metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m352-m353

Bis(6′-carb­­oxy-2,2′-bi­pyridine-6-carboxyl­ato-κ3N,N′,O6)nickel(II) tetra­hydrate

aSchool of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
*Correspondence e-mail: haiquansu@yahoo.com

(Received 17 January 2009; accepted 23 February 2009; online 28 February 2009)

In the title compound, [Ni(C12H7N2O4)2]·4H2O, the Ni atom is located at the centre of a distorted octa­hedron, formed by four N atoms and two O atoms from the same two tridentating chelated 6-carb­oxy-2,2′-bipyridine-6′-carboxyl­ate (L) ligands. Face-to-face π-stacking inter­actions between inversion-related pyridine rings with centroid–centroid distances of 3.548 (3) and 3.662 (3) Å (perpendicular distances between the respective rings are 3.314 and 3.438 Å) are found. Inter­molecular O—H⋯O hydrogen bonds between water mol­ecules and L ligands form R53(10), R65(14) and R55(12) rings and also a centrosymmetric cage-like unit of water mol­ecules, which link eight adjacent NiII centers, forming a three-dimensional framework.

Related literature

For hydrogen-bonding motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the structural and photophysical properties of LnIII complexes with the title ligand, see: Bünzli et al. (2000[Bünzli, J.-C. G., Charbonnière, L. J. & Ziessel, R. F. (2000). J. Chem. Soc. Dalton Trans. pp. 1917-1923.]). For a catena-poly diaqua CdII complex with the title ligand, see: Knight et al. (2006[Knight, J. C., Amoroso, A. J., Edwards, P. G. & Ooi, L.-L. (2006). Acta Cryst. E62, m3306-m3308.]). For an explanation of `ligand star', see: Gao et al. (2006[Gao, H.-L., Yi, L., Ding, B., Wang, H.-S., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2006). Inorg. Chem. 45, 481-483.]). For the structural characterization and fluorescent properties of LnIII complexes with pyridine-2,6-dicarboxylic acid, see: Liu et al. (2008[Liu, M.-S., Yu, Q.-Y., Cai, Y.-P., Su, C.-Y., Lin, X.-M., Zhou, X.-X. & Cai, J.-W. (2008). Cryst. Growth Des. 8, 4083-4091.]). For the structural and photophysical properties of EuIII complexes with 2,2′-dipyridine-4, 4′-dicarboxylic acid, see: Law et al. (2007[Law, G.-L., Wong, K.-L., Yang, Y.-Y., Yi, Q.-Y., Jia, G., Wong, W.-T. & Tanner, P. A. (2007). Inorg. Chem. 46, 9754-9759.]). For the structural properties of a metal-organic framework (MOF) based on Pt, Y and 2,2′-bipyridine-5,5′-dicarboxyl­ate, see: Szeto et al. (2006[Szeto, K. C., Lillerud, K. P., Tilset, M., Bjørgen, M., Prestipino, C., Zecchina, A., Lamberti, C. & Bordiga, S. (2006). J. Phys. Chem. B, 110, 21509-21520.]). For a review of the properties of coordination polymer networks via O– and N-atoms, see: Robin & Fromm (2006[Robin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127-2157.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C12H7N2O4)2]·4H2O

  • Mr = 617.17

  • Triclinic, [P \overline 1]

  • a = 9.990 (2) Å

  • b = 10.896 (2) Å

  • c = 12.565 (3) Å

  • α = 112.97 (3)°

  • β = 100.09 (3)°

  • γ = 90.30 (3)°

  • V = 1235.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.86 mm−1

  • T = 113 K

  • 0.20 × 0.10 × 0.08 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.846, Tmax = 0.934

  • 7165 measured reflections

  • 4305 independent reflections

  • 2745 reflections with I > 2σ(I)

  • Rint = 0.126

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.211

  • S = 1.05

  • 4305 reflections

  • 372 parameters

  • H-atom parameters constrained

  • Δρmax = 0.96 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—N1 1.975 (4)
Ni1—N3 1.987 (4)
Ni1—O1 2.104 (4)
Ni1—O5 2.136 (4)
Ni1—N2 2.161 (5)
Ni1—N4 2.197 (4)
N3—Ni1—N2 111.50 (16)
N1—Ni1—N4 103.32 (16)
N3—Ni1—N4 78.03 (17)
O5—Ni1—N4 156.02 (15)
N1—C6—C7—N2 −3.5 (6)
N3—C18—C19—N4 −0.1 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O12—H12B⋯O6i 0.83 2.02 2.783 (6) 153
O12—H12A⋯O2 0.83 1.94 2.755 (5) 165
O11—H11B⋯O12ii 0.83 1.84 2.662 (5) 172
O11—H11A⋯O9iii 0.83 1.99 2.821 (6) 177
O10—H10B⋯O5ii 0.83 2.22 2.953 (5) 148
O10—H10A⋯O2 0.83 2.05 2.822 (6) 155
O9—H9B⋯O6iii 0.83 1.89 2.694 (5) 162
O9—H9A⋯O10iv 0.83 1.90 2.714 (5) 167
O7—H7⋯O11v 0.84 1.69 2.513 (5) 166
O3—H3⋯O9 0.84 1.79 2.614 (5) 166
Symmetry codes: (i) x, y+1, z; (ii) -x, -y+1, -z+1; (iii) -x+1, -y, -z+1; (iv) -x+1, -y+1, -z+1; (v) x, y, z-1.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Pyridylcarboxylic acid is the 'ligand star' in coordination chemistry at all times (Gao et al., 2006). Many multidentate ligands containing N– or O–donors, such as pyridine-2,6-dicarboxylic acid (Liu et al., 2008), 2,2'-dipyridine-4,4'-dicarboxylic acid (Law et al., 2007), 2,2'-dipyridine-5,5'-dicarboxylic acid (Szeto et al., 2006) have been widely used because of their diverse coordination modes, which make the final architecture turn more stable and fascinating. Furthermore, they also offer more supramolecule contacts, such as hydrogen bonding or π···π stacking interactions, which further make the whole framework more stable (Robin & Fromm, 2006). However, a complex with the title ligand is still rare (Bünzli et al., 2000; Knight et al., 2006).

The molecule of the title complex (Fig. 1), shows that the Ni atom is located at the centre of a distorted octahedron of six coordinating atoms, four N atoms and two O atoms from the same two tridentating chelated 6-carboxy-2,2'-bipyridine-6'-carboxylate ligands L. The coordinated bipyridine fragments are nearly coplanar [torsion angles = 0.1 (7) and 3.5 (6)°, Table 1].

Three different hydrogen-bond ring patterns (see Table 2) are found in the structure: R53(10) (formed by O9-H9A..O10-H10A..O2..H12A-O12-H12B.. O6..H9B-); R65(14) (formed by O11-H11B..O12-H12A..O2..H10A-O10-H10B. .O5-C13-O6..H9B-O9..H11A-); and R55(12) (formed by O11-H11B..O12- H12B..O6-C13-O5..H10B-O10..H9A-O9..H11A-) (Bernstein et al., 1995). The intermolecular O—H···O hydrogen bonded cage-like units (assisted by the ligands L (Fig.2) and consisted of three different hydrogen-bond ring patterns), with four intermolecular hydrogen bonds, two O3—H3···O9 and two O7—H7···O11v (with H-bond patterns D, Bernstein et al., 1995), link eight adjacent NiII centers to form a three-dimensional framework (Fig.3). Face-to-face π-stacking interactions between inversion related pyridine rings with Cg5···Cg6vi and Cg7···Cg8iv distances of 3.548 (3) and 3.662 (3) Å (perpendicular distances between the respective rings are 3.314 and 3.438 Å) make the title compound more stable. Cg5, Cg6, Cg7, and Cg8 are the centroids of the pyridine rings (N1, C2 - C6), (N2, C7 - C11), (N3, C14 - C18) and (N4, C19 - C23), respectively. Symmetry codes: (vi) = -x, -y, -z, and (iv) = 1 - x, 1 - y, 1 - z, see Fig. 1.

Related literature top

For hydrogen-bonding motifs, see: Bernstein et al. (1995). For the structural and photophysical properties of LnIII complexes with the title ligand, see: Bünzli et al., (2000). For a catena-poly diaqua CdII complex with the title ligand, see: Knight et al. (2006). For an explanation of `ligand star', see: Gao et al. (2006). For the structural characterization and fluorescent properties of LnIII complexes with pyridine-2,6-dicarboxylic acid, see: Liu et al. (2008). For the structural and photophysical properties of EuIII complexes with 2,2'-dipyridine-4, 4'-dicarboxylic acid, see: Law et al. (2007). For the structural properties of a metal-organic framework (MOF) based on Pt, Y and 2,2'-bipyridine-5,5'-dicarboxylate, see: Szeto et al. (2006). For a review of the properties of coordination polymer networks via O– and N-atoms, see: Robin & Fromm (2006).

Experimental top

The title compound was obtained by the reaction of the mixture of Ni(NO3)2.6H2O, and 2,2'-dipyridine-6,6'-dicarboxylic acid in a molar ratio of 1:0.8 and 10 ml of water under hydrothermal conditions (at 413 K for 6 days and cooled to room temperature with a 5°C h-1 rate). The green block crystals were washed by water, ethanol. (Yield: 68%)

Refinement top

The H atoms were placed in geometrically idealized positions (C—H = 0.95 Å and O—H = 0.82–0.84 Å), with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku/MSC , 2005); cell refinement: CrystalClear (Rigaku/MSC , 2005); data reduction: CrystalClear (Rigaku/MSC , 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecule structure of the title compound, with atom labels and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The ligand assisted hydrogen-bond cage like unit in the compound. The two complex units linked with O11 atoms and all the H atoms, have been omitted for clarity.
[Figure 3] Fig. 3. The packing of the title compound showing hydrogen bonds (dashed lines) holding the molecules together in the crystal structure. The two complex units linked with O11 atoms and all the H atoms, have been omitted for clarity.
Bis(6'-carboxy-2,2'-bipyridine-6-carboxylato- κ3N,N',O6)nickel(II) tetrahydrate top
Crystal data top
[Ni(C12H7N2O4)2]·4H2OZ = 2
Mr = 617.17F(000) = 636
Triclinic, P1Dx = 1.659 Mg m3
a = 9.990 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.896 (2) ÅCell parameters from 3636 reflections
c = 12.565 (3) Åθ = 1.8–27.9°
α = 112.97 (3)°µ = 0.86 mm1
β = 100.09 (3)°T = 113 K
γ = 90.30 (3)°Block, green
V = 1235.7 (4) Å30.20 × 0.10 × 0.08 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
4305 independent reflections
Radiation source: rotating anode2745 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.126
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 1.8°
ω and ϕ scansh = 1011
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1211
Tmin = 0.846, Tmax = 0.934l = 1414
7165 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.211H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1025P)2]
where P = (Fo2 + 2Fc2)/3
4305 reflections(Δ/σ)max < 0.001
372 parametersΔρmax = 0.96 e Å3
0 restraintsΔρmin = 0.75 e Å3
Crystal data top
[Ni(C12H7N2O4)2]·4H2Oγ = 90.30 (3)°
Mr = 617.17V = 1235.7 (4) Å3
Triclinic, P1Z = 2
a = 9.990 (2) ÅMo Kα radiation
b = 10.896 (2) ŵ = 0.86 mm1
c = 12.565 (3) ÅT = 113 K
α = 112.97 (3)°0.20 × 0.10 × 0.08 mm
β = 100.09 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
4305 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2745 reflections with I > 2σ(I)
Tmin = 0.846, Tmax = 0.934Rint = 0.126
7165 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.211H-atom parameters constrained
S = 1.05Δρmax = 0.96 e Å3
4305 reflectionsΔρmin = 0.75 e Å3
372 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.26176 (6)0.23748 (6)0.25373 (5)0.0128 (3)
O10.1825 (4)0.4096 (3)0.3635 (3)0.0170 (9)
O20.0298 (4)0.5584 (4)0.3582 (3)0.0206 (9)
O30.5431 (4)0.0527 (4)0.2154 (4)0.0236 (10)
H30.60060.04450.26920.035*
O40.4382 (5)0.1285 (5)0.2149 (4)0.0463 (15)
O50.1553 (4)0.1112 (3)0.3108 (3)0.0168 (8)
O60.1883 (4)0.0088 (4)0.4363 (4)0.0259 (10)
O70.3576 (4)0.2726 (4)0.0101 (4)0.0279 (10)
H70.31610.26810.07590.042*
O80.2810 (5)0.4775 (5)0.0577 (5)0.0513 (15)
N10.1132 (4)0.2644 (4)0.1406 (4)0.0130 (10)
N20.2678 (4)0.0647 (4)0.0940 (4)0.0113 (9)
N30.3979 (4)0.2352 (4)0.3886 (4)0.0130 (10)
N40.4370 (4)0.3585 (4)0.2514 (4)0.0142 (10)
C10.0871 (5)0.4564 (5)0.3123 (5)0.0161 (12)
C20.0440 (5)0.3747 (5)0.1788 (5)0.0149 (12)
C30.0525 (5)0.4060 (5)0.1044 (5)0.0194 (13)
H3A0.09800.48550.13200.023*
C40.0825 (5)0.3167 (5)0.0151 (5)0.0192 (13)
H40.14820.33610.06960.023*
C50.0156 (5)0.2000 (5)0.0527 (5)0.0179 (13)
H50.03850.13700.13210.021*
C60.0848 (5)0.1768 (5)0.0271 (4)0.0110 (11)
C70.1705 (5)0.0604 (5)0.0014 (5)0.0108 (11)
C80.1510 (5)0.0456 (5)0.1094 (5)0.0134 (12)
H80.08340.04430.17230.016*
C90.2307 (5)0.1519 (5)0.1265 (5)0.0217 (13)
H90.21920.22460.20120.026*
C100.3280 (5)0.1511 (5)0.0330 (5)0.0188 (13)
H100.38350.22370.04220.023*
C110.3433 (5)0.0420 (5)0.0749 (5)0.0141 (12)
C120.4464 (5)0.0429 (5)0.1771 (5)0.0185 (13)
C130.2244 (6)0.0881 (5)0.3940 (5)0.0188 (13)
C140.3639 (5)0.1643 (5)0.4469 (5)0.0154 (12)
C150.4503 (5)0.1663 (5)0.5468 (5)0.0177 (12)
H150.42580.11600.58850.021*
C160.5741 (5)0.2441 (5)0.5845 (5)0.0172 (12)
H160.63540.24740.65270.021*
C170.6077 (5)0.3174 (5)0.5216 (5)0.0162 (12)
H170.69190.37050.54610.019*
C180.5161 (5)0.3109 (5)0.4234 (5)0.0139 (12)
C190.5397 (5)0.3818 (5)0.3460 (5)0.0142 (12)
C200.6567 (5)0.4637 (5)0.3709 (5)0.0175 (12)
H200.72620.47510.43690.021*
C210.6713 (6)0.5292 (5)0.2978 (5)0.0211 (13)
H210.75100.58600.31300.025*
C220.5682 (6)0.5107 (5)0.2029 (5)0.0215 (13)
H220.57410.55660.15310.026*
C230.4553 (5)0.4231 (5)0.1817 (5)0.0166 (12)
C240.3523 (5)0.3942 (5)0.0712 (5)0.0189 (12)
O90.7524 (3)0.0424 (4)0.3682 (3)0.0213 (9)
H9A0.80780.10920.39090.026*
H9B0.78260.01580.42060.026*
O100.0754 (4)0.7452 (4)0.5945 (3)0.0225 (9)
H10A0.05970.67380.53530.027*
H10B0.00390.75360.60570.027*
O110.2191 (4)0.2207 (4)0.7879 (4)0.0285 (10)
H11A0.23090.14390.74350.034*
H11B0.13650.23020.77140.034*
O120.0448 (4)0.7657 (4)0.2859 (4)0.0331 (11)
H12A0.05110.71130.31790.040*
H12B0.06700.83840.34290.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0129 (4)0.0140 (4)0.0094 (4)0.0003 (3)0.0015 (3)0.0039 (3)
O10.0182 (19)0.019 (2)0.011 (2)0.0034 (16)0.0013 (16)0.0030 (16)
O20.026 (2)0.017 (2)0.016 (2)0.0074 (17)0.0057 (18)0.0026 (17)
O30.022 (2)0.031 (2)0.021 (2)0.0004 (18)0.0032 (18)0.0160 (19)
O40.049 (3)0.057 (3)0.041 (3)0.021 (2)0.018 (3)0.039 (3)
O50.0155 (18)0.0175 (19)0.017 (2)0.0024 (15)0.0002 (16)0.0075 (16)
O60.026 (2)0.028 (2)0.025 (2)0.0090 (18)0.0022 (19)0.016 (2)
O70.030 (2)0.024 (2)0.023 (2)0.0009 (18)0.0092 (19)0.0076 (19)
O80.056 (3)0.030 (3)0.047 (3)0.015 (2)0.022 (3)0.005 (2)
N10.012 (2)0.016 (2)0.012 (2)0.0013 (18)0.0019 (18)0.006 (2)
N20.011 (2)0.015 (2)0.008 (2)0.0007 (17)0.0021 (18)0.0052 (18)
N30.016 (2)0.014 (2)0.009 (2)0.0040 (18)0.0026 (19)0.0040 (18)
N40.013 (2)0.010 (2)0.016 (2)0.0051 (17)0.0036 (19)0.0015 (19)
C10.019 (3)0.013 (3)0.013 (3)0.000 (2)0.001 (2)0.003 (2)
C20.018 (3)0.013 (3)0.013 (3)0.002 (2)0.003 (2)0.004 (2)
C30.015 (3)0.021 (3)0.021 (3)0.004 (2)0.003 (2)0.008 (3)
C40.017 (3)0.023 (3)0.017 (3)0.005 (2)0.001 (2)0.010 (2)
C50.017 (3)0.017 (3)0.017 (3)0.004 (2)0.002 (2)0.007 (2)
C60.015 (3)0.011 (3)0.007 (3)0.001 (2)0.005 (2)0.004 (2)
C70.010 (2)0.011 (2)0.012 (3)0.001 (2)0.004 (2)0.004 (2)
C80.013 (3)0.014 (3)0.012 (3)0.001 (2)0.002 (2)0.004 (2)
C90.022 (3)0.023 (3)0.014 (3)0.001 (2)0.002 (3)0.001 (2)
C100.021 (3)0.018 (3)0.016 (3)0.006 (2)0.002 (2)0.005 (2)
C110.014 (3)0.018 (3)0.011 (3)0.000 (2)0.001 (2)0.006 (2)
C120.018 (3)0.017 (3)0.018 (3)0.002 (2)0.001 (2)0.006 (2)
C130.022 (3)0.022 (3)0.012 (3)0.002 (2)0.002 (2)0.008 (2)
C140.018 (3)0.014 (3)0.014 (3)0.000 (2)0.000 (2)0.007 (2)
C150.020 (3)0.018 (3)0.015 (3)0.003 (2)0.003 (2)0.007 (2)
C160.019 (3)0.023 (3)0.009 (3)0.002 (2)0.002 (2)0.007 (2)
C170.017 (3)0.017 (3)0.010 (3)0.001 (2)0.001 (2)0.002 (2)
C180.013 (3)0.011 (2)0.015 (3)0.002 (2)0.000 (2)0.004 (2)
C190.016 (3)0.011 (3)0.011 (3)0.003 (2)0.003 (2)0.001 (2)
C200.017 (3)0.017 (3)0.017 (3)0.001 (2)0.002 (2)0.005 (2)
C210.021 (3)0.026 (3)0.016 (3)0.000 (2)0.004 (2)0.008 (3)
C220.024 (3)0.019 (3)0.020 (3)0.001 (2)0.007 (3)0.006 (2)
C230.018 (3)0.015 (3)0.016 (3)0.008 (2)0.006 (2)0.005 (2)
C240.018 (3)0.022 (3)0.020 (3)0.004 (2)0.005 (2)0.011 (3)
O90.019 (2)0.022 (2)0.021 (2)0.0013 (16)0.0014 (18)0.0083 (18)
O100.0187 (19)0.025 (2)0.019 (2)0.0007 (17)0.0052 (18)0.0025 (18)
O110.030 (2)0.029 (2)0.021 (2)0.0026 (19)0.0017 (19)0.0071 (19)
O120.042 (3)0.027 (2)0.028 (3)0.008 (2)0.003 (2)0.013 (2)
Geometric parameters (Å, º) top
Ni1—N11.975 (4)C7—C81.399 (7)
Ni1—N31.987 (4)C8—C91.377 (7)
Ni1—O12.104 (4)C8—H80.9500
Ni1—O52.136 (4)C9—C101.385 (7)
Ni1—N22.161 (5)C9—H90.9500
Ni1—N42.197 (4)C10—C111.394 (7)
O1—C11.276 (6)C10—H100.9500
O2—C11.231 (6)C11—C121.503 (6)
O3—C121.299 (6)C13—C141.519 (7)
O3—H30.8400C14—C151.385 (7)
O4—C121.207 (6)C15—C161.394 (7)
O5—C131.260 (6)C15—H150.9500
O6—C131.258 (6)C16—C171.399 (7)
O7—C241.329 (7)C16—H160.9500
O7—H70.8400C17—C181.379 (7)
O8—C241.202 (6)C17—H170.9500
N1—C61.348 (7)C18—C191.505 (7)
N1—C21.352 (6)C19—C201.379 (8)
N2—C111.354 (6)C20—C211.390 (7)
N2—C71.364 (6)C20—H200.9500
N3—C141.332 (7)C21—C221.380 (7)
N3—C181.339 (6)C21—H210.9500
N4—C231.354 (7)C22—C231.392 (7)
N4—C191.365 (6)C22—H220.9500
C1—C21.539 (7)C23—C241.496 (7)
C2—C31.363 (6)O9—H9A0.8341
C3—C41.410 (8)O9—H9B0.8302
C3—H3A0.9500O10—H10A0.8296
C4—C51.392 (7)O10—H10B0.8283
C4—H40.9500O11—H11A0.8278
C5—C61.387 (6)O11—H11B0.8319
C5—H50.9500O12—H12A0.8320
C6—C71.495 (7)O12—H12B0.8299
N1—Ni1—N3170.11 (18)C7—C8—H8120.3
N1—Ni1—O178.57 (16)C8—C9—C10118.9 (5)
N3—Ni1—O191.64 (15)C8—C9—H9120.5
N1—Ni1—O5100.61 (15)C10—C9—H9120.5
N3—Ni1—O578.13 (15)C9—C10—C11118.9 (5)
O1—Ni1—O592.18 (14)C9—C10—H10120.5
N1—Ni1—N278.15 (17)C11—C10—H10120.5
N3—Ni1—N2111.50 (16)N2—C11—C10123.5 (4)
O1—Ni1—N2156.37 (14)N2—C11—C12117.6 (5)
O5—Ni1—N288.21 (15)C10—C11—C12118.8 (4)
N1—Ni1—N4103.32 (16)O4—C12—O3125.4 (5)
N3—Ni1—N478.03 (17)O4—C12—C11121.3 (5)
O1—Ni1—N491.03 (15)O3—C12—C11113.3 (4)
O5—Ni1—N4156.02 (15)O6—C13—O5126.1 (5)
N2—Ni1—N498.14 (17)O6—C13—C14117.9 (4)
C1—O1—Ni1115.9 (3)O5—C13—C14116.0 (5)
C12—O3—H3109.5N3—C14—C15120.9 (5)
C13—O5—Ni1114.2 (3)N3—C14—C13113.2 (4)
C24—O7—H7109.5C15—C14—C13125.8 (5)
C6—N1—C2121.0 (4)C14—C15—C16118.3 (5)
C6—N1—Ni1120.6 (3)C14—C15—H15120.9
C2—N1—Ni1118.4 (3)C16—C15—H15120.9
C11—N2—C7116.5 (5)C15—C16—C17119.7 (5)
C11—N2—Ni1130.6 (3)C15—C16—H16120.1
C7—N2—Ni1112.6 (3)C17—C16—H16120.1
C14—N3—C18121.8 (4)C18—C17—C16118.6 (5)
C14—N3—Ni1118.1 (3)C18—C17—H17120.7
C18—N3—Ni1119.9 (3)C16—C17—H17120.7
C23—N4—C19115.6 (4)N3—C18—C17120.6 (5)
C23—N4—Ni1132.1 (3)N3—C18—C19114.9 (4)
C19—N4—Ni1111.9 (3)C17—C18—C19124.5 (5)
O2—C1—O1127.0 (5)N4—C19—C20123.8 (5)
O2—C1—C2118.6 (4)N4—C19—C18114.7 (4)
O1—C1—C2114.4 (5)C20—C19—C18121.5 (4)
N1—C2—C3122.0 (5)C19—C20—C21118.9 (5)
N1—C2—C1112.4 (4)C19—C20—H20120.6
C3—C2—C1125.6 (5)C21—C20—H20120.6
C2—C3—C4117.9 (5)C22—C21—C20119.0 (5)
C2—C3—H3A121.1C22—C21—H21120.5
C4—C3—H3A121.1C20—C21—H21120.5
C5—C4—C3119.8 (5)C21—C22—C23118.5 (5)
C5—C4—H4120.1C21—C22—H22120.7
C3—C4—H4120.1C23—C22—H22120.7
C6—C5—C4119.2 (5)N4—C23—C22124.1 (5)
C6—C5—H5120.4N4—C23—C24118.6 (5)
C4—C5—H5120.4C22—C23—C24117.2 (5)
N1—C6—C5120.0 (5)O8—C24—O7125.3 (5)
N1—C6—C7113.5 (4)O8—C24—C23122.1 (5)
C5—C6—C7126.5 (5)O7—C24—C23112.4 (4)
N2—C7—C8122.7 (4)H9A—O9—H9B97.5
N2—C7—C6115.1 (4)H10A—O10—H10B97.1
C8—C7—C6122.2 (4)H11A—O11—H11B106.3
C9—C8—C7119.4 (5)H12A—O12—H12B102.5
C9—C8—H8120.3
N1—Ni1—O1—C13.7 (4)Ni1—N1—C6—C72.8 (6)
N3—Ni1—O1—C1177.7 (4)C4—C5—C6—N12.4 (8)
O5—Ni1—O1—C1104.1 (4)C4—C5—C6—C7177.5 (5)
N2—Ni1—O1—C113.6 (6)C11—N2—C7—C82.2 (7)
N4—Ni1—O1—C199.7 (4)Ni1—N2—C7—C8176.9 (4)
N1—Ni1—O5—C13173.4 (4)C11—N2—C7—C6177.3 (4)
N3—Ni1—O5—C133.4 (4)Ni1—N2—C7—C62.6 (5)
O1—Ni1—O5—C1394.6 (4)N1—C6—C7—N23.5 (6)
N2—Ni1—O5—C13109.0 (4)C5—C6—C7—N2176.4 (5)
N4—Ni1—O5—C132.8 (6)N1—C6—C7—C8176.0 (4)
N3—Ni1—N1—C6168.7 (8)C5—C6—C7—C84.1 (8)
O1—Ni1—N1—C6177.2 (4)N2—C7—C8—C91.3 (8)
O5—Ni1—N1—C687.1 (4)C6—C7—C8—C9178.1 (5)
N2—Ni1—N1—C61.2 (4)C7—C8—C9—C100.2 (8)
N4—Ni1—N1—C694.5 (4)C8—C9—C10—C110.8 (8)
N3—Ni1—N1—C213.4 (12)C7—N2—C11—C101.5 (7)
O1—Ni1—N1—C25.0 (4)Ni1—N2—C11—C10175.2 (4)
O5—Ni1—N1—C295.1 (4)C7—N2—C11—C12177.0 (4)
N2—Ni1—N1—C2179.0 (4)Ni1—N2—C11—C123.3 (7)
N4—Ni1—N1—C283.3 (4)C9—C10—C11—N20.1 (8)
N1—Ni1—N2—C11174.7 (5)C9—C10—C11—C12178.4 (5)
N3—Ni1—N2—C113.0 (5)N2—C11—C12—O4117.9 (6)
O1—Ni1—N2—C11164.9 (4)C10—C11—C12—O460.7 (8)
O5—Ni1—N2—C1173.5 (4)N2—C11—C12—O364.1 (7)
N4—Ni1—N2—C1183.3 (4)C10—C11—C12—O3117.3 (6)
N1—Ni1—N2—C70.9 (3)Ni1—O5—C13—O6174.0 (5)
N3—Ni1—N2—C7176.8 (3)Ni1—O5—C13—C146.1 (6)
O1—Ni1—N2—C79.0 (6)C18—N3—C14—C150.1 (8)
O5—Ni1—N2—C7100.3 (3)Ni1—N3—C14—C15175.3 (4)
N4—Ni1—N2—C7102.9 (3)C18—N3—C14—C13178.8 (5)
N1—Ni1—N3—C1483.3 (10)Ni1—N3—C14—C133.3 (6)
O1—Ni1—N3—C1491.6 (4)O6—C13—C14—N3173.7 (5)
O5—Ni1—N3—C140.3 (4)O5—C13—C14—N36.4 (7)
N2—Ni1—N3—C1483.6 (4)O6—C13—C14—C157.7 (9)
N4—Ni1—N3—C14177.7 (4)O5—C13—C14—C15172.2 (5)
N1—Ni1—N3—C1892.2 (10)N3—C14—C15—C160.3 (8)
O1—Ni1—N3—C1884.0 (4)C13—C14—C15—C16178.8 (5)
O5—Ni1—N3—C18175.9 (4)C14—C15—C16—C170.1 (8)
N2—Ni1—N3—C18100.9 (4)C15—C16—C17—C180.3 (8)
N4—Ni1—N3—C186.7 (4)C14—N3—C18—C170.3 (8)
N1—Ni1—N4—C238.8 (5)Ni1—N3—C18—C17175.6 (4)
N3—Ni1—N4—C23178.8 (5)C14—N3—C18—C19178.7 (5)
O1—Ni1—N4—C2387.3 (5)Ni1—N3—C18—C196.0 (6)
O5—Ni1—N4—C23175.0 (4)C16—C17—C18—N30.4 (8)
N2—Ni1—N4—C2370.9 (5)C16—C17—C18—C19178.7 (5)
N1—Ni1—N4—C19163.7 (3)C23—N4—C19—C200.9 (8)
N3—Ni1—N4—C196.3 (3)Ni1—N4—C19—C20174.7 (4)
O1—Ni1—N4—C1985.2 (3)C23—N4—C19—C18179.0 (4)
O5—Ni1—N4—C1912.5 (6)Ni1—N4—C19—C185.2 (5)
N2—Ni1—N4—C19116.7 (3)N3—C18—C19—N40.1 (7)
Ni1—O1—C1—O2177.0 (5)C17—C18—C19—N4178.2 (5)
Ni1—O1—C1—C21.9 (6)N3—C18—C19—C20179.8 (5)
C6—N1—C2—C33.1 (8)C17—C18—C19—C201.9 (8)
Ni1—N1—C2—C3174.7 (4)N4—C19—C20—C211.5 (8)
C6—N1—C2—C1176.8 (4)C18—C19—C20—C21178.4 (5)
Ni1—N1—C2—C15.4 (6)C19—C20—C21—C220.2 (8)
O2—C1—C2—N1178.9 (5)C20—C21—C22—C232.2 (8)
O1—C1—C2—N12.1 (7)C19—N4—C23—C221.3 (8)
O2—C1—C2—C31.0 (8)Ni1—N4—C23—C22170.9 (4)
O1—C1—C2—C3178.1 (5)C19—N4—C23—C24175.3 (4)
N1—C2—C3—C42.2 (8)Ni1—N4—C23—C2412.4 (7)
C1—C2—C3—C4177.7 (5)C21—C22—C23—N42.9 (9)
C2—C3—C4—C51.0 (8)C21—C22—C23—C24173.8 (5)
C3—C4—C5—C63.2 (8)N4—C23—C24—O8114.4 (7)
C2—N1—C6—C50.7 (7)C22—C23—C24—O868.8 (8)
Ni1—N1—C6—C5177.1 (4)N4—C23—C24—O770.5 (7)
C2—N1—C6—C7179.4 (4)C22—C23—C24—O7106.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12B···O6i0.832.022.783 (6)153
O12—H12A···O20.831.942.755 (5)165
O11—H11B···O12ii0.831.842.662 (5)172
O11—H11A···O9iii0.831.992.821 (6)177
O10—H10B···O5ii0.832.222.953 (5)148
O10—H10A···O20.832.052.822 (6)155
O9—H9B···O6iii0.831.892.694 (5)162
O9—H9A···O10iv0.831.902.714 (5)167
O7—H7···O11v0.841.692.513 (5)166
O3—H3···O90.841.792.614 (5)166
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1; (v) x, y, z1.

Experimental details

Crystal data
Chemical formula[Ni(C12H7N2O4)2]·4H2O
Mr617.17
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)9.990 (2), 10.896 (2), 12.565 (3)
α, β, γ (°)112.97 (3), 100.09 (3), 90.30 (3)
V3)1235.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.86
Crystal size (mm)0.20 × 0.10 × 0.08
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.846, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
7165, 4305, 2745
Rint0.126
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.211, 1.05
No. of reflections4305
No. of parameters372
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.96, 0.75

Computer programs: CrystalClear (Rigaku/MSC , 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2006) and Mercury (Macrae et al., 2006), publCIF (Westrip, 2009).

Selected geometric parameters (Å, º) top
Ni1—N11.975 (4)Ni1—O52.136 (4)
Ni1—N31.987 (4)Ni1—N22.161 (5)
Ni1—O12.104 (4)Ni1—N42.197 (4)
N3—Ni1—N2111.50 (16)N3—Ni1—N478.03 (17)
N1—Ni1—N4103.32 (16)O5—Ni1—N4156.02 (15)
N1—C6—C7—N23.5 (6)N3—C18—C19—N40.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12B···O6i0.832.022.783 (6)153.0
O12—H12A···O20.831.942.755 (5)165.4
O11—H11B···O12ii0.831.842.662 (5)172.0
O11—H11A···O9iii0.831.992.821 (6)176.6
O10—H10B···O5ii0.832.222.953 (5)147.6
O10—H10A···O20.832.052.822 (6)154.6
O9—H9B···O6iii0.831.892.694 (5)161.9
O9—H9A···O10iv0.831.902.714 (5)166.8
O7—H7···O11v0.841.692.513 (5)165.7
O3—H3···O90.841.792.614 (5)165.8
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1; (v) x, y, z1.
 

Acknowledgements

This work was supported by the Program for New Century Excellent Talents in Universities (NCET-04–0261) and the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBünzli, J.-C. G., Charbonnière, L. J. & Ziessel, R. F. (2000). J. Chem. Soc. Dalton Trans. pp. 1917–1923.  Google Scholar
First citationGao, H.-L., Yi, L., Ding, B., Wang, H.-S., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2006). Inorg. Chem. 45, 481–483.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKnight, J. C., Amoroso, A. J., Edwards, P. G. & Ooi, L.-L. (2006). Acta Cryst. E62, m3306–m3308.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLaw, G.-L., Wong, K.-L., Yang, Y.-Y., Yi, Q.-Y., Jia, G., Wong, W.-T. & Tanner, P. A. (2007). Inorg. Chem. 46, 9754–9759.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, M.-S., Yu, Q.-Y., Cai, Y.-P., Su, C.-Y., Lin, X.-M., Zhou, X.-X. & Cai, J.-W. (2008). Cryst. Growth Des. 8, 4083–4091.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationRobin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127–2157.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzeto, K. C., Lillerud, K. P., Tilset, M., Bjørgen, M., Prestipino, C., Zecchina, A., Lamberti, C. & Bordiga, S. (2006). J. Phys. Chem. B, 110, 21509–21520.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m352-m353
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds