatic geometry, defined by eight oxygen atoms from two 2-oxynicotinate ligands, two oxalate ligands, and two water molecules The PrIII ions are linked by 2-oxynicotinate ligands and oxalate ligands to form layers parallel to the bc plane (Fig. 2), with separations between adjacent PrIII metal centres of 4.410 (4), 6.505 (5) and 6.551 (3) Å. Intermolecular O—H···O and N—H···O hydrogen bonding interactions (Table 1) involving the 2-oxynicotinate ligands, the oxalate ligands and the water molecules assemble neighboring layers to form a three-dimensional supramolecular network motif.

Related literature top

For a general background on the molecular self-assembly of supramolecular architectures, see: Mou et al. (2008); Moulton & Zaworotko (2001); Zeng et al. (2007).

Experimental top

A mixture of Pr2O3 (0.330 g; 1.0 mmol), 2-oxynicotinic acid (0.127 g; 1 mmol), oxalic acid(0.09 g; 1 mmol), water (10 ml) in the presence of HNO3 (0.024 g; 0.385 mmol) was stirred vigorously for 20 min and then sealed in a Teflon-lined stainless-steel autoclave (20 ml, capacity). The autoclave was heated and maintained at 443 K for 3 days. After cooling to room temperature at 5 K h-1, colourless block crystals of the title compound were obtained.

Refinement top

Water H atoms were located in difference Fourier maps and were refined with distance restraints of O–H = 0.84 Å, H···H = 1.35 Å, and with Uiso(H) = 1.5 Ueq(O). The separation between symmetry related H4W atoms at (x, y, z) and (1 - x, 1 - y, 2 - z) was restrained to be 2.2 Å. Carbon-bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 Å, and with Uiso(H) = 1.2 Ueq(C). The H atom bound to the N1 nitrogen atom was refined with a distance restraints of N–H = 0.86 Å and with Uiso(H) = 1.2 Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: APEX2 (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) -x, 1 - y, 2 - z; (ii) -x, 1 - y, 1 - z; (iii) -x, 2 - y, 2 - z.
[Figure 2] Fig. 2. Crystal structure of the title compound viewed approximately along the a axis.
Poly[diaqua(µ-oxalato)(µ-2-oxidopyridinium-3- carboxylato)praseodymium(III)] top
Crystal data top
[Pr(C6H4NO3)(C2O4)(H2O)2]Z = 2
Mr = 403.06F(000) = 388
Triclinic, P1Dx = 2.499 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5820 (19) ÅCell parameters from 2183 reflections
b = 8.643 (2) Åθ = 2.6–28.0°
c = 9.375 (4) ŵ = 4.60 mm1
α = 108.992 (4)°T = 296 K
β = 103.925 (4)°Block, colourless
γ = 102.043 (3)°0.19 × 0.17 × 0.16 mm
V = 535.6 (3) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
1888 independent reflections
Radiation source: fine-focus sealed tube1753 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 25.2°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.435, Tmax = 0.485k = 610
2751 measured reflectionsl = 1110
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.01P]
where P = (Fo2 + 2Fc2)/3
1888 reflections(Δ/σ)max = 0.001
187 parametersΔρmax = 1.06 e Å3
8 restraintsΔρmin = 1.66 e Å3
Crystal data top
[Pr(C6H4NO3)(C2O4)(H2O)2]γ = 102.043 (3)°
Mr = 403.06V = 535.6 (3) Å3
Triclinic, P1Z = 2
a = 7.5820 (19) ÅMo Kα radiation
b = 8.643 (2) ŵ = 4.60 mm1
c = 9.375 (4) ÅT = 296 K
α = 108.992 (4)°0.19 × 0.17 × 0.16 mm
β = 103.925 (4)°
Data collection top
Bruker APEXII area-detector
diffractometer
1888 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1753 reflections with I > 2σ(I)
Tmin = 0.435, Tmax = 0.485Rint = 0.024
2751 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0308 restraints
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 1.06 e Å3
1888 reflectionsΔρmin = 1.66 e Å3
187 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pr10.13688 (4)0.65736 (3)0.88899 (3)0.01199 (13)
O10.1360 (5)0.5899 (6)1.1378 (4)0.0209 (9)
O20.2431 (6)0.4573 (6)1.2882 (5)0.0292 (10)
O30.4163 (6)0.8435 (6)1.1280 (4)0.0255 (10)
O40.0792 (6)0.7141 (5)0.6359 (4)0.0210 (9)
O50.0653 (6)0.5985 (5)0.3701 (5)0.0240 (9)
O60.1917 (5)0.9740 (5)0.9339 (5)0.0211 (9)
O70.0683 (6)1.1925 (5)0.9755 (5)0.0221 (9)
N10.6714 (7)0.9795 (7)1.3550 (6)0.0213 (11)
H10.709 (9)1.056 (6)1.320 (7)0.026*
C10.2690 (8)0.5814 (8)1.2460 (6)0.0184 (12)
C20.4526 (7)0.7259 (7)1.3291 (6)0.0155 (11)
C30.5671 (8)0.7451 (8)1.4747 (7)0.0226 (13)
H30.53310.66331.51600.027*
C40.7339 (8)0.8845 (9)1.5629 (7)0.0268 (14)
H40.81060.89631.66200.032*
C50.7816 (8)1.0019 (8)1.5011 (7)0.0260 (14)
H50.89001.09781.55910.031*
C60.5042 (8)0.8480 (8)1.2612 (6)0.0176 (12)
C70.0043 (7)0.5910 (7)0.5025 (6)0.0169 (12)
C80.0756 (7)1.0482 (7)0.9731 (6)0.0132 (11)
O1W0.4579 (6)0.7364 (7)0.8300 (6)0.0344 (11)
H1W0.526 (8)0.825 (6)0.912 (6)0.052*
H2W0.532 (7)0.703 (9)0.781 (7)0.052*
O2W0.3042 (6)0.4283 (6)0.9073 (5)0.0256 (9)
H3W0.253 (9)0.355 (5)0.938 (6)0.038*
H4W0.362 (3)0.520 (3)0.987 (4)0.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr10.01204 (18)0.0123 (2)0.01350 (19)0.00367 (13)0.00302 (12)0.00841 (14)
O10.0147 (19)0.030 (3)0.0152 (19)0.0010 (18)0.0001 (16)0.0128 (18)
O20.030 (2)0.023 (3)0.031 (2)0.003 (2)0.0026 (19)0.019 (2)
O30.0211 (19)0.029 (3)0.019 (2)0.0046 (18)0.0042 (16)0.0153 (19)
O40.031 (2)0.015 (2)0.0137 (19)0.0041 (18)0.0044 (17)0.0060 (17)
O50.040 (2)0.016 (2)0.016 (2)0.0109 (19)0.0039 (18)0.0103 (18)
O60.0183 (19)0.019 (2)0.035 (2)0.0104 (18)0.0150 (17)0.0138 (19)
O70.027 (2)0.013 (2)0.036 (2)0.0079 (18)0.0173 (18)0.0158 (19)
N10.019 (2)0.019 (3)0.025 (3)0.002 (2)0.003 (2)0.012 (2)
C10.023 (3)0.019 (3)0.013 (3)0.006 (3)0.005 (2)0.006 (2)
C20.015 (2)0.018 (3)0.015 (3)0.004 (2)0.006 (2)0.008 (2)
C30.026 (3)0.028 (4)0.018 (3)0.009 (3)0.007 (2)0.016 (3)
C40.020 (3)0.035 (4)0.019 (3)0.005 (3)0.003 (2)0.012 (3)
C50.015 (3)0.025 (4)0.029 (3)0.003 (3)0.001 (2)0.006 (3)
C60.019 (3)0.021 (3)0.015 (3)0.008 (2)0.008 (2)0.006 (2)
C70.017 (3)0.017 (3)0.019 (3)0.005 (2)0.005 (2)0.011 (2)
C80.014 (2)0.011 (3)0.013 (3)0.003 (2)0.000 (2)0.005 (2)
O1W0.025 (2)0.035 (3)0.034 (3)0.000 (2)0.0112 (19)0.007 (2)
O2W0.025 (2)0.030 (3)0.033 (2)0.015 (2)0.0120 (18)0.021 (2)
Geometric parameters (Å, º) top
Pr1—O32.458 (4)O7—C81.253 (7)
Pr1—O42.532 (4)O7—Pr1i2.537 (4)
Pr1—O7i2.537 (4)N1—C51.350 (8)
Pr1—O5ii2.540 (4)N1—C61.372 (8)
Pr1—O1iii2.543 (4)N1—H10.86 (6)
Pr1—O62.555 (4)C1—C21.491 (8)
Pr1—O12.583 (4)C1—Pr1iii3.018 (6)
Pr1—O2W2.593 (4)C2—C31.367 (8)
Pr1—O1W2.626 (4)C2—C61.434 (8)
Pr1—O2iii2.734 (4)C3—C41.396 (8)
Pr1—C1iii3.018 (6)C3—H30.9300
Pr1—H4W2.44 (4)C4—C51.352 (9)
O1—C11.280 (7)C4—H40.9300
O1—Pr1iii2.543 (4)C5—H50.9300
O2—C11.253 (7)C7—C7ii1.546 (11)
O2—Pr1iii2.734 (4)C8—C8i1.555 (10)
O3—C61.251 (7)O1W—H1W0.84 (5)
O4—C71.248 (7)O1W—H2W0.84 (5)
O5—C71.255 (6)O2W—H3W0.84 (5)
O5—Pr1ii2.540 (4)O2W—H4W0.83 (3)
O6—C81.249 (6)
O3—Pr1—O4120.86 (13)O4—Pr1—H4W127.8 (11)
O3—Pr1—O7i88.47 (14)O7i—Pr1—H4W129.5 (10)
O4—Pr1—O7i102.37 (13)O5ii—Pr1—H4W81.2 (5)
O3—Pr1—O5ii137.09 (15)O1iii—Pr1—H4W88.8 (9)
O4—Pr1—O5ii63.36 (13)O6—Pr1—H4W129.1 (6)
O7i—Pr1—O5ii134.11 (14)O1—Pr1—H4W60.0 (11)
O3—Pr1—O1iii127.58 (12)O2W—Pr1—H4W18.7 (8)
O4—Pr1—O1iii111.40 (13)O1W—Pr1—H4W67.4 (11)
O7i—Pr1—O1iii76.36 (13)O2iii—Pr1—H4W134.2 (6)
O5ii—Pr1—O1iii70.57 (14)C1iii—Pr1—H4W111.2 (8)
O3—Pr1—O669.27 (14)C1—O1—Pr1iii98.8 (3)
O4—Pr1—O665.37 (13)C1—O1—Pr1131.9 (3)
O7i—Pr1—O663.08 (12)Pr1iii—O1—Pr1118.71 (14)
O5ii—Pr1—O6128.42 (12)C1—O2—Pr1iii90.5 (3)
O1iii—Pr1—O6136.28 (12)C6—O3—Pr1140.0 (4)
O3—Pr1—O166.31 (12)C7—O4—Pr1119.9 (3)
O4—Pr1—O1170.59 (12)C7—O5—Pr1ii120.3 (4)
O7i—Pr1—O170.75 (13)C8—O6—Pr1120.7 (3)
O5ii—Pr1—O1116.45 (13)C8—O7—Pr1i121.3 (3)
O1iii—Pr1—O161.29 (14)C5—N1—C6125.6 (5)
O6—Pr1—O1115.03 (13)C5—N1—H1116 (5)
O3—Pr1—O2W81.72 (14)C6—N1—H1118 (4)
O4—Pr1—O2W117.75 (13)O2—C1—O1120.7 (5)
O7i—Pr1—O2W137.99 (13)O2—C1—C2119.7 (5)
O5ii—Pr1—O2W63.32 (13)O1—C1—C2119.5 (5)
O1iii—Pr1—O2W77.80 (13)O2—C1—Pr1iii65.0 (3)
O6—Pr1—O2W144.55 (13)O1—C1—Pr1iii56.4 (3)
O1—Pr1—O2W67.88 (13)C2—C1—Pr1iii168.4 (4)
O3—Pr1—O1W65.67 (14)C3—C2—C6120.3 (5)
O4—Pr1—O1W69.36 (14)C3—C2—C1119.0 (5)
O7i—Pr1—O1W139.13 (15)C6—C2—C1120.6 (5)
O5ii—Pr1—O1W79.60 (14)C2—C3—C4121.5 (6)
O1iii—Pr1—O1W144.47 (15)C2—C3—H3119.2
O6—Pr1—O1W77.88 (14)C4—C3—H3119.2
O1—Pr1—O1W120.06 (14)C5—C4—C3118.5 (5)
O2W—Pr1—O1W71.70 (15)C5—C4—H4120.7
O3—Pr1—O2iii153.63 (15)C3—C4—H4120.7
O4—Pr1—O2iii67.95 (13)N1—C5—C4119.8 (6)
O7i—Pr1—O2iii65.16 (14)N1—C5—H5120.1
O5ii—Pr1—O2iii69.19 (14)C4—C5—H5120.1
O1iii—Pr1—O2iii49.16 (12)O3—C6—N1118.7 (5)
O6—Pr1—O2iii96.62 (13)O3—C6—C2127.0 (5)
O1—Pr1—O2iii102.91 (12)N1—C6—C2114.3 (5)
O2W—Pr1—O2iii117.69 (14)O4—C7—O5127.0 (5)
O1W—Pr1—O2iii135.00 (14)O4—C7—C7ii117.4 (6)
O3—Pr1—C1iii147.53 (14)O5—C7—C7ii115.7 (6)
O4—Pr1—C1iii88.65 (14)O6—C8—O7127.4 (5)
O7i—Pr1—C1iii70.79 (14)O6—C8—C8i116.4 (6)
O5ii—Pr1—C1iii65.76 (14)O7—C8—C8i116.2 (6)
O1iii—Pr1—C1iii24.77 (14)Pr1—O1W—H1W103 (4)
O6—Pr1—C1iii118.47 (14)Pr1—O1W—H2W148 (5)
O1—Pr1—C1iii83.03 (13)H1W—O1W—H2W107 (6)
O2W—Pr1—C1iii96.95 (15)Pr1—O2W—H3W116 (5)
O1W—Pr1—C1iii144.76 (15)Pr1—O2W—H4W70 (3)
O2iii—Pr1—C1iii24.54 (14)H3W—O2W—H4W108 (4)
O3—Pr1—H4W63.2 (7)
Symmetry codes: (i) x, y+2, z+2; (ii) x, y+1, z+1; (iii) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H4W···O30.83 (3)2.56 (2)3.306 (6)149 (4)
O2W—H3W···O7iv0.84 (5)1.95 (6)2.764 (6)164 (7)
O2W—H4W···O2Wv0.83 (3)2.37 (2)2.820 (8)114 (2)
O1W—H2W···O2v0.85 (6)2.49 (4)3.280 (7)157 (8)
O1W—H1W···O30.84 (5)2.34 (6)2.760 (6)111 (5)
O1W—H1W···O6vi0.84 (5)2.24 (3)3.002 (6)151 (6)
N1—H1···O4vi0.86 (6)2.12 (4)2.878 (7)146 (6)
Symmetry codes: (iv) x, y1, z; (v) x+1, y+1, z+2; (vi) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Pr(C6H4NO3)(C2O4)(H2O)2]
Mr403.06
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.5820 (19), 8.643 (2), 9.375 (4)
α, β, γ (°)108.992 (4), 103.925 (4), 102.043 (3)
V3)535.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)4.60
Crystal size (mm)0.19 × 0.17 × 0.16
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.435, 0.485
No. of measured, independent and
observed [I > 2σ(I)] reflections
2751, 1888, 1753
Rint0.024
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.080, 1.10
No. of reflections1888
No. of parameters187
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.06, 1.66

Computer programs: APEX2 (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H4W···O30.83 (3)2.56 (2)3.306 (6)149 (4)
O2W—H3W···O7i0.84 (5)1.95 (6)2.764 (6)164 (7)
O2W—H4W···O2Wii0.83 (3)2.37 (2)2.820 (8)114 (2)
O1W—H2W···O2ii0.85 (6)2.49 (4)3.280 (7)157 (8)
O1W—H1W···O30.84 (5)2.34 (6)2.760 (6)111 (5)
O1W—H1W···O6iii0.84 (5)2.24 (3)3.002 (6)151 (6)
N1—H1···O4iii0.86 (6)2.12 (4)2.878 (7)146 (6)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+2; (iii) x+1, y+2, z+2.
 

Acknowledgements

The authors gratefully acknowledge the financial support from the Emphasis Project sponsored by the Department of Education of Guangdong Province (No. [2007]129).

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMou, J.-X., Zeng, R.-H., Qiu, Y.-C., Zhang, W.-G., Deng, H. & Zeller, M. (2008). Inorg. Chem. Commun. 11, 1347–1351.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, R.-H., Qiu, Y.-C., Cai, Y.-P., Wu, J.-Z. & Deng, H. (2007). Acta Cryst. E63, m1666.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds