organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[6,8-Di­bromo-3-(4-hy­droxy­cyclo­hexyl)-1,2,3,4-tetra­hydro­quinazolin-2-yl]-6-meth­oxy­phenol

aRespiratory Department, Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China, bModern Medical Research Center, Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China, and cDepartment of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China
*Correspondence e-mail: wangzhigang_cz@163.com, yilinyang09@126.com

(Received 12 February 2009; accepted 13 February 2009; online 18 February 2009)

The title compound, C21H24Br2N2O3, was synthesized by the condensation reaction of 3-methoxy­salicylaldehyde with 4-(2-amino-3,5-dibromo­benzyl­amino)cyclo­hexa­nol in a methanol solution. The dihedral angle between the two benzene rings is 76.4 (3)°. The cyclo­hexyl ring adopts a chair configuration. There is an intra­molecular O—H⋯N hydrogen bond which affects the solid state conformation of the mol­ecule. The crystal structure is stabilized by inter­molecular O—H⋯O hydrogen bonds, forming chains running along the b axis.

Related literature

For details of the pharmaceutical uses of the closely related compound ambroxol, systematic name 4-(2-amino-3,5-di­bromo­benzyl­amino)cyclo­hexa­nol, see: Felix et al. (2008[Felix, F. S., Brett, C. M. A. & Angnes, L. (2008). Talanta, 76, 128-133.]); Gaida et al. (2005[Gaida, W., Klinder, K., Arndt, K. & Weiser, T. (2005). Neuropharmacology, 49, 1220-1227.]); Lee et al. (2004[Lee, H. J., Joung, S. K., Kim, Y. G., Yoo, J.-Y. & Han, S. B. (2004). Pharm. Res. 49, 93-98.]). For bond length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C21H24Br2N2O3

  • Mr = 512.24

  • Triclinic, [P \overline 1]

  • a = 8.695 (2) Å

  • b = 11.124 (3) Å

  • c = 12.090 (2) Å

  • α = 73.870 (3)°

  • β = 78.226 (3)°

  • γ = 67.031 (2)°

  • V = 1028.2 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.97 mm−1

  • T = 298 K

  • 0.30 × 0.30 × 0.30 mm

Data collection
  • Bruker SMART CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.382, Tmax = 0.382 (expected range = 0.304–0.304)

  • 8514 measured reflections

  • 4305 independent reflections

  • 3035 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.096

  • S = 1.02

  • 4305 reflections

  • 256 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N2 0.82 1.89 2.614 (3) 147
O1—H1⋯O3i 0.82 2.41 3.048 (4) 135
O1—H1⋯O2i 0.82 2.13 2.897 (4) 155
Symmetry code: (i) -x+1, -y+2, -z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ambroxol, 4-(2-amino-3,5-dibromobenzylamino)cyclohexanol, is an expectorant agent which leads to bronchial secretion due to its mucolytic properties (Felix et al., 2008; Gaida et al., 2005; Lee et al., 2004). In this paper, the crystal structure of the new title compound, (I), derived from the condensation reaction of 3-methoxysalicylaldehyde with 4-(2-amino-3,5-dibromobenzylamino)cyclohexanol in a methanol solution, is reported.

In (I), Fig. 1, the dihedral angle between the two benzene rings is 76.4 (3)°. The cyclohexyl ring adopts a chair configuration. All the bond lengths are within normal ranges (Allen et al., 1987). There is an intramolecular O2—H2···N2 hydrogen bond which affects the solid state conformation of the molecule. The crystal structure is stabilized by intermolecular O—H···O hydrogen bonds (Table 1), forming chains running along the b axis (Fig. 2).

Related literature top

For details of the pharmaceutical uses of the closely related compound ambroxol, systematic name 4-(2-amino-3,5-dibromobenzylamino)cyclohexanol, see: Felix et al. (2008); Gaida et al. (2005); Lee et al. (2004). For bond length data, see: Allen et al. (1987).

Experimental top

3-Methoxysalicylaldehyde (1.0 mol, 152.1 mg) and 4-(2-amino-3,5-dibromobenzylamino)cyclohexanol (1.0 mmol, 378.1 mg) were dissolved in a methanol solution (10 ml). The mixture was stirred at room temperature to give a clear colorless solution. Crystals of the title compound were formed by gradual evaporation of the solvent for a week at room temperature.

Refinement top

H atoms were constrained to ideal geometries, with C–H = 0.93–0.97 Å, O–H = 0.82 Å, and with Uiso(H) set to 1.2Ueq(C) and 1.5Ueq(O and C21).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) at the 30% probability level. The intramolecular O–H···N hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. Molecular packing of (I), viewed along the a axis. Intermolecular hydrogen bonds are shown as dashed lines.
(I) top
Crystal data top
C21H24Br2N2O3Z = 2
Mr = 512.24F(000) = 516
Triclinic, P1Dx = 1.655 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.695 (2) ÅCell parameters from 2079 reflections
b = 11.124 (3) Åθ = 2.3–24.6°
c = 12.090 (2) ŵ = 3.97 mm1
α = 73.870 (3)°T = 298 K
β = 78.226 (3)°Block, colorless
γ = 67.031 (2)°0.30 × 0.30 × 0.30 mm
V = 1028.2 (4) Å3
Data collection top
Bruker SMART CCD area detector
diffractometer
4305 independent reflections
Radiation source: fine-focus sealed tube3035 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1110
Tmin = 0.382, Tmax = 0.382k = 1414
8514 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0423P)2 + 0.0168P]
where P = (Fo2 + 2Fc2)/3
4305 reflections(Δ/σ)max = 0.001
256 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C21H24Br2N2O3γ = 67.031 (2)°
Mr = 512.24V = 1028.2 (4) Å3
Triclinic, P1Z = 2
a = 8.695 (2) ÅMo Kα radiation
b = 11.124 (3) ŵ = 3.97 mm1
c = 12.090 (2) ÅT = 298 K
α = 73.870 (3)°0.30 × 0.30 × 0.30 mm
β = 78.226 (3)°
Data collection top
Bruker SMART CCD area detector
diffractometer
4305 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3035 reflections with I > 2σ(I)
Tmin = 0.382, Tmax = 0.382Rint = 0.032
8514 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.02Δρmax = 0.51 e Å3
4305 reflectionsΔρmin = 0.41 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.17738 (5)0.24247 (4)0.32321 (4)0.04726 (14)
Br21.28346 (5)0.54977 (4)0.58131 (3)0.04402 (14)
O10.2331 (3)0.9422 (3)0.3052 (2)0.0418 (7)
H10.15810.98830.26350.063*
O20.9413 (3)0.8807 (3)0.1082 (2)0.0430 (7)
H20.89610.86920.04160.065*
O31.1435 (4)0.9116 (3)0.2940 (2)0.0510 (7)
N11.0518 (4)0.5182 (3)0.1542 (2)0.0305 (7)
H1A1.05270.44320.14690.037*
N20.9133 (3)0.7617 (3)0.1103 (2)0.0249 (6)
C11.1053 (4)0.6460 (3)0.2638 (3)0.0265 (8)
C21.1080 (4)0.5243 (3)0.2507 (3)0.0263 (7)
C31.1674 (4)0.4110 (3)0.3381 (3)0.0287 (8)
C41.2199 (4)0.4172 (3)0.4357 (3)0.0317 (8)
H41.25860.34050.49310.038*
C51.2143 (4)0.5386 (4)0.4468 (3)0.0302 (8)
C61.1591 (4)0.6523 (3)0.3620 (3)0.0306 (8)
H61.15760.73340.37020.037*
C71.0414 (4)0.7698 (3)0.1692 (3)0.0259 (7)
H7A0.99290.84810.20270.031*
H7B1.13490.77990.11280.031*
C80.7481 (4)0.7705 (3)0.1797 (3)0.0269 (8)
H80.75600.68120.22630.032*
C90.6954 (4)0.8659 (4)0.2601 (3)0.0377 (9)
H9A0.69770.95250.21560.045*
H9B0.77510.83240.31680.045*
C100.5210 (5)0.8823 (4)0.3222 (3)0.0410 (10)
H10A0.52130.79730.37220.049*
H10B0.49080.94640.37050.049*
C110.3920 (4)0.9293 (3)0.2392 (3)0.0322 (8)
H110.38801.01750.19180.039*
C120.4406 (4)0.8330 (4)0.1607 (3)0.0414 (10)
H12A0.36000.86620.10450.050*
H12B0.43800.74680.20620.050*
C130.6155 (4)0.8160 (4)0.0976 (3)0.0378 (9)
H13A0.64520.75090.05040.045*
H13B0.61430.90060.04630.045*
C140.9912 (4)0.6381 (3)0.0655 (3)0.0255 (7)
H140.90300.62890.03290.031*
C151.1251 (4)0.6565 (4)0.0355 (3)0.0296 (8)
C161.0875 (4)0.7752 (4)0.1185 (3)0.0298 (8)
C171.1986 (5)0.7917 (4)0.2178 (3)0.0367 (9)
C181.3514 (5)0.6900 (5)0.2301 (3)0.0454 (11)
H181.42740.70070.29510.055*
C191.3921 (5)0.5718 (4)0.1457 (4)0.0476 (11)
H191.49540.50380.15410.057*
C201.2793 (4)0.5554 (4)0.0496 (3)0.0368 (9)
H201.30680.47590.00630.044*
C211.2282 (7)0.9219 (5)0.4076 (3)0.0797 (17)
H21A1.34180.91320.40480.120*
H21B1.17151.00740.45490.120*
H21C1.22880.85210.44000.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0577 (3)0.0246 (2)0.0575 (3)0.00942 (19)0.0134 (2)0.00831 (19)
Br20.0490 (3)0.0547 (3)0.0320 (2)0.0205 (2)0.01256 (18)0.00628 (18)
O10.0277 (14)0.0408 (16)0.0439 (16)0.0053 (13)0.0025 (12)0.0038 (13)
O20.0370 (16)0.0440 (16)0.0302 (14)0.0040 (13)0.0040 (12)0.0011 (12)
O30.0602 (19)0.0570 (18)0.0303 (15)0.0259 (16)0.0092 (13)0.0038 (14)
N10.0405 (18)0.0227 (15)0.0294 (16)0.0106 (14)0.0055 (14)0.0073 (13)
N20.0216 (15)0.0262 (15)0.0263 (15)0.0077 (12)0.0019 (12)0.0068 (12)
C10.0208 (18)0.0288 (19)0.0291 (18)0.0088 (15)0.0031 (15)0.0048 (15)
C20.0186 (18)0.0276 (18)0.0313 (19)0.0066 (15)0.0006 (14)0.0094 (15)
C30.028 (2)0.0219 (18)0.036 (2)0.0074 (16)0.0032 (16)0.0082 (16)
C40.027 (2)0.029 (2)0.031 (2)0.0038 (17)0.0074 (16)0.0005 (16)
C50.0239 (19)0.039 (2)0.0297 (19)0.0106 (17)0.0051 (15)0.0097 (17)
C60.0249 (19)0.032 (2)0.037 (2)0.0127 (16)0.0005 (16)0.0098 (17)
C70.0232 (18)0.0268 (18)0.0297 (18)0.0096 (15)0.0042 (15)0.0073 (15)
C80.0257 (19)0.0221 (17)0.0311 (19)0.0081 (15)0.0016 (15)0.0047 (15)
C90.030 (2)0.048 (2)0.035 (2)0.0078 (18)0.0039 (17)0.0168 (18)
C100.036 (2)0.048 (2)0.032 (2)0.0031 (19)0.0032 (18)0.0155 (18)
C110.028 (2)0.0266 (19)0.036 (2)0.0076 (16)0.0033 (16)0.0049 (16)
C120.027 (2)0.050 (2)0.050 (2)0.0111 (19)0.0040 (18)0.018 (2)
C130.027 (2)0.054 (3)0.039 (2)0.0119 (19)0.0026 (17)0.0247 (19)
C140.0221 (18)0.0295 (19)0.0270 (18)0.0080 (15)0.0046 (14)0.0098 (15)
C150.027 (2)0.039 (2)0.0253 (18)0.0134 (17)0.0032 (15)0.0096 (16)
C160.025 (2)0.037 (2)0.0259 (18)0.0096 (17)0.0037 (15)0.0072 (16)
C170.038 (2)0.049 (2)0.028 (2)0.020 (2)0.0007 (17)0.0109 (18)
C180.035 (2)0.073 (3)0.037 (2)0.026 (2)0.0066 (19)0.024 (2)
C190.026 (2)0.062 (3)0.054 (3)0.003 (2)0.001 (2)0.032 (2)
C200.026 (2)0.042 (2)0.041 (2)0.0053 (18)0.0057 (17)0.0149 (18)
C210.131 (5)0.086 (4)0.029 (2)0.063 (4)0.027 (3)0.013 (2)
Geometric parameters (Å, º) top
Br1—C31.900 (3)C9—C101.514 (5)
Br2—C51.895 (3)C9—H9A0.9700
O1—C111.423 (4)C9—H9B0.9700
O1—H10.8200C10—C111.499 (5)
O2—C161.364 (4)C10—H10A0.9700
O2—H20.8200C10—H10B0.9700
O3—C171.363 (4)C11—C121.509 (5)
O3—C211.416 (4)C11—H110.9800
N1—C21.381 (4)C12—C131.520 (5)
N1—C141.448 (4)C12—H12A0.9700
N1—H1A0.8600C12—H12B0.9700
N2—C141.476 (4)C13—H13A0.9700
N2—C71.482 (4)C13—H13B0.9700
N2—C81.490 (4)C14—C151.535 (4)
C1—C61.389 (4)C14—H140.9800
C1—C21.396 (4)C15—C161.385 (5)
C1—C71.517 (4)C15—C201.388 (5)
C2—C31.395 (5)C16—C171.397 (5)
C3—C41.376 (4)C17—C181.381 (5)
C4—C51.376 (5)C18—C191.391 (6)
C4—H40.9300C18—H180.9300
C5—C61.374 (5)C19—C201.379 (5)
C6—H60.9300C19—H190.9300
C7—H7A0.9700C20—H200.9300
C7—H7B0.9700C21—H21A0.9600
C8—C91.513 (5)C21—H21B0.9600
C8—C131.518 (4)C21—H21C0.9600
C8—H80.9800
C11—O1—H1109.5H10A—C10—H10B107.9
C16—O2—H2109.5O1—C11—C10107.9 (3)
C17—O3—C21117.3 (3)O1—C11—C12112.8 (3)
C2—N1—C14120.0 (3)C10—C11—C12109.8 (3)
C2—N1—H1A120.0O1—C11—H11108.8
C14—N1—H1A120.0C10—C11—H11108.8
C14—N2—C7107.0 (2)C12—C11—H11108.8
C14—N2—C8112.1 (2)C11—C12—C13110.9 (3)
C7—N2—C8116.3 (2)C11—C12—H12A109.5
C6—C1—C2120.2 (3)C13—C12—H12A109.5
C6—C1—C7121.4 (3)C11—C12—H12B109.5
C2—C1—C7118.4 (3)C13—C12—H12B109.5
N1—C2—C3121.7 (3)H12A—C12—H12B108.1
N1—C2—C1120.4 (3)C8—C13—C12112.7 (3)
C3—C2—C1118.0 (3)C8—C13—H13A109.1
C4—C3—C2121.9 (3)C12—C13—H13A109.1
C4—C3—Br1118.5 (3)C8—C13—H13B109.1
C2—C3—Br1119.6 (3)C12—C13—H13B109.1
C5—C4—C3118.9 (3)H13A—C13—H13B107.8
C5—C4—H4120.6N1—C14—N2113.6 (3)
C3—C4—H4120.6N1—C14—C15113.8 (3)
C6—C5—C4121.1 (3)N2—C14—C15109.0 (3)
C6—C5—Br2119.3 (3)N1—C14—H14106.7
C4—C5—Br2119.6 (3)N2—C14—H14106.7
C5—C6—C1119.9 (3)C15—C14—H14106.7
C5—C6—H6120.0C16—C15—C20118.9 (3)
C1—C6—H6120.0C16—C15—C14118.9 (3)
N2—C7—C1111.6 (3)C20—C15—C14122.1 (3)
N2—C7—H7A109.3O2—C16—C15122.2 (3)
C1—C7—H7A109.3O2—C16—C17116.8 (3)
N2—C7—H7B109.3C15—C16—C17121.0 (3)
C1—C7—H7B109.3O3—C17—C18126.0 (3)
H7A—C7—H7B108.0O3—C17—C16114.9 (3)
N2—C8—C9112.9 (3)C18—C17—C16119.1 (4)
N2—C8—C13108.8 (3)C17—C18—C19120.2 (4)
C9—C8—C13109.3 (3)C17—C18—H18119.9
N2—C8—H8108.6C19—C18—H18119.9
C9—C8—H8108.6C20—C19—C18120.1 (4)
C13—C8—H8108.6C20—C19—H19120.0
C8—C9—C10112.0 (3)C18—C19—H19120.0
C8—C9—H9A109.2C19—C20—C15120.6 (4)
C10—C9—H9A109.2C19—C20—H20119.7
C8—C9—H9B109.2C15—C20—H20119.7
C10—C9—H9B109.2O3—C21—H21A109.5
H9A—C9—H9B107.9O3—C21—H21B109.5
C11—C10—C9112.0 (3)H21A—C21—H21B109.5
C11—C10—H10A109.2O3—C21—H21C109.5
C9—C10—H10A109.2H21A—C21—H21C109.5
C11—C10—H10B109.2H21B—C21—H21C109.5
C9—C10—H10B109.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N20.821.892.614 (3)147
O1—H1···O3i0.822.413.048 (4)135
O1—H1···O2i0.822.132.897 (4)155
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC21H24Br2N2O3
Mr512.24
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.695 (2), 11.124 (3), 12.090 (2)
α, β, γ (°)73.870 (3), 78.226 (3), 67.031 (2)
V3)1028.2 (4)
Z2
Radiation typeMo Kα
µ (mm1)3.97
Crystal size (mm)0.30 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.382, 0.382
No. of measured, independent and
observed [I > 2σ(I)] reflections
8514, 4305, 3035
Rint0.032
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.096, 1.02
No. of reflections4305
No. of parameters256
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.41

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N20.821.892.614 (3)146.5
O1—H1···O3i0.822.413.048 (4)135.3
O1—H1···O2i0.822.132.897 (4)154.6
Symmetry code: (i) x+1, y+2, z.
 

Acknowledgements

Financial support from the Third Affiliated Hospital of Soochow University is acknowledged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFelix, F. S., Brett, C. M. A. & Angnes, L. (2008). Talanta, 76, 128–133.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGaida, W., Klinder, K., Arndt, K. & Weiser, T. (2005). Neuropharmacology, 49, 1220–1227.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLee, H. J., Joung, S. K., Kim, Y. G., Yoo, J.-Y. & Han, S. B. (2004). Pharm. Res. 49, 93–98.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds