organic compounds
3,4-Dimethylanilinium chloride monohydrate
aDépartement de Chimie, Faculté des Sciences et Sciences de l'Ingénieur, Université A. Mira de Béjaia, Route Targua Ouzmour, 06000 Béjaia, Algeria, bLaboratoire de Chimie Moléculaire du Contrôle de l'Environnement et des Mesures Physico-Chimiques, Faculté des Sciences Exactes, Département de Chimie, Université Mentouri, Constantine 25000, Algeria, cFaculté de Chimie, USTHB, BP32, El-Alia, Bab-Ezzouar, Alger, Algeria, and dSciences Chimiques de Rennes (UMR CNRS 6226), Université de Rennes 1, Avenue du Général Leclerc, 35042 Rennes Cedex, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr
The 8H12N+·Cl−·H2O, consists of hydrophobic layers of dimethylanilinium cations parallel to the bc plane alternated by hydrophilic layers of chloride anions and water molecules. The layers are linked by N—H⋯O and N—H⋯Cl hydrogen bonds involving the ammonium groups of the cations. The cohesion of the ionic structure is further stabilized by O—H⋯Cl hydrogen-bonding interactions.
of the title compound, CRelated literature
For crystal structures containing the dimethylanilinium cation, see: Bouacida (2008); Singh et al. (2002); Singh et al. (1995a,b); Linden et al. (1995); Fábry et al. (2001, 2002). For the crystal structures of related protonated see: Bouacida et al. (2005a,b,c, 2006, 2007); Benslimane et al. (2007); Rademeyer (2004a,b).
Experimental
Crystal data
|
Data collection
|
Data collection: COLLECT (Nonius, 1998); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); and SCALEPACK program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg et al., 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809006072/rz2296sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809006072/rz2296Isup2.hkl
An aqueous solution of SnCl2.2H2O (1 mmol) and 3,4-dimethylaniline (2 mmol) in hydrochloric acid was slowly evaporated to dryness for two weeks. White single crystals of the title compound were carefully isolated under polarizing microscope for X-ray diffraction analysis
The water H atoms were located in a difference Fourier map and refined isotropically, with Uiso(H) =1.25(O). All other H atoms were localized in difference Fourier maps but introduced in calculated positions and treated as riding on their parent atoms, with C—H = 0.93–0.96 Å, N—H = 0.89Å and Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(C) for methyl H atoms.
Data collection: COLLECT (Nonius, 1998); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg et al., 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).C8H12N+·Cl−·H2O | F(000) = 376 |
Mr = 175.65 | Dx = 1.191 Mg m−3 |
Orthorhombic, Pca21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2ac | Cell parameters from 9401 reflections |
a = 18.230 (18) Å | θ = 3.7–27.5° |
b = 6.7854 (14) Å | µ = 0.34 mm−1 |
c = 7.916 (2) Å | T = 295 K |
V = 979.2 (10) Å3 | Stalk, white |
Z = 4 | 0.1 × 0.04 × 0.02 mm |
Enraf–Nonius KappaCCD diffractometer | Rint = 0.078 |
CCD rotation images, thick slices scans | θmax = 27.5°, θmin = 3.7° |
10115 measured reflections | h = −23→23 |
2181 independent reflections | k = −8→8 |
1403 reflections with I > 2σ(I) | l = −10→9 |
Refinement on F2 | H atoms treated by a mixture of independent and constrained refinement |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0307P)2 + 0.3106P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.059 | (Δ/σ)max < 0.001 |
wR(F2) = 0.109 | Δρmax = 0.20 e Å−3 |
S = 1.15 | Δρmin = −0.22 e Å−3 |
2181 reflections | Absolute structure: Flack (1983), 976 Friedel pairs |
109 parameters | Absolute structure parameter: 0.01 (11) |
1 restraint |
C8H12N+·Cl−·H2O | V = 979.2 (10) Å3 |
Mr = 175.65 | Z = 4 |
Orthorhombic, Pca21 | Mo Kα radiation |
a = 18.230 (18) Å | µ = 0.34 mm−1 |
b = 6.7854 (14) Å | T = 295 K |
c = 7.916 (2) Å | 0.1 × 0.04 × 0.02 mm |
Enraf–Nonius KappaCCD diffractometer | 1403 reflections with I > 2σ(I) |
10115 measured reflections | Rint = 0.078 |
2181 independent reflections |
R[F2 > 2σ(F2)] = 0.059 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.109 | Δρmax = 0.20 e Å−3 |
S = 1.15 | Δρmin = −0.22 e Å−3 |
2181 reflections | Absolute structure: Flack (1983), 976 Friedel pairs |
109 parameters | Absolute structure parameter: 0.01 (11) |
1 restraint |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
x | y | z | Uiso*/Ueq | ||
N1 | 0.06494 (14) | 0.5513 (4) | 0.2268 (4) | 0.0433 (10) | |
C1 | 0.14146 (17) | 0.4809 (5) | 0.2159 (4) | 0.0395 (11) | |
C2 | 0.1556 (2) | 0.3036 (6) | 0.1426 (5) | 0.0447 (12) | |
C3 | 0.22856 (19) | 0.2362 (5) | 0.1269 (4) | 0.0430 (13) | |
C4 | 0.28449 (18) | 0.3555 (5) | 0.1893 (5) | 0.0444 (11) | |
C5 | 0.2677 (2) | 0.5332 (6) | 0.2641 (5) | 0.0517 (14) | |
C6 | 0.1959 (2) | 0.5966 (5) | 0.2776 (5) | 0.0467 (12) | |
C7 | 0.2432 (3) | 0.0413 (6) | 0.0454 (6) | 0.0670 (19) | |
C8 | 0.3636 (2) | 0.2894 (7) | 0.1744 (7) | 0.0693 (16) | |
O1W | 0.0447 (3) | 0.8297 (5) | 0.4757 (4) | 0.0818 (13) | |
Cl1 | 0.04002 (5) | 0.77733 (12) | 0.87943 (11) | 0.0507 (3) | |
H1A | 0.06154 | 0.64300 | 0.30678 | 0.0650* | |
H1B | 0.03559 | 0.45076 | 0.25217 | 0.0650* | |
H1C | 0.05158 | 0.60253 | 0.12795 | 0.0650* | |
H2 | 0.11712 | 0.22655 | 0.10264 | 0.0534* | |
H5 | 0.30525 | 0.61175 | 0.30623 | 0.0620* | |
H6 | 0.18505 | 0.71675 | 0.32834 | 0.0559* | |
H7A | 0.27619 | 0.05896 | −0.04794 | 0.1007* | |
H7B | 0.19792 | −0.01381 | 0.00532 | 0.1007* | |
H7C | 0.26488 | −0.04643 | 0.12637 | 0.1007* | |
H8A | 0.39537 | 0.39319 | 0.21227 | 0.1038* | |
H8B | 0.37436 | 0.25867 | 0.05870 | 0.1038* | |
H8C | 0.37112 | 0.17444 | 0.24296 | 0.1038* | |
H1W | 0.046 (3) | 0.824 (9) | 0.576 (7) | 0.1038* | |
H2W | 0.022 (3) | 0.927 (8) | 0.447 (7) | 0.1038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0455 (16) | 0.0461 (17) | 0.0383 (18) | 0.0025 (13) | −0.0007 (14) | 0.0048 (14) |
C1 | 0.0384 (18) | 0.044 (2) | 0.0361 (19) | 0.0062 (16) | 0.0041 (17) | 0.0089 (18) |
C2 | 0.051 (2) | 0.043 (2) | 0.040 (2) | −0.0076 (17) | 0.0008 (19) | 0.0070 (18) |
C3 | 0.060 (3) | 0.039 (2) | 0.0300 (17) | 0.0022 (17) | 0.004 (2) | 0.0089 (17) |
C4 | 0.047 (2) | 0.051 (2) | 0.0353 (19) | 0.0013 (17) | 0.0013 (19) | 0.010 (2) |
C5 | 0.052 (2) | 0.051 (2) | 0.052 (3) | −0.0056 (18) | −0.006 (2) | 0.002 (2) |
C6 | 0.049 (2) | 0.045 (2) | 0.046 (2) | 0.0024 (18) | −0.0018 (19) | 0.0034 (18) |
C7 | 0.097 (4) | 0.048 (3) | 0.056 (3) | 0.012 (2) | 0.008 (3) | 0.000 (2) |
C8 | 0.052 (2) | 0.082 (3) | 0.074 (3) | 0.009 (2) | 0.007 (3) | 0.011 (3) |
O1W | 0.127 (3) | 0.066 (2) | 0.0523 (18) | 0.037 (2) | −0.004 (2) | −0.0054 (17) |
Cl1 | 0.0555 (4) | 0.0492 (5) | 0.0475 (4) | 0.0042 (4) | −0.0028 (6) | 0.0044 (6) |
O1W—H2W | 0.81 (5) | C4—C5 | 1.378 (6) |
O1W—H1W | 0.80 (6) | C5—C6 | 1.382 (5) |
N1—C1 | 1.477 (4) | C2—H2 | 0.9300 |
N1—H1A | 0.8900 | C5—H5 | 0.9300 |
N1—H1C | 0.8900 | C6—H6 | 0.9300 |
N1—H1B | 0.8900 | C7—H7B | 0.9600 |
C1—C2 | 1.360 (5) | C7—H7C | 0.9600 |
C1—C6 | 1.356 (5) | C7—H7A | 0.9600 |
C2—C3 | 1.412 (5) | C8—H8C | 0.9600 |
C3—C7 | 1.496 (6) | C8—H8A | 0.9600 |
C3—C4 | 1.392 (5) | C8—H8B | 0.9600 |
C4—C8 | 1.515 (5) | ||
Cl1···O1W | 3.217 (5) | C8···H7A | 2.8400 |
Cl1···N1i | 3.181 (4) | H1A···H2W | 2.3400 |
Cl1···N1ii | 3.177 (4) | H1A···O1W | 1.8700 |
Cl1···O1Wiii | 3.174 (5) | H1A···H6 | 2.3100 |
Cl1···H1W | 2.43 (6) | H1A···H1W | 2.4800 |
Cl1···H1Ci | 2.3100 | H1B···Cl1vi | 2.3000 |
Cl1···H1Bii | 2.3000 | H1B···H2 | 2.4300 |
Cl1···H5iv | 3.0900 | H1C···Cl1vii | 2.3100 |
Cl1···H2Wiii | 2.36 (5) | H1W···H1A | 2.4800 |
O1W···Cl1v | 3.174 (5) | H1W···Cl1 | 2.43 (6) |
O1W···N1 | 2.754 (5) | H2···H1B | 2.4300 |
O1W···Cl1 | 3.217 (5) | H2···H7B | 2.3300 |
O1W···H1A | 1.8700 | H2W···Cl1v | 2.36 (5) |
O1W···H6 | 2.9100 | H2W···H1A | 2.3400 |
N1···Cl1vi | 3.177 (4) | H5···H8A | 2.3300 |
N1···Cl1vii | 3.181 (4) | H5···Cl1viii | 3.0900 |
N1···O1W | 2.754 (5) | H6···H1A | 2.3100 |
C3···C5viii | 3.509 (6) | H6···C7xi | 3.0800 |
C3···C4viii | 3.565 (6) | H6···O1W | 2.9100 |
C4···C3iv | 3.565 (6) | H7A···H8B | 2.4000 |
C4···C7iv | 3.570 (7) | H7A···C8 | 2.8400 |
C5···C3iv | 3.509 (6) | H7A···C3viii | 2.8400 |
C7···C4viii | 3.570 (7) | H7A···C4viii | 3.1000 |
C3···H7Aiv | 2.8400 | H7B···H2 | 2.3300 |
C4···H7Aiv | 3.1000 | H7C···C8 | 2.9300 |
C5···H7Cix | 3.0500 | H7C···C5xii | 3.0500 |
C6···H7Cix | 2.9800 | H7C···C6xii | 2.9800 |
C7···H8B | 2.8100 | H8A···H5 | 2.3300 |
C7···H8C | 2.9500 | H8B···C7 | 2.8100 |
C7···H6x | 3.0800 | H8B···H7A | 2.4000 |
C8···H7C | 2.9300 | H8C···C7 | 2.9500 |
H1W—O1W—H2W | 110 (6) | C3—C2—H2 | 120.00 |
H1A—N1—H1B | 109.00 | C1—C2—H2 | 120.00 |
H1A—N1—H1C | 109.00 | C4—C5—H5 | 120.00 |
C1—N1—H1B | 109.00 | C6—C5—H5 | 119.00 |
C1—N1—H1C | 109.00 | C5—C6—H6 | 121.00 |
H1B—N1—H1C | 109.00 | C1—C6—H6 | 120.00 |
C1—N1—H1A | 109.00 | C3—C7—H7A | 109.00 |
N1—C1—C2 | 119.3 (3) | C3—C7—H7B | 109.00 |
C2—C1—C6 | 121.8 (3) | H7A—C7—H7B | 109.00 |
N1—C1—C6 | 118.9 (3) | H7A—C7—H7C | 109.00 |
C1—C2—C3 | 120.2 (3) | C3—C7—H7C | 110.00 |
C2—C3—C4 | 118.1 (3) | H7B—C7—H7C | 109.00 |
C2—C3—C7 | 119.5 (4) | C4—C8—H8B | 109.00 |
C4—C3—C7 | 122.4 (3) | C4—C8—H8C | 109.00 |
C3—C4—C8 | 119.8 (3) | C4—C8—H8A | 109.00 |
C5—C4—C8 | 120.3 (3) | H8A—C8—H8C | 109.00 |
C3—C4—C5 | 119.9 (3) | H8B—C8—H8C | 109.00 |
C4—C5—C6 | 121.1 (3) | H8A—C8—H8B | 110.00 |
C1—C6—C5 | 119.0 (3) | ||
N1—C1—C2—C3 | 178.3 (3) | C2—C3—C4—C8 | −179.7 (4) |
C6—C1—C2—C3 | −0.9 (6) | C7—C3—C4—C5 | −179.6 (4) |
N1—C1—C6—C5 | −178.5 (3) | C7—C3—C4—C8 | 0.5 (6) |
C2—C1—C6—C5 | 0.6 (6) | C3—C4—C5—C6 | −0.4 (6) |
C1—C2—C3—C4 | 0.4 (5) | C8—C4—C5—C6 | 179.5 (4) |
C1—C2—C3—C7 | −179.8 (4) | C4—C5—C6—C1 | 0.0 (6) |
C2—C3—C4—C5 | 0.2 (5) |
Symmetry codes: (i) x, y, z+1; (ii) −x, −y+1, z+1/2; (iii) −x, −y+2, z+1/2; (iv) −x+1/2, y, z+1/2; (v) −x, −y+2, z−1/2; (vi) −x, −y+1, z−1/2; (vii) x, y, z−1; (viii) −x+1/2, y, z−1/2; (ix) x, y+1, z; (x) −x+1/2, y−1, z−1/2; (xi) −x+1/2, y+1, z+1/2; (xii) x, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1W | 0.8900 | 1.8700 | 2.754 (5) | 174.00 |
N1—H1B···Cl1vi | 0.8900 | 2.3000 | 3.177 (4) | 167.00 |
N1—H1C···Cl1vii | 0.8900 | 2.3100 | 3.181 (4) | 167.00 |
O1W—H1W···Cl1 | 0.80 (6) | 2.43 (6) | 3.217 (5) | 174 (7) |
O1W—H2W···Cl1v | 0.81 (5) | 2.36 (5) | 3.174 (5) | 176 (2) |
Symmetry codes: (v) −x, −y+2, z−1/2; (vi) −x, −y+1, z−1/2; (vii) x, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | C8H12N+·Cl−·H2O |
Mr | 175.65 |
Crystal system, space group | Orthorhombic, Pca21 |
Temperature (K) | 295 |
a, b, c (Å) | 18.230 (18), 6.7854 (14), 7.916 (2) |
V (Å3) | 979.2 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.34 |
Crystal size (mm) | 0.1 × 0.04 × 0.02 |
Data collection | |
Diffractometer | Enraf–Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10115, 2181, 1403 |
Rint | 0.078 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.059, 0.109, 1.15 |
No. of reflections | 2181 |
No. of parameters | 109 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.20, −0.22 |
Absolute structure | Flack (1983), 976 Friedel pairs |
Absolute structure parameter | 0.01 (11) |
Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg et al., 2001), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1W | 0.8900 | 1.8700 | 2.754 (5) | 174.00 |
N1—H1B···Cl1i | 0.8900 | 2.3000 | 3.177 (4) | 167.00 |
N1—H1C···Cl1ii | 0.8900 | 2.3100 | 3.181 (4) | 167.00 |
O1W—H1W···Cl1 | 0.80 (6) | 2.43 (6) | 3.217 (5) | 174 (7) |
O1W—H2W···Cl1iii | 0.81 (5) | 2.36 (5) | 3.174 (5) | 176 (2) |
Symmetry codes: (i) −x, −y+1, z−1/2; (ii) x, y, z−1; (iii) −x, −y+2, z−1/2. |
Acknowledgements
The authors are grateful to Dr Thierry Roisnel, Centre de Diffractométrie X (CDIFX) de Rennes, Université de Rennes 1, France, for the data collection facilities. SB thanks Université A. Mira de Béjaia, Algéria, for financial support.
References
Benslimane, M., Merazig, H., Bouacida, S., Denbri, S., Beghidja, A. & Ouahab, L. (2007). Acta Cryst. E63, o3682–o3683. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bouacida, S. (2008). PhD thesis, Montouri-Constantine University, Algeria. Google Scholar
Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005a). Acta Cryst. E61, m1153–m1155. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005b). Acta Cryst. E61, m2072–m2074. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005c). Acta Cryst. E61, m577–m579. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bouacida, S., Merazig, H. & Benard-Rocherulle, P. (2006). Acta Cryst. E62, o838–o840. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bouacida, S., Merazig, H., Benard-Rocherulle, P. & Rizzoli, C. (2007). Acta Cryst. E63, m379–m381. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103. CrossRef IUCr Journals Google Scholar
Fábry, J., Krupková, R. & Studnička, V. (2002). Acta Cryst. E58, o105–o107. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fábry, J., Krupková, R. & Vaněk, P. (2001). Acta Cryst. E57, o1058–o1060. CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Linden, A., James, B. D. & Liesegang, J. (1995). Acta Cryst. C51, 2317–2320. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Rademeyer, M. (2004a). Acta Cryst. C60, m55–m56. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rademeyer, M. (2004b). Acta Cryst. E60, m345–m347. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Singh, G., Kapoor, I. P. S. & Mannan, S. M. (1995a). Thermochim. Acta, 262, 117–127. CrossRef CAS Web of Science Google Scholar
Singh, G., Kapoor, I. P. S. & Mannan, S. M. (1995b). J. Energetic Mater. 13, 141–156. CrossRef CAS Google Scholar
Singh, G., Kapoor, I. P. S., Srivastava, J. & Kaur, J. (2002). J. Therm. Anal. Calorim. 69, 681–691. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound, was prepared as part of our ongoing studies of hydrogen-bonding interactions in the crystal structure of protonated amines (Bouacida et al., 2005a,b,c; Bouacida et al., 2006; Benslimane et al., 2007; Bouacida et al., 2007). Structures containing the dimethylanilinium cation have been already reported with tin chloride (Bouacida, 2008), sulfate (Singh et al., 2002), nitrate and perchlorate (Singh et al., 1995a,b), chloride (Linden et al., 1995), and dihydrogenphosphate (Fabry et al., 2001; Fábry et al., 2002).
The molecular structure of the title compound is illustrated in Fig. 1. A l l bond distances and angles are within the ranges of accepted values. The amino N atom is protonated as in other aminoacids (Bouacida et al., 2006; Rademeyer 2004a,b). A diagram of the layered crystal packing of title compound is shown in Fig. 2, in which the cations are arranged to form zigzag layers parallel the ab plane, with the chloride ions and water molecules located between these layers. The structure may be also described as formed by hydrophobic layers parallel to the bc plane of dimethylanilinium cations alternated by hydrophilic layers of chloride anions and water molecules. In this structure, three types of classical hydrogen bonds are observed, viz. cation–anion, cation–water and water–anion (Fig. 3, Table 1). All three ammonium H atoms are involved in hydrogen bonds. These interactions link the molecules within the layers and also link the layers together, forming a three-dimensional network and reinforcing the cohesion of the ionic structure.