organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages o626-o627

4-(9-Anthr­yl)-1-(2-meth­oxy­phen­yl)spiro­[azetidin-3,9′-xanthen]-2-one

aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 4 February 2009; accepted 13 February 2009; online 28 February 2009)

The stabilized conformation of the title compound, C36H25NO3, 4-(9-anthryl)-1-(2-methoxyphenyl)-spiro[azetid­in-3,9′-xanthen]-2-one, may be compared with that of the isomeric compound 4-(9-anthr­yl)-1-(4-methoxy­phen­yl)spiro­[azetidin-3,9′-xanthen]-2-one. In the title isomer, the meth­oxy group is slightly twisted out of the plane of the attached benzene ring, with a C—O—C—C torsion angle of 31.5 (2)°. Its β-lactam ring is essentially planar, with a maximum deviation of −0.021 (1) Å. The β-lactam ring makes dihedral angles of 18.815 (9), 83.33 (7) and 53.62 (8)° with the mean planes of the benzene, xanthene and anthracene ring systems, respectively. The structure is stabilized by C—H⋯π, C—H⋯N and C—H⋯O inter­actions.

Related literature

For general background to β-lactam anti­biotics, see: Banik et al. (2004[Banik, B. K., Becker, F. F. & Banik, I. (2004). Bioorg. Med. Chem. 12, 2523-2528.]); Georg & Ravikumar (1993[Georg, G. I. & Ravikumar, V. T. (1993). The Organic Chemistry of β-Lactams, edited by G. I. Georg, pp. 295-381. New York: VCH.]); Jarrahpour & Khalili (2007[Jarrahpour, A. & Khalili, D. (2007). Tetrahedron Lett. 48, 7140-7143.]); Palomo et al. (2001[Palomo, C., Aizpurua, J. M., Ganboa, I. & Oiarbide, M. (2001). Synlett, pp. 1813-1826.]). For the crystal structure of the isomeric compound 4-(9-anthr­yl)-1-(4-methoxy­phen­yl)spiro­[azetidin-3,9′-xanthen]-2-one, see: Akkurt, Karaca et al. (2008[Akkurt, M., Karaca, S., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2008). Acta Cryst. E64, o902-o903.]). For the crystal structures of related compounds, see: Pınar et al. (2006[Pınar, S., Akkurt, M., Jarrahpour, A. A., Khalili, D. & Büyükgüngör, O. (2006). Acta Cryst. E62, o804-o806.]); Akkurt, Jarrahpour et al. (2008[Akkurt, M., Jarrahpour, A., Ebrahimi, E., Gençaslan, M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o2466-o2467.]). For ring-puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C36H25NO3

  • Mr = 519.57

  • Monoclinic, P 21 /c

  • a = 11.8496 (3) Å

  • b = 15.3168 (5) Å

  • c = 14.9883 (4) Å

  • β = 106.536 (2)°

  • V = 2607.84 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.62 × 0.59 × 0.56 mm

Data collection
  • Stoe IPDS-II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.950, Tmax = 0.955

  • 32362 measured reflections

  • 5399 independent reflections

  • 4314 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.106

  • S = 1.04

  • 5399 reflections

  • 363 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N1 0.93 2.32 2.9236 (19) 122
C31—H31⋯O2 0.93 2.55 3.140 (2) 122
C5—H5⋯Cg1i 0.93 2.92 3.597 (2) 130
C26—H26⋯Cg2ii 0.93 2.88 3.7180 (19) 151
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]. Cg1 and Cg2 are the centroids of the C30–C35 and C8–C13 rings, respectively.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The importance of β-lactams for the treatment of bacterial infections has been amply established (Georg & Ravikumar, 1993; Palomo et al., 2001). Large efforts have been made for the synthesis and structural modification of the β-lactam nucleus to increase antimicrobial activity. New and interesting spiro-β-lactam-containing structures have been recently reported due to their structural features and their bioactivity (Jarrahpour & Khalili, 2007; Pınar et al., 2006; Akkurt, Jarrahpour et al., 2008; Akkurt, Karaca et al., 2008). Banik and coworkers have synthesized polycyclic aroaromatic β-lactams with potential anticancer properties (Banik et al., 2004). The title compound (I) is isomeric with 4-(9-anthryl)-1-(4-methoxyphenyl)spiro[azetidin-3,9'-xanthen]-2-one (II), whose crystal structure has been previously reported by Akkurt, Karaca et al. (2008). Both isomers crystalize in the monoclinic space group P21/c. The volume of the unit cell of the title isomer (I) is smaller than that of (II).

As can be seen in Fig. 1, the β-lactam ring of (I) is nearly planar, with a maximum deviation of -0.021 (1) Å from the ring. The planarity is mainly due to the sp2 hybridization of atoms C29 and N1. The dihedral angle between the benzene ring C30—C35 attached at N1 and the β-lactam ring is 58.80 (6)°, in the isomeric compound (II), the equivalent angle is 28.45 (14)° (Akkurt, Karaca et al., 2008) due to steric interactions resulting in different orientations of the methoxy group. The methoxy group is slightly twisted out of the plane of the attached benzene ring [C36—O3—C35—C34 = 31.5 (2) °, and in (II) -4.6 (4)].

In the xanthene ring system, attached at C16, the benzene rings (C17–C22) and (C23–C28) form a dihedral angle of 16.78 (8)° with each other. The central ring, C16/C17/C22/O1/C23/C28, is not planar, with puckering parameters: QT = 0.2173 (14) Å, θ = 95.6 (4)° and ϕ = 358.3 (4)° (Cremer & Pople, 1975). The mean plane of the xanthene ring system forms dihedral angles of 83.33 (7)°, and 65.92 (6)°, with the β-lactam ring and the benzene ring C30–C35, respectively.

The anthracene ring system, attached at C15, is almost planar, with maximum deviations of -0.074 (2) Å for C2, 0.046 (2) Å for C4, 0.040 (2) Å for C5 and -0.055 (1) Å for C8. It forms dihedral angles of 53.62 (8)°, 58.80 (6)° and 69.89 (4)°, with the β-lactam ring, benzene ring (C30–C35) and the mean plane of the xanthene ring system, respectively.

The molecular structure of the title compound is stabilized by two intramolecular C—H···O and C—H···N hydrogen bonding interactions (Table 1). Fig. 2 shows the packing diagram viewed down the a axis. Two C—H···π interactions are also found between C5–H5 and the centroid of the C30–C35 benzene ring, and C26–H26 and the centroid of the C8–C13 benzene ring.

Related literature top

For general background to β-lactam antibiotics, see: Banik et al. (2004); Georg & Ravikumar (1993); Jarrahpour & Khalili (2007); Palomo et al. (2001). For the crystal structure of the isomeric compound 4-(9-anthryl)-1-(4-methoxyphenyl)spiro[azetidin-3,9'-xanthen]-2-one, see: Akkurt, Karaca et al. (2008). For the crystal structures of related compounds, see: Pınar et al. (2006); Akkurt, Jarrahpour et al. (2008). For ring-puckering analysis, see: Cremer & Pople (1975).

Experimental top

A mixture of (E)—N-(antheracen-9-ylmethylene)-2-methoxyaniline (0.30 g, 0.96 mmol) and triethylamine (0.73 g,7.21 mmol), 9H-xanthen-9-carboxylic acid (0.49 g, 2.17 mmol) and tosylchloride (0.42 g, 2.20 mmol) in CH2Cl2(15 ml) was strirred at room temperature for 24 h. It was then washed with 1M HCl (20 ml) and saturated sodium bicarbonate solution (20 ml), brine (20 ml), dried (Na2SO4) and the solvent was evaporated to give the crude product as light yellow crystals which were then purified by recrystallization from ethyl acetate (Yield 57%). dec.: 507–509 K. IR (KBr, cm-1):1739 (CO β-lactam). 1H-NMR δ (p.p.m.): 2.94 (s, 3H, OCH3), 6.34 (s, 1H,4), 6.55–9.20 (m, ArH, 21H).13C-NMR δ (p.p.m.): 55.4 (OCH3),66.0 (C-3), 78.5 (C-4), 112.8–152.0 (aromatic carbon), 168.0 (CO β-lactam). Analysis calculated for C36H25NO3: C 83.22, H 4.85, N 2.70%. Found: C 83.90, H 4.80, N 2.81%.

Refinement top

The H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The title molecular structure, with the atom-numbering scheme and 30% probability displacement ellipsoids
[Figure 2] Fig. 2. A view down the a axis of the packing of (I).
(I) top
Crystal data top
C36H25NO3F(000) = 1088
Mr = 519.57Dx = 1.323 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 32362 reflections
a = 11.8496 (3) Åθ = 1.4–28.0°
b = 15.3168 (5) ŵ = 0.08 mm1
c = 14.9883 (4) ÅT = 295 K
β = 106.536 (2)°Prism, colourless
V = 2607.84 (13) Å30.62 × 0.59 × 0.56 mm
Z = 4
Data collection top
STOE IPDS-II
diffractometer
5399 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus4314 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.054
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 1.8°
ω scansh = 1414
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1919
Tmin = 0.950, Tmax = 0.955l = 1818
32362 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.048P)2 + 0.3336P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
5399 reflectionsΔρmax = 0.16 e Å3
363 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL, FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0105 (9)
Crystal data top
C36H25NO3V = 2607.84 (13) Å3
Mr = 519.57Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.8496 (3) ŵ = 0.08 mm1
b = 15.3168 (5) ÅT = 295 K
c = 14.9883 (4) Å0.62 × 0.59 × 0.56 mm
β = 106.536 (2)°
Data collection top
STOE IPDS-II
diffractometer
5399 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
4314 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.955Rint = 0.054
32362 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.04Δρmax = 0.16 e Å3
5399 reflectionsΔρmin = 0.16 e Å3
363 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.01289 (9)0.44378 (8)0.31404 (8)0.0697 (4)
O20.36695 (10)0.55177 (7)0.51655 (7)0.0653 (4)
O30.30250 (9)0.78834 (7)0.27655 (8)0.0675 (4)
N10.33576 (9)0.64088 (7)0.38357 (7)0.0461 (3)
C10.36306 (11)0.58740 (9)0.19255 (9)0.0462 (4)
C20.47171 (12)0.57344 (10)0.26356 (11)0.0569 (5)
C30.57582 (14)0.56915 (12)0.24285 (15)0.0751 (7)
C40.58118 (17)0.57587 (14)0.15052 (17)0.0884 (8)
C50.48186 (17)0.58388 (13)0.08111 (15)0.0792 (7)
C60.36987 (14)0.58871 (10)0.09806 (11)0.0568 (5)
C70.26796 (15)0.59596 (11)0.02468 (10)0.0626 (5)
C80.15810 (13)0.60135 (9)0.03888 (9)0.0531 (4)
C90.05274 (17)0.60473 (11)0.03720 (10)0.0675 (6)
C100.05367 (16)0.60989 (11)0.02326 (11)0.0705 (6)
C110.06362 (14)0.61307 (11)0.06781 (12)0.0647 (5)
C120.03379 (12)0.61083 (9)0.14315 (10)0.0520 (4)
C130.14958 (11)0.60449 (8)0.13233 (8)0.0446 (4)
C140.25263 (11)0.60084 (8)0.20881 (8)0.0415 (3)
C150.23391 (11)0.62055 (8)0.30239 (8)0.0418 (4)
C160.20143 (11)0.54586 (8)0.36502 (8)0.0438 (4)
C170.19653 (12)0.45304 (9)0.33143 (9)0.0481 (4)
C180.29543 (15)0.40863 (10)0.32265 (11)0.0604 (5)
C190.28781 (19)0.32418 (11)0.28933 (12)0.0751 (7)
C200.1806 (2)0.28190 (11)0.26398 (12)0.0779 (7)
C210.08265 (17)0.32332 (11)0.27326 (11)0.0706 (6)
C220.09090 (13)0.40801 (10)0.30662 (9)0.0554 (5)
C230.00679 (12)0.51767 (10)0.36724 (10)0.0543 (5)
C240.10730 (14)0.53833 (12)0.39252 (13)0.0696 (6)
C250.10924 (16)0.61064 (12)0.44524 (14)0.0754 (7)
C260.01121 (17)0.66294 (12)0.47321 (13)0.0725 (6)
C270.08836 (14)0.64221 (10)0.44783 (11)0.0588 (5)
C280.09329 (12)0.56874 (9)0.39433 (9)0.0475 (4)
C290.31556 (12)0.57514 (9)0.43826 (9)0.0478 (4)
C300.42510 (11)0.70525 (9)0.39776 (9)0.0469 (4)
C310.53095 (13)0.69324 (11)0.46667 (10)0.0595 (5)
C320.62199 (13)0.75191 (12)0.47606 (12)0.0676 (6)
C330.60857 (14)0.82195 (13)0.41712 (12)0.0692 (6)
C340.50341 (14)0.83551 (11)0.34932 (11)0.0625 (5)
C350.41095 (12)0.77789 (9)0.33996 (9)0.0509 (4)
C360.2984 (2)0.82970 (17)0.19185 (16)0.1126 (9)
H20.470800.567200.325100.0680*
H30.645000.561600.290600.0900*
H40.653600.574700.137800.1060*
H50.486100.586400.020100.0950*
H70.273800.597200.035900.0750*
H90.058400.603300.097800.0810*
H100.120900.611400.073800.0850*
H110.137800.616800.077000.0780*
H120.024600.613500.202700.0620*
H150.176100.667700.294700.0500*
H180.368200.436500.339600.0720*
H190.354900.295800.284000.0900*
H200.175200.225300.240600.0930*
H210.010500.294700.257200.0850*
H240.173500.502900.373500.0840*
H250.176700.624500.462200.0900*
H260.012200.712200.509200.0870*
H270.154100.678200.466900.0700*
H310.540400.645500.506500.0710*
H320.692500.743900.522400.0810*
H330.670700.860600.422800.0830*
H340.494800.883500.309900.0750*
H36A0.357900.805400.167100.1350*
H36B0.312200.891100.202300.1350*
H36C0.222300.820800.148400.1350*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0557 (6)0.0655 (7)0.0769 (8)0.0070 (5)0.0011 (5)0.0118 (6)
O20.0716 (7)0.0750 (7)0.0390 (5)0.0004 (5)0.0009 (5)0.0127 (5)
O30.0614 (6)0.0611 (6)0.0668 (7)0.0036 (5)0.0031 (5)0.0181 (5)
N10.0486 (6)0.0482 (6)0.0351 (5)0.0030 (5)0.0014 (4)0.0024 (5)
C10.0472 (7)0.0424 (7)0.0483 (7)0.0006 (5)0.0123 (6)0.0015 (6)
C20.0488 (8)0.0543 (8)0.0643 (9)0.0050 (6)0.0106 (7)0.0072 (7)
C30.0470 (8)0.0730 (11)0.1011 (14)0.0045 (7)0.0142 (9)0.0145 (10)
C40.0643 (11)0.0941 (14)0.1214 (18)0.0015 (10)0.0499 (12)0.0093 (13)
C50.0783 (12)0.0893 (13)0.0844 (13)0.0026 (10)0.0464 (10)0.0024 (10)
C60.0645 (9)0.0543 (8)0.0581 (8)0.0024 (7)0.0280 (7)0.0001 (7)
C70.0828 (11)0.0667 (10)0.0409 (7)0.0005 (8)0.0217 (7)0.0020 (7)
C80.0677 (9)0.0498 (7)0.0371 (7)0.0005 (6)0.0073 (6)0.0024 (6)
C90.0905 (12)0.0628 (9)0.0369 (7)0.0051 (8)0.0019 (7)0.0024 (7)
C100.0688 (11)0.0703 (10)0.0527 (9)0.0068 (8)0.0147 (8)0.0012 (8)
C110.0511 (8)0.0640 (10)0.0661 (10)0.0047 (7)0.0039 (7)0.0028 (8)
C120.0486 (7)0.0551 (8)0.0467 (7)0.0010 (6)0.0044 (6)0.0021 (6)
C130.0502 (7)0.0416 (6)0.0372 (6)0.0000 (5)0.0047 (5)0.0018 (5)
C140.0448 (6)0.0403 (6)0.0363 (6)0.0001 (5)0.0068 (5)0.0029 (5)
C150.0424 (6)0.0437 (7)0.0350 (6)0.0007 (5)0.0039 (5)0.0011 (5)
C160.0488 (7)0.0452 (7)0.0349 (6)0.0010 (5)0.0080 (5)0.0035 (5)
C170.0617 (8)0.0447 (7)0.0355 (6)0.0024 (6)0.0101 (6)0.0052 (5)
C180.0751 (10)0.0520 (8)0.0581 (9)0.0089 (7)0.0254 (7)0.0086 (7)
C190.1100 (14)0.0555 (9)0.0693 (11)0.0218 (10)0.0410 (10)0.0092 (8)
C200.1310 (17)0.0479 (9)0.0537 (9)0.0050 (10)0.0247 (10)0.0042 (7)
C210.0950 (12)0.0539 (9)0.0527 (9)0.0102 (9)0.0044 (8)0.0038 (7)
C220.0668 (9)0.0511 (8)0.0414 (7)0.0004 (7)0.0042 (6)0.0011 (6)
C230.0528 (8)0.0527 (8)0.0530 (8)0.0018 (6)0.0078 (6)0.0082 (7)
C240.0490 (8)0.0744 (11)0.0828 (11)0.0058 (7)0.0144 (8)0.0221 (9)
C250.0716 (11)0.0748 (12)0.0890 (13)0.0240 (9)0.0378 (10)0.0247 (10)
C260.0927 (12)0.0606 (10)0.0748 (11)0.0173 (9)0.0411 (10)0.0069 (8)
C270.0733 (9)0.0505 (8)0.0576 (9)0.0016 (7)0.0269 (7)0.0007 (7)
C280.0545 (8)0.0471 (7)0.0412 (7)0.0013 (6)0.0141 (6)0.0063 (6)
C290.0527 (7)0.0509 (7)0.0366 (6)0.0032 (6)0.0077 (5)0.0025 (6)
C300.0470 (7)0.0505 (7)0.0401 (7)0.0019 (6)0.0073 (5)0.0051 (6)
C310.0560 (8)0.0654 (9)0.0476 (8)0.0018 (7)0.0004 (6)0.0011 (7)
C320.0479 (8)0.0869 (12)0.0600 (9)0.0063 (8)0.0025 (7)0.0119 (9)
C330.0535 (8)0.0846 (12)0.0700 (10)0.0185 (8)0.0185 (7)0.0104 (9)
C340.0654 (9)0.0606 (9)0.0635 (9)0.0097 (7)0.0218 (8)0.0011 (7)
C350.0507 (7)0.0529 (8)0.0466 (7)0.0011 (6)0.0100 (6)0.0024 (6)
C360.1148 (17)0.1056 (17)0.0883 (15)0.0211 (13)0.0180 (13)0.0514 (13)
Geometric parameters (Å, º) top
O1—C221.3795 (19)C23—C281.382 (2)
O1—C231.3745 (19)C24—C251.365 (3)
O2—C291.2121 (17)C25—C261.375 (3)
O3—C351.3730 (18)C26—C271.376 (3)
O3—C361.407 (3)C27—C281.393 (2)
N1—C151.4826 (16)C30—C311.392 (2)
N1—C291.3619 (17)C30—C351.3906 (19)
N1—C301.4177 (17)C31—C321.380 (2)
C1—C21.434 (2)C32—C331.370 (3)
C1—C61.441 (2)C33—C341.381 (2)
C1—C141.4127 (19)C34—C351.383 (2)
C2—C31.357 (2)C2—H20.9300
C3—C41.407 (3)C3—H30.9300
C4—C51.336 (3)C4—H40.9300
C5—C61.422 (3)C5—H50.9300
C6—C71.387 (2)C7—H70.9300
C7—C81.380 (2)C9—H90.9300
C8—C91.432 (2)C10—H100.9300
C8—C131.4335 (18)C11—H110.9300
C9—C101.338 (3)C12—H120.9300
C10—C111.404 (2)C15—H150.9800
C11—C121.366 (2)C18—H180.9300
C12—C131.430 (2)C19—H190.9300
C13—C141.4183 (17)C20—H200.9300
C14—C151.5115 (17)C21—H210.9300
C15—C161.5949 (17)C24—H240.9300
C16—C171.5038 (18)C25—H250.9300
C16—C281.509 (2)C26—H260.9300
C16—C291.5460 (19)C27—H270.9300
C17—C181.393 (2)C31—H310.9300
C17—C221.384 (2)C32—H320.9300
C18—C191.380 (2)C33—H330.9300
C19—C201.380 (3)C34—H340.9300
C20—C211.364 (3)C36—H36A0.9600
C21—C221.384 (2)C36—H36B0.9600
C23—C241.385 (2)C36—H36C0.9600
O2···C313.140 (2)C27···H152.8000
O3···C152.7559 (16)C27···H36Cv3.0300
O3···N12.7331 (15)C28···H122.8400
O3···C143.0474 (16)C29···H272.6100
O2···H312.5500C29···H182.7600
O3···H152.4400C29···H312.7800
N1···O32.7331 (15)C29···H22.8400
N1···C22.9236 (19)C30···H22.5100
N1···C273.336 (2)C31···H22.8100
N1···H22.3200C33···H5v2.7800
N1···H272.8400C34···H36A2.8200
C1···C183.582 (2)C34···H36B2.8100
C1···C303.4600 (19)C34···H19ix3.0200
C2···N12.9236 (19)C34···H5v2.8900
C2···C183.546 (2)C36···H342.6200
C2···C303.010 (2)C36···H24x3.0600
C2···C313.451 (2)H2···N12.3200
C2···C353.479 (2)H2···C152.8500
C5···C33i3.532 (3)H2···C292.8400
C8···C10ii3.448 (2)H2···C302.5100
C9···C11ii3.375 (2)H2···C312.8100
C9···C10ii3.409 (2)H2···H182.3800
C10···C8ii3.448 (2)H3···C24xi2.9200
C10···C9ii3.409 (2)H3···H24xi2.3400
C10···C10ii3.596 (2)H5···H72.4200
C10···C26i3.518 (3)H5···C5vii3.0900
C11···C9ii3.375 (2)H5···C33i2.7800
C12···C163.4978 (19)H5···C34i2.8900
C14···O33.0474 (16)H7···H52.4200
C14···C363.567 (3)H7···H92.4600
C14···C353.5551 (18)H9···H72.4600
C14···C183.368 (2)H9···C21ii2.9100
C15···O32.7559 (16)H10···H33xii2.4900
C16···C123.4978 (19)H12···C152.5100
C18···C143.368 (2)H12···C162.9100
C18···C31iii3.597 (2)H12···C232.9800
C18···C23.546 (2)H12···C282.8400
C18···C13.582 (2)H12···H152.1000
C19···C32iii3.567 (2)H15···O32.4400
C23···C24iv3.572 (2)H15···C122.5700
C23···C25iv3.384 (2)H15···C272.8000
C24···C23iv3.572 (2)H15···H122.1000
C24···C28iv3.553 (2)H18···C22.8300
C25···C23iv3.384 (2)H18···C292.7600
C26···C10v3.518 (3)H18···H22.3800
C27···N13.336 (2)H18···H31iii2.5800
C28···C24iv3.553 (2)H19···C34vi3.0200
C30···C23.010 (2)H24···H3viii2.3400
C30···C13.4600 (19)H24···C36xiii3.0600
C31···C23.451 (2)H24···H36Bxiii2.4200
C31···C18iii3.597 (2)H26···C9v3.0400
C31···O23.140 (2)H26···C10v2.7900
C32···C19iii3.567 (2)H26···C11v2.9300
C33···C5v3.532 (3)H27···N12.8400
C35···C143.5551 (18)H27···C153.0100
C35···C23.479 (2)H27···C292.6100
C36···C143.567 (3)H31···O22.5500
C2···H182.8300H31···C292.7800
C3···H34vi3.0100H31···C18iii2.8600
C3···H36Bvi3.0400H31···H18iii2.5800
C5···H5vii3.0900H32···C19iii2.9500
C9···H26i3.0400H33···H10xiv2.4900
C10···H26i2.7900H34···C362.6200
C11···H26i2.9300H34···H36A2.5800
C12···H152.5700H34···H36B2.3000
C15···H273.0100H34···C3ix3.0100
C15···H22.8500H36A···C342.8200
C15···H122.5100H36A···H342.5800
C16···H122.9100H36B···C342.8100
C18···H31iii2.8600H36B···H342.3000
C19···H32iii2.9500H36B···C3ix3.0400
C21···H9ii2.9100H36B···H24x2.4200
C23···H122.9800H36C···C27i3.0300
C24···H3viii2.9200
C22—O1—C23118.22 (12)N1—C30—C31119.75 (12)
C35—O3—C36117.53 (14)N1—C30—C35120.70 (12)
C15—N1—C2995.58 (10)C31—C30—C35119.44 (13)
C15—N1—C30131.90 (10)C30—C31—C32120.19 (15)
C29—N1—C30132.50 (11)C31—C32—C33120.02 (16)
C2—C1—C6116.22 (13)C32—C33—C34120.47 (17)
C2—C1—C14125.01 (12)C33—C34—C35120.11 (15)
C6—C1—C14118.76 (12)O3—C35—C30116.59 (12)
C1—C2—C3121.35 (15)O3—C35—C34123.67 (13)
C2—C3—C4121.33 (18)C30—C35—C34119.73 (13)
C3—C4—C5119.8 (2)C1—C2—H2119.00
C4—C5—C6121.7 (2)C3—C2—H2119.00
C1—C6—C5119.39 (15)C2—C3—H3119.00
C1—C6—C7120.04 (15)C4—C3—H3119.00
C5—C6—C7120.56 (16)C3—C4—H4120.00
C6—C7—C8121.94 (14)C5—C4—H4120.00
C7—C8—C9121.75 (13)C4—C5—H5119.00
C7—C8—C13118.98 (13)C6—C5—H5119.00
C9—C8—C13119.27 (14)C6—C7—H7119.00
C8—C9—C10121.64 (14)C8—C7—H7119.00
C9—C10—C11119.84 (16)C8—C9—H9119.00
C10—C11—C12121.18 (16)C10—C9—H9119.00
C11—C12—C13121.34 (13)C9—C10—H10120.00
C8—C13—C12116.73 (12)C11—C10—H10120.00
C8—C13—C14120.30 (12)C10—C11—H11119.00
C12—C13—C14122.97 (11)C12—C11—H11119.00
C1—C14—C13119.54 (11)C11—C12—H12119.00
C1—C14—C15125.24 (11)C13—C12—H12119.00
C13—C14—C15114.97 (11)N1—C15—H15109.00
N1—C15—C14120.22 (11)C14—C15—H15109.00
N1—C15—C1686.79 (8)C16—C15—H15109.00
C14—C15—C16121.78 (10)C17—C18—H18119.00
C15—C16—C17118.29 (10)C19—C18—H18119.00
C15—C16—C28111.83 (10)C18—C19—H19120.00
C15—C16—C2984.32 (9)C20—C19—H19120.00
C17—C16—C28111.21 (11)C19—C20—H20120.00
C17—C16—C29117.04 (11)C21—C20—H20120.00
C28—C16—C29111.69 (10)C20—C21—H21120.00
C16—C17—C18122.67 (13)C22—C21—H21120.00
C16—C17—C22120.45 (13)C23—C24—H24120.00
C18—C17—C22116.87 (13)C25—C24—H24120.00
C17—C18—C19121.44 (17)C24—C25—H25120.00
C18—C19—C20119.99 (19)C26—C25—H25120.00
C19—C20—C21119.81 (16)C25—C26—H26120.00
C20—C21—C22119.88 (17)C27—C26—H26120.00
O1—C22—C17122.63 (13)C26—C27—H27119.00
O1—C22—C21115.38 (15)C28—C27—H27119.00
C17—C22—C21121.99 (15)C30—C31—H31120.00
O1—C23—C24116.07 (14)C32—C31—H31120.00
O1—C23—C28122.39 (13)C31—C32—H32120.00
C24—C23—C28121.54 (14)C33—C32—H32120.00
C23—C24—C25120.09 (17)C32—C33—H33120.00
C24—C25—C26119.84 (18)C34—C33—H33120.00
C25—C26—C27119.86 (17)C33—C34—H34120.00
C26—C27—C28121.70 (15)C35—C34—H34120.00
C16—C28—C23120.78 (12)O3—C36—H36A109.00
C16—C28—C27122.24 (13)O3—C36—H36B109.00
C23—C28—C27116.97 (14)O3—C36—H36C109.00
O2—C29—N1132.46 (13)H36A—C36—H36B109.00
O2—C29—C16134.32 (13)H36A—C36—H36C110.00
N1—C29—C1693.16 (10)H36B—C36—H36C109.00
C23—O1—C22—C21164.09 (13)N1—C15—C16—C28108.45 (11)
C22—O1—C23—C24163.94 (14)C14—C15—C16—C173.56 (18)
C22—O1—C23—C2816.0 (2)N1—C15—C16—C292.66 (9)
C23—O1—C22—C1715.4 (2)C14—C15—C16—C28127.61 (12)
C36—O3—C35—C3431.5 (2)C14—C15—C16—C29121.28 (12)
C36—O3—C35—C30149.38 (16)C29—C16—C28—C2731.69 (17)
C29—N1—C30—C35164.50 (14)C15—C16—C29—O2179.64 (17)
C29—N1—C15—C163.02 (10)C15—C16—C28—C23117.93 (13)
C30—N1—C15—C1456.11 (18)C15—C16—C28—C2760.86 (16)
C29—N1—C30—C3119.3 (2)C28—C16—C17—C2217.30 (16)
C30—N1—C15—C16178.59 (13)C29—C16—C17—C1833.39 (18)
C15—N1—C30—C3517.7 (2)C29—C16—C17—C22147.33 (13)
C15—N1—C29—C163.11 (10)C15—C16—C17—C1865.15 (17)
C30—N1—C29—C16178.51 (13)C17—C16—C28—C2316.74 (17)
C29—N1—C15—C14122.28 (12)C17—C16—C28—C27164.47 (13)
C15—N1—C29—O2179.35 (17)C29—C16—C28—C23149.52 (13)
C15—N1—C30—C31158.49 (13)C28—C16—C17—C18163.42 (13)
C30—N1—C29—O21.0 (3)C15—C16—C17—C22114.14 (14)
C2—C1—C14—C13173.20 (13)C28—C16—C29—N1108.37 (11)
C6—C1—C14—C15166.21 (12)C17—C16—C29—O260.7 (2)
C14—C1—C6—C5173.86 (14)C17—C16—C29—N1121.83 (12)
C14—C1—C6—C75.2 (2)C15—C16—C29—N12.89 (10)
C2—C1—C6—C7175.67 (14)C28—C16—C29—O269.1 (2)
C2—C1—C6—C55.3 (2)C16—C17—C22—C21178.37 (13)
C6—C1—C14—C137.72 (19)C18—C17—C22—O1178.49 (13)
C14—C1—C2—C3173.76 (15)C16—C17—C18—C19178.29 (14)
C2—C1—C14—C1512.9 (2)C22—C17—C18—C191.0 (2)
C6—C1—C2—C35.3 (2)C16—C17—C22—O12.2 (2)
C1—C2—C3—C41.7 (3)C18—C17—C22—C211.0 (2)
C2—C3—C4—C52.2 (3)C17—C18—C19—C200.1 (3)
C3—C4—C5—C62.1 (3)C18—C19—C20—C211.0 (3)
C4—C5—C6—C11.8 (3)C19—C20—C21—C221.0 (2)
C4—C5—C6—C7179.22 (18)C20—C21—C22—O1179.54 (14)
C5—C6—C7—C8179.57 (16)C20—C21—C22—C170.1 (2)
C1—C6—C7—C80.6 (2)O1—C23—C28—C160.9 (2)
C6—C7—C8—C133.6 (2)C24—C23—C28—C16179.17 (14)
C6—C7—C8—C9177.04 (15)C24—C23—C28—C270.3 (2)
C7—C8—C13—C140.9 (2)C28—C23—C24—C250.1 (3)
C9—C8—C13—C120.06 (19)O1—C23—C24—C25179.92 (15)
C7—C8—C13—C12179.46 (13)O1—C23—C28—C27179.73 (13)
C13—C8—C9—C100.7 (2)C23—C24—C25—C260.0 (3)
C7—C8—C9—C10179.95 (16)C24—C25—C26—C270.1 (3)
C9—C8—C13—C14179.71 (13)C25—C26—C27—C280.3 (3)
C8—C9—C10—C110.7 (3)C26—C27—C28—C16179.23 (14)
C9—C10—C11—C120.1 (3)C26—C27—C28—C230.4 (2)
C10—C11—C12—C130.5 (2)N1—C30—C31—C32174.71 (14)
C11—C12—C13—C80.5 (2)N1—C30—C35—C34173.82 (13)
C11—C12—C13—C14179.15 (14)C35—C30—C31—C321.5 (2)
C12—C13—C14—C1510.64 (18)N1—C30—C35—O37.05 (19)
C8—C13—C14—C15169.73 (11)C31—C30—C35—C342.4 (2)
C12—C13—C14—C1174.82 (12)C31—C30—C35—O3176.78 (13)
C8—C13—C14—C14.80 (18)C30—C31—C32—C330.4 (2)
C1—C14—C15—C1696.93 (16)C31—C32—C33—C341.4 (3)
C13—C14—C15—N1164.56 (11)C32—C33—C34—C350.5 (3)
C13—C14—C15—C1688.90 (14)C33—C34—C35—C301.4 (2)
C1—C14—C15—N19.61 (19)C33—C34—C35—O3177.71 (15)
N1—C15—C16—C17120.38 (12)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x, y+1, z+1; (v) x, y+3/2, z+1/2; (vi) x+1, y1/2, z+1/2; (vii) x+1, y+1, z; (viii) x1, y, z; (ix) x+1, y+1/2, z+1/2; (x) x, y+1/2, z+1/2; (xi) x+1, y, z; (xii) x1, y+3/2, z1/2; (xiii) x, y1/2, z+1/2; (xiv) x+1, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N10.932.322.9236 (19)122
C31—H31···O20.932.553.140 (2)122
C5—H5···Cg1i0.932.923.597 (2)130
C26—H26···Cg2v0.932.883.7180 (19)151
Symmetry codes: (i) x, y+3/2, z1/2; (v) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC36H25NO3
Mr519.57
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)11.8496 (3), 15.3168 (5), 14.9883 (4)
β (°) 106.536 (2)
V3)2607.84 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.62 × 0.59 × 0.56
Data collection
DiffractometerSTOE IPDS-II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.950, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
32362, 5399, 4314
Rint0.054
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.106, 1.04
No. of reflections5399
No. of parameters363
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.16

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N10.932.322.9236 (19)122
C31—H31···O20.932.553.140 (2)122
C5—H5···Cg1i0.932.923.597 (2)130
C26—H26···Cg2ii0.932.883.7180 (19)151
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAkkurt, M., Jarrahpour, A., Ebrahimi, E., Gençaslan, M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o2466–o2467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Karaca, S., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2008). Acta Cryst. E64, o902–o903.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBanik, B. K., Becker, F. F. & Banik, I. (2004). Bioorg. Med. Chem. 12, 2523–2528.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGeorg, G. I. & Ravikumar, V. T. (1993). The Organic Chemistry of β-Lactams, edited by G. I. Georg, pp. 295–381. New York: VCH.  Google Scholar
First citationJarrahpour, A. & Khalili, D. (2007). Tetrahedron Lett. 48, 7140–7143.  Web of Science CrossRef CAS Google Scholar
First citationPalomo, C., Aizpurua, J. M., Ganboa, I. & Oiarbide, M. (2001). Synlett, pp. 1813–1826.  CrossRef Google Scholar
First citationPınar, S., Akkurt, M., Jarrahpour, A. A., Khalili, D. & Büyükgüngör, O. (2006). Acta Cryst. E62, o804–o806.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages o626-o627
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds