organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages o539-o540

2-[(4-tert-Butyl­anilino)(phen­yl)meth­yl]cyclo­hexa­none

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, cSyngene International Ltd, Biocon Park, plot No. 2 & 3, Bommasandra 4th Phase, Jigani Link Road, Bangalore 560 100, India, dDepartment of Printing, Manipal Institute of Technology, Manipal 576 104, India, and eDepartment of Chemistry, National Institute of Technology - Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 9 February 2009; accepted 11 February 2009; online 18 February 2009)

In the mol­ecule of the title compound, C23H29NO, the cyclo­hexa­none ring has been distorted from the standard chair conformation by the ketone group such that part of the ring is almost flat. The remaining [(4-tert-butyl­anilino)(phen­yl)meth­yl] portion of the mol­ecule is in an equatorial position on the cyclo­hexa­none ring. The dihedral angle between the two benzene rings is 81.52 (8)°. In the crystal packing, mol­ecules are linked by N—H⋯O hydrogen bonds into infinite one-dimensional chains along the a axis and these chains are stacked down the c axis. The crystal structure is further stabilized by weak C—H⋯O and C—H⋯π inter­actions.

Related literature

For values of bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For information on the Mannich reaction, see: Kobayashi & Ishitani (1999[Kobayashi, S. & Ishitani, H. (1999). Chem. Rev. 99, 1069-1094.]); Bohme & Haake (1976[Bohme, H. & Haake, M. (1976). Advances in Organic Chemistry, edited by E. C. Taylor, p. 107. New York: John Wiley and Sons.]). For background to the bioactivity and applications of beta-amino carbonyl compounds, see, for example: Arend et al. (1988[Arend, M., Westermanb, B. & Risch, N. (1988). Angew. Chem. 37, 1044-1070.]); Isloor, Sunil et al. (2009[Isloor, A. M., Sunil, D., Shetty, P. & Satyamoorthy, K. (2009). Eur. J. Med. Chem. Submitted.]); Isloor, Kalluraya et al. (2009[Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. Submitted.]); Jadhav et al. (2008[Jadhav, V. J., Kulkarni, M. V., Rasal, V. P., Biradar, S. S. & Vinay, M. D. (2008). Eur. J. Med. Chem. 43, 1721-1729.]); Kalluraya et al. (2001[Kalluraya, B., Isloor, A. M., Chimbalkar, R. & Shenoy, S. (2001). Indian J. Heterocycl. Chem. pp. 239-240.]). For puckering parameters, see: Cremer & Pople, (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller, see Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C23H29NO

  • Mr = 335.47

  • Triclinic, [P \overline 1]

  • a = 6.5315 (2) Å

  • b = 12.3946 (3) Å

  • c = 12.8853 (3) Å

  • α = 62.973 (1)°

  • β = 86.347 (2)°

  • γ = 85.103 (2)°

  • V = 925.46 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.52 × 0.41 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.953, Tmax = 0.992

  • 17722 measured reflections

  • 4449 independent reflections

  • 3584 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.124

  • S = 1.07

  • 4449 reflections

  • 233 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.89 (2) 2.35 (2) 3.2050 (16) 161.6 (19)
C9—H9A⋯O1 0.93 2.59 3.1146 (19) 116
C2—H2ACg1ii 0.97 2.60 3.4992 (19) 155
C23—H23CCg1iii 0.96 2.99 3.747 (2) 137
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y+1, -z+2. Cg1 is the centroid of the C14–C19 ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Mannich reactions are among the most important carbon-carbon bond forming reactions in organic synthesis (Kobayashi & Ishitani, 1999). They provide beta-amino carbonyl compounds, which are important synthetic intermediates for various pharmaceuticals and natural products (Arend et al., 1988). They exhibit wide variety of pharmaceutical properties such as anti cancer (Isloor, Sunil et al., 2009), analgesic (Isloor, Kalluraya et al., 2009), anti-inflammatory (Jadhav et al., 2008), antimicrobial (Kalluraya et al., 2001) activities. The increasing popularity of the Mannich reaction has been fueled by the ubiquitous nature of nitrogen containing compounds in drugs and natural products (Bohme & Haake, 1976). Prompted by the biological activity of these derivatives, we have synthesized the title compound (I) and report its structure here, Fig 1. The cyclohexanone ring has been distorted from the standard chair conformation by the ketone group such that the C2 C1 O1 C6 part of the ring is almost flat with puckering parameter Q = 0.5181 (16)Å, and θ = 159.23 (18)° and ϕ = 9.3 (5)° (Cremer & Pople, 1975). The [4-(tert-butyl)anilino](phenyl)methyl substituent group is equatorially attached to the ring at atom C6 with torsion angles C5–C6–C7–C8 = -57.80 (16)° and C5–C6–C7–N1 = 69.13 (15)°. The two benzene rings are nearly perpendicular to each other with a dihedral angle of 81.52 (8)° between them. The bond distances have normal values (Allen et al., 1987).

A weak intramolecular C9—H9A···O1 interaction generates an S(7) ring motif (Bernstein et al., 1995) (Table 1) and effects the solid state conformation of the molecule. In the crystal structure N—H···O hydrogen bonds (Table 1, Fig. 2) link the molecules into infinite one-dimensional chains along the a axis and these chains are stacked down the c axis. The crystal is further stabilized by weak C—H···O and C—H···π interactions (Table 1); Cg1 is the centroid of the C14–C19 ring (Table 1).

Related literature top

For values of bond lengths, see: Allen et al. (1987). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For information on the Mannich reaction, see: Kobayashi & Ishitani (1999); Bohme & Haake (1976). For background to the bioactivity and applications of beta-amino carbonyl compounds, see, for example: Arend et al. (1988); Isloor, Sunil et al. (2009); Isloor, Kalluraya et al. (2009); Jadhav et al. (2008); Kalluraya et al. (2001). For puckering parameters, see: Cremer & Pople, (1975). For the stability of the temperature controller, see: Cosier & Glazer (1986). Cg1 is the centroid of the C14–C19 ring.

Experimental top

The title compound was obtained by vigorously stirring a solution of cyclohexanone (0.5 g, 5.0 mmol), benzaldehyde (0.53 g, 5.0 mmol) and 4-tert-butylaniline (0.75 g, 5.0 mmol) in dry acetonitrile (5 ml). Trifluoro acetic acid (0.57 g, 5 mmol) was then added. The reaction mixture was stirred at room temperature for 2 h. After standing for 1 hr, the solvent was removed and the crude product was purified by column chromatography using ethyl acetate and petroleum ether (1:1 v:v) as eluants. The product was further recrystalized using 10 ml of hot ethanol. The yield was 1 g (58%), M.p 439–441 K.

Refinement top

The amine H atom was located in a difference map and refined isotropically. The remaining H atoms were placed in calculated positions with d(C—H) = 0.93 Å, Uiso=1.2Ueq(C) for aromatic, 0.98 Å, Uiso=1.2Ueq(C) for CH, 0.97 Å, Uiso=1.2Ueq(C) for CH2 and 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.72 Å from C8 and the deepest hole is located at 1.03 Å from C16.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The packing diagram of (I), viewed along the c axis, showing molecular chains along the a axis. Hydrogen bonds are shown as dashed lines.
2-[(4-tert-Butylanilino)(phenyl)methyl]cyclohexanone top
Crystal data top
C23H29NOZ = 2
Mr = 335.47F(000) = 364
Triclinic, P1Dx = 1.204 Mg m3
Hall symbol: -P 1Melting point = 439–441 K
a = 6.5315 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.3946 (3) ÅCell parameters from 4449 reflections
c = 12.8853 (3) Åθ = 1.8–28.0°
α = 62.973 (1)°µ = 0.07 mm1
β = 86.347 (2)°T = 100 K
γ = 85.103 (2)°Plate, colorless
V = 925.46 (4) Å30.52 × 0.41 × 0.11 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4449 independent reflections
Radiation source: fine-focus sealed tube3584 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8.33 pixels mm-1θmax = 28.0°, θmin = 1.8°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1616
Tmin = 0.953, Tmax = 0.992l = 1616
17722 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.607P]
where P = (Fo2 + 2Fc2)/3
4449 reflections(Δ/σ)max < 0.001
233 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C23H29NOγ = 85.103 (2)°
Mr = 335.47V = 925.46 (4) Å3
Triclinic, P1Z = 2
a = 6.5315 (2) ÅMo Kα radiation
b = 12.3946 (3) ŵ = 0.07 mm1
c = 12.8853 (3) ÅT = 100 K
α = 62.973 (1)°0.52 × 0.41 × 0.11 mm
β = 86.347 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4449 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3584 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.992Rint = 0.027
17722 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.39 e Å3
4449 reflectionsΔρmin = 0.23 e Å3
233 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.32798 (15)0.71893 (10)0.43723 (9)0.0200 (2)
N10.75282 (19)0.58289 (11)0.55557 (10)0.0157 (3)
C11.1976 (2)0.75037 (12)0.36390 (12)0.0147 (3)
C21.2523 (2)0.82454 (13)0.23594 (12)0.0183 (3)
H2A1.29740.76910.20370.022*
H2B1.36800.87140.22990.022*
C31.0809 (2)0.91152 (13)0.16072 (12)0.0176 (3)
H3A1.06220.98160.17590.021*
H3B1.11920.93960.07900.021*
C40.8804 (2)0.84862 (14)0.18722 (12)0.0189 (3)
H4A0.89680.78090.16840.023*
H4B0.77270.90510.13960.023*
C50.8193 (2)0.80271 (14)0.31607 (12)0.0194 (3)
H5A0.68750.76700.33080.023*
H5B0.80420.87070.33460.023*
C60.9799 (2)0.70785 (12)0.39536 (12)0.0146 (3)
H6A0.97810.63840.37850.018*
C70.9298 (2)0.65755 (12)0.52741 (12)0.0144 (3)
H7A1.04740.60320.56820.017*
C80.9016 (2)0.75555 (12)0.56920 (12)0.0153 (3)
C91.0660 (2)0.78409 (13)0.61390 (12)0.0183 (3)
H9A1.19300.74190.62000.022*
C101.0424 (3)0.87519 (14)0.64956 (13)0.0220 (3)
H10A1.15350.89410.67850.026*
C110.8531 (3)0.93747 (14)0.64179 (13)0.0233 (3)
H11A0.83770.99940.66410.028*
C120.6871 (2)0.90756 (14)0.60086 (13)0.0216 (3)
H12A0.55920.94800.59770.026*
C130.7104 (2)0.81741 (13)0.56449 (12)0.0184 (3)
H13A0.59800.79810.53680.022*
C140.6904 (2)0.51586 (12)0.67217 (12)0.0147 (3)
C150.4914 (2)0.47478 (13)0.69928 (12)0.0159 (3)
H15A0.40040.49530.63960.019*
C160.4279 (2)0.40402 (12)0.81375 (12)0.0165 (3)
H16A0.29450.37880.82880.020*
C170.5577 (2)0.36937 (12)0.90732 (12)0.0159 (3)
C180.7558 (2)0.41071 (13)0.87917 (12)0.0173 (3)
H18A0.84720.38920.93890.021*
C190.8215 (2)0.48285 (13)0.76503 (12)0.0172 (3)
H19A0.95410.50940.75030.021*
C200.4898 (2)0.28876 (13)1.03410 (12)0.0178 (3)
C210.5531 (3)0.15560 (14)1.06508 (14)0.0280 (4)
H21A0.48730.13271.01420.042*
H21B0.51210.10481.14440.042*
H21C0.69960.14611.05600.042*
C220.2558 (2)0.30252 (16)1.05089 (14)0.0277 (4)
H22A0.18890.27031.00780.042*
H22B0.21330.38691.02330.042*
H22C0.21910.25901.13210.042*
C230.5907 (3)0.32236 (15)1.11896 (13)0.0235 (3)
H23A0.73670.30551.11690.035*
H23B0.53700.27541.19650.035*
H23C0.56160.40721.09660.035*
H1N10.646 (3)0.6162 (18)0.5096 (17)0.030 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0126 (5)0.0257 (6)0.0188 (5)0.0004 (4)0.0006 (4)0.0076 (4)
N10.0128 (6)0.0171 (6)0.0142 (6)0.0028 (5)0.0003 (5)0.0043 (5)
C10.0119 (6)0.0148 (6)0.0168 (7)0.0009 (5)0.0008 (5)0.0072 (5)
C20.0135 (7)0.0216 (7)0.0163 (7)0.0015 (5)0.0028 (5)0.0059 (6)
C30.0182 (7)0.0177 (7)0.0140 (7)0.0012 (5)0.0004 (5)0.0048 (6)
C40.0169 (7)0.0221 (7)0.0150 (7)0.0011 (6)0.0028 (5)0.0058 (6)
C50.0121 (7)0.0243 (8)0.0161 (7)0.0004 (5)0.0000 (5)0.0044 (6)
C60.0121 (6)0.0158 (6)0.0147 (7)0.0012 (5)0.0003 (5)0.0057 (5)
C70.0110 (6)0.0150 (6)0.0140 (6)0.0008 (5)0.0001 (5)0.0039 (5)
C80.0159 (7)0.0151 (6)0.0117 (6)0.0024 (5)0.0017 (5)0.0032 (5)
C90.0155 (7)0.0205 (7)0.0153 (7)0.0028 (5)0.0007 (5)0.0048 (6)
C100.0262 (8)0.0234 (8)0.0158 (7)0.0079 (6)0.0007 (6)0.0074 (6)
C110.0362 (9)0.0175 (7)0.0152 (7)0.0017 (6)0.0016 (6)0.0067 (6)
C120.0236 (8)0.0206 (7)0.0161 (7)0.0040 (6)0.0006 (6)0.0054 (6)
C130.0162 (7)0.0207 (7)0.0151 (7)0.0008 (5)0.0001 (5)0.0056 (6)
C140.0142 (7)0.0125 (6)0.0156 (7)0.0002 (5)0.0012 (5)0.0051 (5)
C150.0137 (7)0.0160 (7)0.0163 (7)0.0005 (5)0.0025 (5)0.0058 (5)
C160.0126 (6)0.0156 (7)0.0199 (7)0.0018 (5)0.0014 (5)0.0068 (6)
C170.0160 (7)0.0138 (6)0.0157 (7)0.0006 (5)0.0021 (5)0.0054 (5)
C180.0148 (7)0.0189 (7)0.0162 (7)0.0010 (5)0.0027 (5)0.0063 (6)
C190.0116 (6)0.0193 (7)0.0187 (7)0.0016 (5)0.0006 (5)0.0070 (6)
C200.0168 (7)0.0176 (7)0.0150 (7)0.0005 (5)0.0018 (5)0.0042 (6)
C210.0387 (10)0.0179 (7)0.0216 (8)0.0027 (7)0.0058 (7)0.0046 (6)
C220.0184 (8)0.0376 (9)0.0187 (8)0.0029 (7)0.0047 (6)0.0059 (7)
C230.0262 (8)0.0249 (8)0.0168 (7)0.0020 (6)0.0009 (6)0.0072 (6)
Geometric parameters (Å, º) top
O1—C11.2172 (17)C11—C121.382 (2)
N1—C141.3996 (18)C11—H11A0.9300
N1—C71.4657 (17)C12—C131.389 (2)
N1—H1N10.89 (2)C12—H12A0.9300
C1—C21.5149 (19)C13—H13A0.9300
C1—C61.5244 (19)C14—C191.399 (2)
C2—C31.529 (2)C14—C151.4019 (19)
C2—H2A0.9700C15—C161.388 (2)
C2—H2B0.9700C15—H15A0.9300
C3—C41.521 (2)C16—C171.398 (2)
C3—H3A0.9700C16—H16A0.9300
C3—H3B0.9700C17—C181.397 (2)
C4—C51.5281 (19)C17—C201.5376 (19)
C4—H4A0.9700C18—C191.392 (2)
C4—H4B0.9700C18—H18A0.9300
C5—C61.537 (2)C19—H19A0.9300
C5—H5A0.9700C20—C231.535 (2)
C5—H5B0.9700C20—C221.535 (2)
C6—C71.5462 (18)C20—C211.536 (2)
C6—H6A0.9800C21—H21A0.9600
C7—C81.5307 (19)C21—H21B0.9600
C7—H7A0.9800C21—H21C0.9600
C8—C91.392 (2)C22—H22A0.9600
C8—C131.398 (2)C22—H22B0.9600
C9—C101.394 (2)C22—H22C0.9600
C9—H9A0.9300C23—H23A0.9600
C10—C111.384 (2)C23—H23B0.9600
C10—H10A0.9300C23—H23C0.9600
C14—N1—C7119.50 (12)C12—C11—C10119.94 (14)
C14—N1—H1N1111.8 (13)C12—C11—H11A120.0
C7—N1—H1N1115.8 (13)C10—C11—H11A120.0
O1—C1—C2120.57 (12)C11—C12—C13120.31 (14)
O1—C1—C6121.72 (12)C11—C12—H12A119.8
C2—C1—C6117.49 (12)C13—C12—H12A119.8
C1—C2—C3116.04 (12)C12—C13—C8120.49 (14)
C1—C2—H2A108.3C12—C13—H13A119.8
C3—C2—H2A108.3C8—C13—H13A119.8
C1—C2—H2B108.3C19—C14—N1122.84 (13)
C3—C2—H2B108.3C19—C14—C15117.33 (12)
H2A—C2—H2B107.4N1—C14—C15119.78 (13)
C4—C3—C2110.53 (12)C16—C15—C14121.08 (13)
C4—C3—H3A109.5C16—C15—H15A119.5
C2—C3—H3A109.5C14—C15—H15A119.5
C4—C3—H3B109.5C15—C16—C17122.24 (13)
C2—C3—H3B109.5C15—C16—H16A118.9
H3A—C3—H3B108.1C17—C16—H16A118.9
C3—C4—C5110.11 (12)C18—C17—C16116.14 (13)
C3—C4—H4A109.6C18—C17—C20121.38 (13)
C5—C4—H4A109.6C16—C17—C20122.47 (13)
C3—C4—H4B109.6C19—C18—C17122.45 (13)
C5—C4—H4B109.6C19—C18—H18A118.8
H4A—C4—H4B108.2C17—C18—H18A118.8
C4—C5—C6111.74 (12)C18—C19—C14120.75 (13)
C4—C5—H5A109.3C18—C19—H19A119.6
C6—C5—H5A109.3C14—C19—H19A119.6
C4—C5—H5B109.3C23—C20—C22107.70 (13)
C6—C5—H5B109.3C23—C20—C21108.66 (13)
H5A—C5—H5B107.9C22—C20—C21109.07 (13)
C1—C6—C5112.30 (11)C23—C20—C17111.26 (12)
C1—C6—C7112.15 (11)C22—C20—C17111.07 (12)
C5—C6—C7114.88 (11)C21—C20—C17109.02 (12)
C1—C6—H6A105.5C20—C21—H21A109.5
C5—C6—H6A105.5C20—C21—H21B109.5
C7—C6—H6A105.5H21A—C21—H21B109.5
N1—C7—C8113.40 (11)C20—C21—H21C109.5
N1—C7—C6108.22 (11)H21A—C21—H21C109.5
C8—C7—C6113.68 (11)H21B—C21—H21C109.5
N1—C7—H7A107.1C20—C22—H22A109.5
C8—C7—H7A107.1C20—C22—H22B109.5
C6—C7—H7A107.1H22A—C22—H22B109.5
C9—C8—C13118.57 (13)C20—C22—H22C109.5
C9—C8—C7120.52 (13)H22A—C22—H22C109.5
C13—C8—C7120.91 (13)H22B—C22—H22C109.5
C8—C9—C10120.75 (14)C20—C23—H23A109.5
C8—C9—H9A119.6C20—C23—H23B109.5
C10—C9—H9A119.6H23A—C23—H23B109.5
C11—C10—C9119.90 (14)C20—C23—H23C109.5
C11—C10—H10A120.1H23A—C23—H23C109.5
C9—C10—H10A120.1H23B—C23—H23C109.5
O1—C1—C2—C3149.78 (14)C9—C10—C11—C121.3 (2)
C6—C1—C2—C335.51 (18)C10—C11—C12—C131.7 (2)
C1—C2—C3—C445.58 (17)C11—C12—C13—C80.2 (2)
C2—C3—C4—C558.62 (16)C9—C8—C13—C121.7 (2)
C3—C4—C5—C662.20 (16)C7—C8—C13—C12178.96 (13)
O1—C1—C6—C5148.61 (14)C7—N1—C14—C1922.0 (2)
C2—C1—C6—C536.74 (17)C7—N1—C14—C15160.68 (12)
O1—C1—C6—C717.48 (18)C19—C14—C15—C160.1 (2)
C2—C1—C6—C7167.88 (12)N1—C14—C15—C16177.38 (13)
C4—C5—C6—C149.83 (16)C14—C15—C16—C170.5 (2)
C4—C5—C6—C7179.57 (12)C15—C16—C17—C180.3 (2)
C14—N1—C7—C859.87 (16)C15—C16—C17—C20178.69 (13)
C14—N1—C7—C6173.04 (12)C16—C17—C18—C190.4 (2)
C1—C6—C7—N1161.06 (11)C20—C17—C18—C19179.42 (13)
C5—C6—C7—N169.13 (15)C17—C18—C19—C141.0 (2)
C1—C6—C7—C872.02 (15)N1—C14—C19—C18176.59 (13)
C5—C6—C7—C857.80 (16)C15—C14—C19—C180.8 (2)
N1—C7—C8—C9141.87 (13)C18—C17—C20—C2334.25 (18)
C6—C7—C8—C993.95 (15)C16—C17—C20—C23146.77 (14)
N1—C7—C8—C1337.48 (17)C18—C17—C20—C22154.21 (14)
C6—C7—C8—C1386.69 (15)C16—C17—C20—C2226.80 (19)
C13—C8—C9—C102.1 (2)C18—C17—C20—C2185.57 (17)
C7—C8—C9—C10178.51 (12)C16—C17—C20—C2193.41 (17)
C8—C9—C10—C110.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.89 (2)2.35 (2)3.2050 (16)161.6 (19)
C9—H9A···O10.932.593.1146 (19)116
C2—H2A···Cg1ii0.972.603.4992 (19)155
C23—H23C···Cg1iii0.962.993.747 (2)137
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC23H29NO
Mr335.47
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.5315 (2), 12.3946 (3), 12.8853 (3)
α, β, γ (°)62.973 (1), 86.347 (2), 85.103 (2)
V3)925.46 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.52 × 0.41 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.953, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
17722, 4449, 3584
Rint0.027
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.124, 1.07
No. of reflections4449
No. of parameters233
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.23

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.89 (2)2.35 (2)3.2050 (16)161.6 (19)
C9—H9A···O10.932.593.1146 (19)116
C2—H2A···Cg1ii0.972.603.4992 (19)155
C23—H23C···Cg1iii0.962.993.747 (2)137
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+2.
 

Footnotes

Additional correspondence author, e-mail: suchada.c@psu.ac.th.

Acknowledgements

AMI is grateful to the Director, NITK, Surathkal, India, for providing research facilities. SR thanks Dr Gautam Das, Syngene International Ltd, Bangalore, India, for allocation of research resources. The authors also thank the Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationArend, M., Westermanb, B. & Risch, N. (1988). Angew. Chem. 37, 1044–1070.  CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBohme, H. & Haake, M. (1976). Advances in Organic Chemistry, edited by E. C. Taylor, p. 107. New York: John Wiley and Sons.  Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. Submitted.  Google Scholar
First citationIsloor, A. M., Sunil, D., Shetty, P. & Satyamoorthy, K. (2009). Eur. J. Med. Chem. Submitted.  Google Scholar
First citationJadhav, V. J., Kulkarni, M. V., Rasal, V. P., Biradar, S. S. & Vinay, M. D. (2008). Eur. J. Med. Chem. 43, 1721–1729.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKalluraya, B., Isloor, A. M., Chimbalkar, R. & Shenoy, S. (2001). Indian J. Heterocycl. Chem. pp. 239–240.  Google Scholar
First citationKobayashi, S. & Ishitani, H. (1999). Chem. Rev. 99, 1069–1094.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages o539-o540
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds