metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di­chloridobis(μ2-di-4-pyridyl sulfide-κ2N,N′)cobalt(II)]

aCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China
*Correspondence e-mail: jh_q128105@126.com

(Received 5 January 2009; accepted 14 January 2009; online 4 February 2009)

In the title compound, [CoCl2(C10H8N2S)2]n, the CoII atom is located on an inversion centre and is six-coordinated by four N atoms of four symmetry-related di-4-pyridyl sulfide ligands, and two Cl atoms in trans positions, in a distorted octa­hedral geometry. The bridging bidentate di-4-pyridyl sulfide ligands link the CoII centres into a three-dimensional network. The four coordinating pyridine groups are donors and acceptors (N atoms) for intra­molecular C—H⋯N and C—H⋯Cl hydrogen bonds.

Related literature

For di-4-pyridyl sulfide metal complexes, see: Jung et al. (1998[Jung, O. S., Park, S. H., Kim, D. C. & Kim, K. M. (1998). Inorg. Chem. 37, 610-611.], 1999[Jung, O. S., Park, S. H., Park, C. H. & Park, J. K. (1999). Chem. Lett. 28, 923-927.]); Kondo et al. (2004[Kondo, M., Shimizu, Y., Miyazawa, M., Irie, Y., Nakamura, A., Naito, T., Maeda, K., Uchida, F., Nakamoto, T. & Inaba, A. (2004). Chem. Lett. 33, 514-518.]); Muthu et al. (2005[Muthu, S., Ni, Z. & Vittal, J. J. (2005). Inorg. Chim. Acta, 358, 595-605.]).

[Scheme 1]

Experimental

Crystal data
  • [CoCl2(C10H8N2S)2]

  • Mr = 506.32

  • Monoclinic, P 21 /c

  • a = 7.4940 (11) Å

  • b = 15.355 (2) Å

  • c = 9.4009 (14) Å

  • β = 98.413 (2)°

  • V = 1070.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.26 mm−1

  • T = 296 (2) K

  • 0.44 × 0.34 × 0.24 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.608, Tmax = 0.747

  • 5174 measured reflections

  • 1969 independent reflections

  • 1720 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.070

  • S = 1.05

  • 1969 reflections

  • 133 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—N1 2.2185 (18)
Co1—N2i 2.2822 (17)
Co1—Cl1 2.4221 (5)
N1—Co1—N2i 94.00 (6)
N1—Co1—Cl1 90.50 (5)
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯N2ii 0.93 2.62 3.119 (3) 114
C6—H6⋯Cl1iii 0.93 2.66 3.292 (2) 126
C10—H10⋯Cl1iv 0.93 2.64 3.292 (2) 128
Symmetry codes: (ii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As well known, di-4-pyridyl sulfide possesses a magic angle (C-S-C, ~100°) and conformational nonrigidity so it has some flexibility compared with other linear rigid ligands such as simple 4, 4'-bipyridine analogues. A number of metal complexes derived from di-4-pyridyl sulfide have been reported previously, such as the silver(I) complexes (Jung et al., 1999), copper(II) complexes (Muthu et al., 2005), nickel(II) complex (Kondo et al., 2004), as well as the cobalt(II) complex that showing 2-fold interpenetrating structures (Jung et al., 1998).

As shown in Fig. 1, the local geometry of the cobalt atoms is a distorted octahedral arrangement with two chlorine atoms in trans positions and four pyridine units in a propeller arrangement (Tab. 1). Each di-4-pyridyl sulfide ligand connects two cobalt(II) ions defining the edges of a 40-membered [Co(II)]4 sheet (Fig. 2). The bent angle of the sulfur atom [C-S-C = 102.90 (10) °]. The Co-Co separation through a di-4-pyridyl sulfide ligand is 11.2646 (10) Å, and through the diagonal of the rhombus is 15.355 (2) Å. There are six intramolecular C—H···N and C—H···Cl hydrogen bonding contacts around the coordination sphere of the cobalt atom (Tab. 2). The packing of the layered structure is shown in Fig.3.

Related literature top

For di-4-pyridyl sulfide metal complexes, see: Jung et al. (1998, 1999); Kondo et al. (2004); Muthu et al. (2005).

Experimental top

To a stirred solution of di-4-pyridyl sulfide (0.5 mmol) in ethanol-H2O 20 ml (v/v, 1:1) was added solid CoCl2(0.5 mmol). Then the obtained mixture was basified with NaOH (0.5 mol/l) to a pH of 6.0 and stirred at 343K for 4h, filtrated. One week later, red crystals appeared.

Refinement top

The H atoms were positioned geometrically and treated as riding, with C—H = 0.93 Å (CH) and Uĩso~(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the local coordination of the Co(II) cation in the title compound. Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes: (A) (-x, 1 - y, 1 - z); (B) (-1 + x, 3/2 - y, -1/2 + z); (C) (1 - x, -1/2 + y, 3/2 - z).
[Figure 2] Fig. 2. A view of the two-dimensional network.
[Figure 3] Fig. 3. A view of the compound packing down the a axis.
Poly[dichloridobis(µ2-di-4-pyridyl sulfide-κ2N,N')cobalt(II)] top
Crystal data top
[CoCl2(C10H8N2S)2]F(000) = 514
Mr = 506.32Dx = 1.571 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2498 reflections
a = 7.4940 (11) Åθ = 2.6–29.0°
b = 15.355 (2) ŵ = 1.26 mm1
c = 9.4009 (14) ÅT = 296 K
β = 98.413 (2)°Block, red
V = 1070.1 (3) Å30.44 × 0.34 × 0.24 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
1969 independent reflections
Radiation source: fine-focus sealed tube1720 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 98
Tmin = 0.608, Tmax = 0.747k = 1418
5174 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0329P)2 + 0.5314P]
where P = (Fo2 + 2Fc2)/3
1969 reflections(Δ/σ)max < 0.001
133 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[CoCl2(C10H8N2S)2]V = 1070.1 (3) Å3
Mr = 506.32Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.4940 (11) ŵ = 1.26 mm1
b = 15.355 (2) ÅT = 296 K
c = 9.4009 (14) Å0.44 × 0.34 × 0.24 mm
β = 98.413 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1969 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1720 reflections with I > 2σ(I)
Tmin = 0.608, Tmax = 0.747Rint = 0.017
5174 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.05Δρmax = 0.38 e Å3
1969 reflectionsΔρmin = 0.26 e Å3
133 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.50000.50000.02605 (13)
Cl10.20061 (7)0.43179 (4)0.35327 (6)0.04042 (16)
S10.46119 (10)0.86590 (4)0.38777 (6)0.0496 (2)
N10.1375 (2)0.62685 (11)0.48432 (19)0.0336 (4)
N20.8140 (2)0.95816 (11)0.79735 (18)0.0295 (4)
C10.3135 (3)0.63405 (14)0.5315 (2)0.0319 (5)
H10.37170.58660.57930.038*
C20.4148 (3)0.70682 (14)0.5143 (2)0.0335 (5)
H20.53630.70880.55270.040*
C30.3335 (3)0.77696 (14)0.4393 (2)0.0336 (5)
C40.1498 (3)0.77243 (16)0.3907 (3)0.0485 (6)
H40.08940.81870.34100.058*
C50.0589 (3)0.69710 (16)0.4181 (3)0.0492 (6)
H50.06510.69520.38860.059*
C60.6455 (3)0.92970 (14)0.8003 (2)0.0316 (5)
H60.60150.93100.88770.038*
C70.5337 (3)0.89872 (14)0.6820 (2)0.0349 (5)
H70.41740.88030.69020.042*
C80.5962 (3)0.89534 (14)0.5507 (2)0.0335 (5)
C90.7705 (3)0.92370 (16)0.5454 (2)0.0433 (6)
H90.81820.92210.45950.052*
C100.8725 (3)0.95443 (16)0.6695 (2)0.0411 (6)
H100.98890.97370.66400.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0256 (2)0.0273 (2)0.0247 (2)0.00031 (16)0.00196 (15)0.00041 (15)
Cl10.0376 (3)0.0546 (4)0.0284 (3)0.0153 (3)0.0027 (2)0.0004 (2)
S10.0709 (4)0.0438 (4)0.0278 (3)0.0271 (3)0.0134 (3)0.0079 (3)
N10.0322 (10)0.0303 (10)0.0371 (10)0.0001 (8)0.0009 (8)0.0009 (8)
N20.0310 (9)0.0302 (10)0.0261 (9)0.0020 (8)0.0000 (7)0.0012 (7)
C10.0358 (12)0.0290 (11)0.0287 (11)0.0006 (9)0.0023 (9)0.0031 (9)
C20.0326 (11)0.0336 (12)0.0310 (11)0.0032 (9)0.0064 (9)0.0002 (9)
C30.0436 (13)0.0287 (11)0.0259 (10)0.0068 (9)0.0037 (9)0.0022 (9)
C40.0454 (14)0.0302 (13)0.0637 (17)0.0008 (11)0.0125 (12)0.0064 (12)
C50.0309 (12)0.0374 (13)0.0743 (18)0.0003 (10)0.0086 (12)0.0023 (13)
C60.0339 (11)0.0340 (11)0.0265 (10)0.0025 (9)0.0031 (9)0.0002 (9)
C70.0345 (11)0.0352 (12)0.0333 (12)0.0093 (10)0.0004 (9)0.0005 (10)
C80.0437 (13)0.0265 (11)0.0269 (11)0.0063 (9)0.0058 (9)0.0022 (9)
C90.0495 (14)0.0531 (15)0.0280 (12)0.0121 (12)0.0079 (10)0.0043 (11)
C100.0346 (12)0.0550 (15)0.0340 (12)0.0127 (11)0.0061 (10)0.0060 (11)
Geometric parameters (Å, º) top
Co1—N1i2.2184 (18)C2—C31.379 (3)
Co1—N12.2185 (18)C2—H20.9300
Co1—N2ii2.2822 (17)C3—C41.388 (3)
Co1—N2iii2.2822 (17)C4—C51.386 (3)
Co1—Cl12.4221 (5)C4—H40.9300
Co1—Cl1i2.4222 (5)C5—H50.9300
S1—C81.766 (2)C6—C71.376 (3)
S1—C31.775 (2)C6—H60.9300
N1—C11.334 (3)C7—C81.384 (3)
N1—C51.338 (3)C7—H70.9300
N2—C101.340 (3)C8—C91.385 (3)
N2—C61.340 (3)C9—C101.381 (3)
N2—Co1iv2.2822 (17)C9—H90.9300
C1—C21.373 (3)C10—H100.9300
C1—H10.9300
N1i—Co1—N1180.0C1—C2—H2120.5
N1i—Co1—N2ii94.00 (6)C3—C2—H2120.5
N1—Co1—N2ii86.00 (6)C2—C3—C4118.2 (2)
N1i—Co1—N2iii86.00 (6)C2—C3—S1121.68 (17)
N1—Co1—N2iii94.00 (6)C4—C3—S1119.80 (17)
N2ii—Co1—N2iii180.00 (8)C5—C4—C3118.1 (2)
N1i—Co1—Cl189.50 (5)C5—C4—H4120.9
N1—Co1—Cl190.50 (5)C3—C4—H4120.9
N2ii—Co1—Cl190.03 (4)N1—C5—C4124.4 (2)
N2iii—Co1—Cl189.97 (4)N1—C5—H5117.8
N1i—Co1—Cl1i90.50 (5)C4—C5—H5117.8
N1—Co1—Cl1i89.50 (5)N2—C6—C7124.10 (19)
N2ii—Co1—Cl1i89.97 (4)N2—C6—H6118.0
N2iii—Co1—Cl1i90.03 (4)C7—C6—H6118.0
Cl1—Co1—Cl1i179.999 (1)C6—C7—C8119.2 (2)
C8—S1—C3102.90 (10)C6—C7—H7120.4
C1—N1—C5115.77 (19)C8—C7—H7120.4
C1—N1—Co1119.81 (14)C7—C8—C9117.7 (2)
C5—N1—Co1124.16 (15)C7—C8—S1123.87 (17)
C10—N2—C6115.96 (18)C9—C8—S1118.24 (16)
C10—N2—Co1iv121.39 (14)C10—C9—C8119.1 (2)
C6—N2—Co1iv122.47 (13)C10—C9—H9120.5
N1—C1—C2124.4 (2)C8—C9—H9120.5
N1—C1—H1117.8N2—C10—C9124.0 (2)
C2—C1—H1117.8N2—C10—H10118.0
C1—C2—C3119.0 (2)C9—C10—H10118.0
N2ii—Co1—N1—C1149.12 (16)S1—C3—C4—C5172.1 (2)
N2iii—Co1—N1—C130.88 (16)C1—N1—C5—C43.4 (4)
Cl1—Co1—N1—C159.12 (16)Co1—N1—C5—C4170.7 (2)
Cl1i—Co1—N1—C1120.88 (16)C3—C4—C5—N12.4 (4)
N2ii—Co1—N1—C524.8 (2)C10—N2—C6—C70.6 (3)
N2iii—Co1—N1—C5155.2 (2)Co1iv—N2—C6—C7175.65 (16)
Cl1—Co1—N1—C5114.8 (2)N2—C6—C7—C80.6 (3)
Cl1i—Co1—N1—C565.2 (2)C6—C7—C8—C90.0 (3)
C5—N1—C1—C21.0 (3)C6—C7—C8—S1174.41 (17)
Co1—N1—C1—C2173.43 (16)C3—S1—C8—C741.6 (2)
N1—C1—C2—C32.4 (3)C3—S1—C8—C9144.02 (19)
C1—C2—C3—C43.3 (3)C7—C8—C9—C100.6 (4)
C1—C2—C3—S1169.79 (17)S1—C8—C9—C10174.20 (19)
C8—S1—C3—C251.6 (2)C6—N2—C10—C90.0 (4)
C8—S1—C3—C4135.4 (2)Co1iv—N2—C10—C9175.13 (19)
C2—C3—C4—C51.0 (4)C8—C9—C10—N20.6 (4)
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y+3/2, z1/2; (iii) x+1, y1/2, z+3/2; (iv) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N2ii0.932.623.119 (3)114
C6—H6···Cl1iv0.932.663.292 (2)126
C10—H10···Cl1v0.932.643.292 (2)128
Symmetry codes: (ii) x1, y+3/2, z1/2; (iv) x+1, y+1/2, z+3/2; (v) x+1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[CoCl2(C10H8N2S)2]
Mr506.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.4940 (11), 15.355 (2), 9.4009 (14)
β (°) 98.413 (2)
V3)1070.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.26
Crystal size (mm)0.44 × 0.34 × 0.24
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.608, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
5174, 1969, 1720
Rint0.017
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.070, 1.05
No. of reflections1969
No. of parameters133
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.26

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Co1—N12.2185 (18)Co1—Cl12.4221 (5)
Co1—N2i2.2822 (17)
N1—Co1—N2i94.00 (6)N1—Co1—Cl190.50 (5)
Symmetry code: (i) x+1, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N2ii0.932.623.119 (3)114.0
C6—H6···Cl1iii0.932.663.292 (2)125.9
C10—H10···Cl1iv0.932.643.292 (2)127.9
Symmetry codes: (ii) x1, y+3/2, z1/2; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y+3/2, z+1/2.
 

Acknowledgements

The authors thank Luo Yang Normal University for supporting this work.

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJung, O. S., Park, S. H., Kim, D. C. & Kim, K. M. (1998). Inorg. Chem. 37, 610–611.  Web of Science CSD CrossRef CAS Google Scholar
First citationJung, O. S., Park, S. H., Park, C. H. & Park, J. K. (1999). Chem. Lett. 28, 923–927.  CSD CrossRef Google Scholar
First citationKondo, M., Shimizu, Y., Miyazawa, M., Irie, Y., Nakamura, A., Naito, T., Maeda, K., Uchida, F., Nakamoto, T. & Inaba, A. (2004). Chem. Lett. 33, 514–518.  Web of Science CSD CrossRef CAS Google Scholar
First citationMuthu, S., Ni, Z. & Vittal, J. J. (2005). Inorg. Chim. Acta, 358, 595–605.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds