metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-hy­droxy­imino­methyl-6-meth­oxy­phenolato-κ2O1,N)nickel(II)

aDepartment of Chemistry, Guangxi Normal University, Guilin 541000, Guangxi, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 18 February 2009; accepted 19 February 2009; online 25 February 2009)

The Ni atom in the title compound, [Ni(C8H8NO3)2], lies on a center of inversion in a square-planar coordination enviroment. The hydroxyl group of one anion forms a short hydrogen bond to the metal-coordinated O atom of the other anion.

Related literature

For the structure of o-vanillin oxime, see: Xu et al. (2004[Xu, T., Li, L.-Z. & Ji, H.-W. (2004). Hecheng Huaxue, 12, 22-24.]). For the structure of bis­(salicylaldoximato)nickel, see: Srivastava et al. (1967[Srivastava, R. C., Lingafelter, E. C. & Jain, P. C. (1967). Acta Cryst. 22, 922-923.]). The title compound is expected to form complexes with nitro­gen-donor ligands as bis­(salicylaldoxinato)nickel forms such adducts; see, for example, Hultgren et al. (2001[Hultgren, V. M., Beddoes, R. V., Collison, D., Helliwell, M., Atkinson, I. M., Garner, C. D., Lindoy, L. F. & Tasker, P. A. (2001). Chem. Commun. pp. 573-574.]); Lalia-Kantouri et al. (1999[Lalia-Kantouri, M., Hatzidimitriou, A. & Uddin, M. (1999). Polyhedron, 26, 3441-3450.]); Ma et al. (2007a[Ma, Y., Zhang, W., Ou-Yang, Y., Yoshimura, K., Liao, D. Z., Jiang, Z.-H. & Yan, S.-P. (2007a). J. Mol. Struct. 833, 98-101.],b[Ma, Y., Zhang, W., Xu, G.-F., Yoshimura, K. & Liao, D.-Z. (2007b). Z. Anorg. Allg. Chem. 633, 657-660.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C8H8NO3)2]

  • Mr = 391.02

  • Monoclinic, P 21 /n

  • a = 8.3464 (8) Å

  • b = 4.8596 (4) Å

  • c = 18.735 (2) Å

  • β = 95.376 (2)°

  • V = 756.5 (1) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.32 mm−1

  • T = 173 K

  • 0.48 × 0.16 × 0.15 mm

Data collection
  • Bruker APEX2 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.570, Tmax = 0.826

  • 3461 measured reflections

  • 1405 independent reflections

  • 1178 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.105

  • S = 1.13

  • 1405 reflections

  • 117 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O1 1.827 (2)
Ni1—N1 1.866 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1i 0.84 1.86 2.492 (3) 131
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For the structure of o-vanillin oxime, see: Xu et al. (2004). For the structure of bis(salicylaldoximato)nickel, see: Srivastava et al. (1967). The title compound is expected to form complexes with nitrogen-donor ligands as bis(salicylaldoxinato)nickel forms such adducts; see, for example, Hultgren et al. (2001); Lalia-Kantouri et al. (1999); Ma et al. (2007a,b).

Experimental top

Nickel perchlorate hexahydrate (0.36 g, 1 mmol), 3-methoxysalicylaldoxime (0.17 g, 1 mmol) and DMF (8 ml) were placed in a 15 ml Teflon-lined autoclave. The autoclave was heated at 353 K for 3 days. The autoclave was cooled over a period of 8 h at a rate of 10 K per hour. Green crystals were collected by filtration, washed with methanol, and dried in air; yield 30% based on Ni.

Refinement top

Carbon-bound H atoms were placed at calculated positions (C–H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5 times Ueq(C).

The crystal was original measured in the triclinic setting; the raw data when processed for absorption effects in the correct monoclinic setting had somewhat fewer reflections.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of Ni(C8H8NO3)2. Displacement ellipsoids are drawn at the 70% probability level, and H atoms as spheres of arbitrary radius. The dashed lines denote hydrogen bonds.
Bis(2-hydroxyiminomethyl-6-methoxyphenolato- κ2O1,N)nickel(II) top
Crystal data top
[Ni(C8H8NO3)2]F(000) = 404
Mr = 391.02Dx = 1.717 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1702 reflections
a = 8.3464 (8) Åθ = 2.6–26.0°
b = 4.8596 (4) ŵ = 1.32 mm1
c = 18.735 (2) ÅT = 173 K
β = 95.376 (2)°Prism, green
V = 756.5 (1) Å30.48 × 0.16 × 0.15 mm
Z = 2
Data collection top
Bruker APEX2
diffractometer
1405 independent reflections
Radiation source: fine-focus sealed tube1178 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 810
Tmin = 0.570, Tmax = 0.826k = 54
3461 measured reflectionsl = 1423
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0656P)2 + 0.2378P]
where P = (Fo2 + 2Fc2)/3
1405 reflections(Δ/σ)max = 0.001
117 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Ni(C8H8NO3)2]V = 756.5 (1) Å3
Mr = 391.02Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.3464 (8) ŵ = 1.32 mm1
b = 4.8596 (4) ÅT = 173 K
c = 18.735 (2) Å0.48 × 0.16 × 0.15 mm
β = 95.376 (2)°
Data collection top
Bruker APEX2
diffractometer
1405 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1178 reflections with I > 2σ(I)
Tmin = 0.570, Tmax = 0.826Rint = 0.021
3461 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.13Δρmax = 0.37 e Å3
1405 reflectionsΔρmin = 0.67 e Å3
117 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.50000.0169 (2)
O10.5102 (2)0.2294 (4)0.43290 (9)0.0214 (4)
O20.5912 (2)0.1173 (5)0.33768 (9)0.0262 (5)
O30.2047 (2)0.6111 (5)0.55486 (10)0.0257 (5)
H30.27030.72760.57350.039*
N10.2806 (3)0.4473 (5)0.50729 (11)0.0192 (5)
C10.3919 (3)0.0737 (6)0.40274 (13)0.0210 (6)
C20.4326 (3)0.1201 (6)0.35041 (12)0.0207 (6)
C30.3162 (3)0.2898 (6)0.31716 (13)0.0247 (6)
H3A0.34430.41960.28250.030*
C40.1567 (3)0.2720 (6)0.33415 (13)0.0249 (6)
H40.07730.38960.31090.030*
C50.1144 (3)0.0863 (6)0.38401 (13)0.0227 (6)
H50.00570.07480.39490.027*
C60.2328 (3)0.0897 (6)0.41955 (13)0.0201 (6)
C70.1836 (3)0.2781 (6)0.47199 (12)0.0212 (6)
H70.07370.27880.48140.025*
C80.6428 (4)0.3281 (6)0.29197 (14)0.0280 (7)
H8A0.75990.31880.29120.042*
H8B0.59100.30190.24330.042*
H8C0.61280.50840.31000.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0126 (3)0.0189 (3)0.0194 (3)0.00116 (19)0.00209 (17)0.00161 (17)
O10.0155 (10)0.0228 (11)0.0263 (8)0.0005 (8)0.0032 (7)0.0067 (7)
O20.0226 (11)0.0263 (12)0.0304 (10)0.0010 (9)0.0063 (8)0.0080 (9)
O30.0148 (10)0.0342 (13)0.0288 (9)0.0006 (9)0.0055 (7)0.0106 (9)
N10.0151 (12)0.0226 (14)0.0201 (10)0.0038 (9)0.0021 (8)0.0004 (8)
C10.0201 (14)0.0205 (15)0.0220 (12)0.0015 (11)0.0004 (10)0.0023 (10)
C20.0205 (14)0.0220 (15)0.0197 (11)0.0016 (12)0.0021 (9)0.0038 (10)
C30.0293 (16)0.0220 (16)0.0225 (11)0.0004 (12)0.0016 (10)0.0021 (11)
C40.0235 (15)0.0253 (17)0.0248 (12)0.0053 (12)0.0039 (10)0.0023 (11)
C50.0186 (14)0.0259 (16)0.0235 (12)0.0039 (12)0.0011 (10)0.0040 (11)
C60.0190 (14)0.0199 (14)0.0210 (11)0.0014 (11)0.0001 (10)0.0024 (10)
C70.0140 (13)0.0253 (15)0.0242 (12)0.0014 (11)0.0006 (9)0.0019 (11)
C80.0287 (16)0.0283 (18)0.0278 (13)0.0033 (12)0.0065 (11)0.0041 (11)
Geometric parameters (Å, º) top
Ni1—O11.827 (2)C2—C31.378 (4)
Ni1—O1i1.827 (2)C3—C41.400 (4)
Ni1—N11.866 (2)C3—H3A0.9500
Ni1—N1i1.866 (2)C4—C51.369 (4)
O1—C11.328 (3)C4—H40.9500
O2—C21.367 (3)C5—C61.424 (4)
O2—C81.427 (3)C5—H50.9500
O3—N11.391 (3)C6—C71.431 (4)
O3—H30.8400C7—H70.9500
N1—C71.292 (3)C8—H8A0.9800
C1—C61.395 (4)C8—H8B0.9800
C1—C21.423 (4)C8—H8C0.9800
O1—Ni1—O1i180.00 (7)C4—C3—H3A119.8
O1—Ni1—N193.50 (9)C5—C4—C3120.5 (3)
O1i—Ni1—N186.50 (9)C5—C4—H4119.7
O1—Ni1—N1i86.50 (9)C3—C4—H4119.7
O1i—Ni1—N1i93.50 (9)C4—C5—C6120.2 (3)
N1—Ni1—N1i180.00 (12)C4—C5—H5119.9
C1—O1—Ni1128.47 (17)C6—C5—H5119.9
C2—O2—C8116.7 (2)C1—C6—C5119.7 (3)
N1—O3—H3109.5C1—C6—C7122.1 (3)
C7—N1—O3113.0 (2)C5—C6—C7118.3 (2)
C7—N1—Ni1128.46 (19)N1—C7—C6123.5 (2)
O3—N1—Ni1118.51 (16)N1—C7—H7118.2
O1—C1—C6123.9 (2)C6—C7—H7118.2
O1—C1—C2117.0 (2)O2—C8—H8A109.5
C6—C1—C2119.1 (3)O2—C8—H8B109.5
O2—C2—C3125.5 (2)H8A—C8—H8B109.5
O2—C2—C1114.3 (2)O2—C8—H8C109.5
C3—C2—C1120.2 (2)H8A—C8—H8C109.5
C2—C3—C4120.4 (3)H8B—C8—H8C109.5
C2—C3—H3A119.8
N1—Ni1—O1—C12.2 (2)O2—C2—C3—C4179.3 (2)
N1i—Ni1—O1—C1177.8 (2)C1—C2—C3—C40.4 (4)
O1—Ni1—N1—C72.1 (2)C2—C3—C4—C50.1 (4)
O1i—Ni1—N1—C7177.9 (2)C3—C4—C5—C60.4 (4)
O1—Ni1—N1—O3179.66 (18)O1—C1—C6—C5179.9 (2)
O1i—Ni1—N1—O30.34 (18)C2—C1—C6—C50.3 (4)
Ni1—O1—C1—C61.4 (4)O1—C1—C6—C70.3 (4)
Ni1—O1—C1—C2178.79 (17)C2—C1—C6—C7179.5 (2)
C8—O2—C2—C37.2 (4)C4—C5—C6—C10.6 (4)
C8—O2—C2—C1173.0 (2)C4—C5—C6—C7179.2 (2)
O1—C1—C2—O20.6 (3)O3—N1—C7—C6179.5 (2)
C6—C1—C2—O2179.6 (2)Ni1—N1—C7—C61.3 (4)
O1—C1—C2—C3179.6 (2)C1—C6—C7—N10.4 (4)
C6—C1—C2—C30.2 (4)C5—C6—C7—N1179.8 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.841.862.492 (3)131
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C8H8NO3)2]
Mr391.02
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)8.3464 (8), 4.8596 (4), 18.735 (2)
β (°) 95.376 (2)
V3)756.5 (1)
Z2
Radiation typeMo Kα
µ (mm1)1.32
Crystal size (mm)0.48 × 0.16 × 0.15
Data collection
DiffractometerBruker APEX2
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.570, 0.826
No. of measured, independent and
observed [I > 2σ(I)] reflections
3461, 1405, 1178
Rint0.021
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.105, 1.13
No. of reflections1405
No. of parameters117
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.67

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Selected bond lengths (Å) top
Ni1—O11.827 (2)Ni1—N11.866 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.841.862.492 (3)131
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We thank the Natural Science Foundation of Guangxi, Guangxi Normal University and the University of Malaya for support.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHultgren, V. M., Beddoes, R. V., Collison, D., Helliwell, M., Atkinson, I. M., Garner, C. D., Lindoy, L. F. & Tasker, P. A. (2001). Chem. Commun. pp. 573–574.  Google Scholar
First citationLalia-Kantouri, M., Hatzidimitriou, A. & Uddin, M. (1999). Polyhedron, 26, 3441–3450.  Web of Science CSD CrossRef Google Scholar
First citationMa, Y., Zhang, W., Ou-Yang, Y., Yoshimura, K., Liao, D. Z., Jiang, Z.-H. & Yan, S.-P. (2007a). J. Mol. Struct. 833, 98–101.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Y., Zhang, W., Xu, G.-F., Yoshimura, K. & Liao, D.-Z. (2007b). Z. Anorg. Allg. Chem. 633, 657–660.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrivastava, R. C., Lingafelter, E. C. & Jain, P. C. (1967). Acta Cryst. 22, 922–923.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationXu, T., Li, L.-Z. & Ji, H.-W. (2004). Hecheng Huaxue, 12, 22–24.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds