organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl-2,4,6-tri­phenyl-4H-thio­pyran

aInstitute of Chemical Industries, Iranian Research Organization for Science and Technology, PO Box 15815-358, Tehran, Iran, bDepartment of Chemistry, College of Science, University of Tehran, PO Box 13145-143, Tehran, Iran, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 18 February 2009; accepted 19 February 2009; online 25 February 2009)

The six-membered thio­pyran ring in the title compound, C24H20S, adopts a flattened boat conformation, with the S atom displaced by 0.273 (2) Å and the 3-methyl­ene C atom by 0.294 (3) Å from the plane of the other four sp2-hydridized C atoms. The methyl group on the methyl­ene carbon lies in a axial position with the phenyl equatorial.

Related literature

2,4,4,6-Tetraaryl- or 4-alkyl-2,4,6-triaryl-4H-thio­pyrans undergo UV-induced isomerization to form aryl-migrated 2H-thio­pyrans; for a discussion of the photoisomerization mechanism, see: Pirelahi et al. (2004[Pirelahi, H., Atarodiekashani, A., Seyyedmoossavi, S. & Daryanavardedargahani, H. (2004). Monatsh. Chem. 135, 973-978.]); Pirelahi & Rahmani (1997[Pirelahi, H. & Rahmani, H. (1997). J. Photochem. Photobiol. A, 111, 15-21.]). 4-Methyl-2,4,6-triphenyl-4H-thio­pyran does not react in the solid state, but in solution is converted to 4-methyl-2,3,6-triphenyl-2H-thio­pyran; see: Mori & Maeda (1991[Mori, Y. & Maeda, K. (1991). J. Chem. Soc. Perkin Trans. 2, pp. 2061-2066.]). For the synthesis, see: Suld & Price (1962[Suld, G. & Price, C. C. (1962). J. Am. Chem. Soc. 84, 2090-2094.]).

[Scheme 1]

Experimental

Crystal data
  • C24H20S

  • Mr = 340.46

  • Monoclinic, C c

  • a = 9.8737 (2) Å

  • b = 22.5282 (4) Å

  • c = 9.2288 (2) Å

  • β = 118.987 (1)°

  • V = 1795.67 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 115 K

  • 0.35 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.917, Tmax = 0.982

  • 8464 measured reflections

  • 3883 independent reflections

  • 3698 reflections with I > σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.072

  • S = 1.03

  • 3883 reflections

  • 227 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1825 Friedel pairs

  • Flack parameter: 0.00 (5)

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

2,4,4,6-Tetraaryl- or 4-alkyl-2,4,6-triaryl-4H-thiopyrans undergo UV-induced isomerization to form aryl-migrated 2H-thiopyrans; for a discussion of the photoisomerization mechanism, see: Pirelahi et al. (2004); Pirelahi & Rahmani (1997). 4-Methyl-2,4,6-triphenyl-4H-thiopyran does not react in the solid state, but in solution is converted to 4-methyl-2,3,6-triphenyl-2H-thiopyran; see: Mori & Maeda (1991). For the synthesis, see: Suld & Price (1962).

Experimental top

The compound was synthesized by the reaction of methyl magnesium bromide and 2,4,6-triphenylthiopyrylium perchlorate in dry ether under an argon atmosphere according to a reported method (Suld & Price, 1962). The product was isolated by TLC on neutral alumina (petroleum ether 40–60 °C) and purified by recrystalization from ethanol.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellisoid plot (Barbour, 2001) of C24H20S; probability levels are set at 70% and H-atoms are drawn as spheres of arbitrary radius.
4-Methyl-2,4,6-triphenyl-4H-thiopyran top
Crystal data top
C24H20SF(000) = 720
Mr = 340.46Dx = 1.259 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 4067 reflections
a = 9.8737 (2) Åθ = 2.5–28.0°
b = 22.5282 (4) ŵ = 0.18 mm1
c = 9.2288 (2) ÅT = 115 K
β = 118.987 (1)°Prism, colorless
V = 1795.67 (6) Å30.35 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
3883 independent reflections
Radiation source: fine-focus sealed tube3698 reflections with I > σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.917, Tmax = 0.982k = 2929
8464 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0401P)2 + 0.2571P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3883 reflectionsΔρmax = 0.28 e Å3
227 parametersΔρmin = 0.18 e Å3
2 restraintsAbsolute structure: Flack (1983), 1825 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (5)
Crystal data top
C24H20SV = 1795.67 (6) Å3
Mr = 340.46Z = 4
Monoclinic, CcMo Kα radiation
a = 9.8737 (2) ŵ = 0.18 mm1
b = 22.5282 (4) ÅT = 115 K
c = 9.2288 (2) Å0.35 × 0.20 × 0.10 mm
β = 118.987 (1)°
Data collection top
Bruker SMART APEX
diffractometer
3883 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3698 reflections with I > σ(I)
Tmin = 0.917, Tmax = 0.982Rint = 0.024
8464 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.072Δρmax = 0.28 e Å3
S = 1.03Δρmin = 0.18 e Å3
3883 reflectionsAbsolute structure: Flack (1983), 1825 Friedel pairs
227 parametersAbsolute structure parameter: 0.00 (5)
2 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.49977 (4)0.892322 (17)0.49963 (4)0.01993 (9)
C10.48277 (17)0.87133 (6)0.67575 (18)0.0169 (3)
C20.37550 (18)0.83350 (7)0.66660 (19)0.0197 (3)
H20.37400.82590.76710.024*
C30.25547 (17)0.80107 (7)0.51476 (19)0.0187 (3)
C40.22225 (18)0.83423 (7)0.35828 (18)0.0180 (3)
H40.12280.82830.26510.022*
C50.31709 (16)0.87086 (6)0.33675 (17)0.0156 (3)
C60.3178 (2)0.73921 (7)0.5054 (2)0.0252 (4)
H6A0.34870.71780.60920.038*
H6B0.40750.74370.48790.038*
H6C0.23660.71680.41310.038*
C70.59735 (17)0.90088 (7)0.83149 (19)0.0174 (3)
C80.55816 (18)0.91435 (7)0.95401 (19)0.0210 (3)
H80.45850.90410.93790.025*
C90.66275 (19)0.94253 (7)1.0990 (2)0.0241 (3)
H90.63410.95171.18100.029*
C100.8091 (2)0.95738 (7)1.1249 (2)0.0236 (4)
H100.88090.97661.22450.028*
C110.84996 (18)0.94407 (7)1.0045 (2)0.0237 (3)
H110.95030.95401.02210.028*
C120.74509 (18)0.91643 (7)0.85877 (19)0.0207 (3)
H120.77380.90790.77650.025*
C130.10640 (17)0.79667 (7)0.52855 (18)0.0183 (3)
C140.0894 (2)0.75238 (8)0.6233 (2)0.0255 (3)
H140.16790.72310.67420.031*
C150.0402 (2)0.75009 (8)0.6451 (2)0.0294 (4)
H150.04870.71980.71180.035*
C160.1572 (2)0.79169 (8)0.5702 (2)0.0284 (4)
H160.24650.78990.58360.034*
C170.14174 (19)0.83609 (8)0.47516 (19)0.0257 (4)
H170.22120.86490.42320.031*
C180.01103 (19)0.83879 (7)0.45533 (18)0.0222 (3)
H180.00160.86980.39100.027*
C190.27339 (17)0.89872 (7)0.17441 (18)0.0165 (3)
C200.18705 (18)0.86626 (7)0.02926 (18)0.0191 (3)
H200.16580.82550.03590.023*
C210.13179 (19)0.89302 (7)0.1250 (2)0.0222 (3)
H210.07290.87060.22300.027*
C220.16242 (19)0.95233 (8)0.1358 (2)0.0238 (4)
H220.12320.97080.24120.029*
C230.25068 (19)0.98482 (7)0.0078 (2)0.0242 (3)
H230.27221.02550.00050.029*
C240.30752 (18)0.95805 (7)0.16187 (18)0.0192 (3)
H240.37000.98020.25940.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01477 (16)0.02749 (19)0.01650 (17)0.00309 (16)0.00676 (13)0.00013 (15)
C10.0159 (7)0.0177 (7)0.0151 (7)0.0022 (6)0.0060 (6)0.0015 (6)
C20.0202 (7)0.0213 (8)0.0151 (7)0.0008 (6)0.0067 (6)0.0030 (6)
C30.0183 (7)0.0174 (7)0.0179 (7)0.0021 (6)0.0069 (6)0.0014 (5)
C40.0177 (7)0.0189 (7)0.0146 (7)0.0021 (6)0.0056 (6)0.0022 (6)
C50.0144 (7)0.0154 (7)0.0151 (7)0.0006 (5)0.0056 (6)0.0027 (5)
C60.0260 (9)0.0207 (8)0.0305 (9)0.0010 (7)0.0150 (7)0.0016 (7)
C70.0144 (7)0.0168 (7)0.0159 (7)0.0014 (6)0.0032 (6)0.0022 (5)
C80.0149 (7)0.0237 (8)0.0219 (8)0.0006 (6)0.0070 (6)0.0016 (6)
C90.0233 (8)0.0294 (8)0.0197 (8)0.0019 (7)0.0105 (6)0.0021 (6)
C100.0203 (8)0.0216 (8)0.0206 (8)0.0008 (7)0.0034 (6)0.0044 (6)
C110.0167 (7)0.0261 (8)0.0250 (8)0.0027 (6)0.0075 (6)0.0014 (6)
C120.0201 (8)0.0237 (8)0.0190 (8)0.0008 (6)0.0100 (6)0.0002 (6)
C130.0172 (7)0.0187 (7)0.0153 (7)0.0034 (6)0.0048 (6)0.0022 (5)
C140.0258 (8)0.0221 (8)0.0262 (8)0.0006 (7)0.0107 (7)0.0051 (6)
C150.0318 (9)0.0282 (9)0.0302 (9)0.0090 (7)0.0167 (8)0.0027 (7)
C160.0208 (8)0.0378 (10)0.0267 (9)0.0079 (7)0.0115 (7)0.0065 (7)
C170.0198 (8)0.0340 (9)0.0182 (8)0.0035 (7)0.0050 (6)0.0011 (6)
C180.0246 (8)0.0228 (8)0.0166 (8)0.0005 (6)0.0079 (7)0.0008 (5)
C190.0140 (7)0.0203 (7)0.0165 (8)0.0010 (6)0.0084 (6)0.0008 (6)
C200.0188 (7)0.0198 (7)0.0202 (8)0.0007 (6)0.0106 (6)0.0012 (6)
C210.0184 (8)0.0318 (9)0.0166 (8)0.0006 (6)0.0086 (6)0.0019 (6)
C220.0195 (8)0.0346 (9)0.0197 (8)0.0068 (7)0.0113 (7)0.0079 (7)
C230.0262 (8)0.0216 (8)0.0314 (9)0.0006 (7)0.0191 (7)0.0027 (6)
C240.0182 (7)0.0222 (8)0.0192 (8)0.0019 (6)0.0106 (6)0.0027 (6)
Geometric parameters (Å, º) top
S1—C51.7661 (14)C11—H110.9500
S1—C11.7772 (15)C12—H120.9500
C1—C21.330 (2)C13—C141.390 (2)
C1—C71.488 (2)C13—C181.393 (2)
C2—C31.514 (2)C14—C151.390 (2)
C2—H20.9500C14—H140.9500
C3—C41.514 (2)C15—C161.384 (3)
C3—C131.541 (2)C15—H150.9500
C3—C61.543 (2)C16—C171.386 (3)
C4—C51.333 (2)C16—H160.9500
C4—H40.9500C17—C181.390 (2)
C5—C191.483 (2)C17—H170.9500
C6—H6A0.9800C18—H180.9500
C6—H6B0.9800C19—C201.396 (2)
C6—H6C0.9800C19—C241.397 (2)
C7—C81.394 (2)C20—C211.391 (2)
C7—C121.399 (2)C20—H200.9500
C8—C91.386 (2)C21—C221.384 (2)
C8—H80.9500C21—H210.9500
C9—C101.387 (3)C22—C231.390 (2)
C9—H90.9500C22—H220.9500
C10—C111.386 (2)C23—C241.388 (2)
C10—H100.9500C23—H230.9500
C11—C121.386 (2)C24—H240.9500
C5—S1—C1101.27 (7)C11—C12—C7120.71 (15)
C2—C1—C7123.89 (14)C11—C12—H12119.6
C2—C1—S1122.53 (12)C7—C12—H12119.6
C7—C1—S1113.57 (11)C14—C13—C18117.92 (14)
C1—C2—C3127.59 (14)C14—C13—C3120.65 (14)
C1—C2—H2116.2C18—C13—C3121.32 (14)
C3—C2—H2116.2C15—C14—C13121.22 (16)
C4—C3—C2110.82 (12)C15—C14—H14119.4
C4—C3—C13109.66 (12)C13—C14—H14119.4
C2—C3—C13107.77 (13)C16—C15—C14120.43 (16)
C4—C3—C6107.47 (13)C16—C15—H15119.8
C2—C3—C6109.47 (13)C14—C15—H15119.8
C13—C3—C6111.67 (12)C15—C16—C17118.94 (16)
C5—C4—C3127.18 (13)C15—C16—H16120.5
C5—C4—H4116.4C17—C16—H16120.5
C3—C4—H4116.4C16—C17—C18120.56 (16)
C4—C5—C19122.09 (13)C16—C17—H17119.7
C4—C5—S1122.96 (11)C18—C17—H17119.7
C19—C5—S1114.91 (11)C17—C18—C13120.92 (15)
C3—C6—H6A109.5C17—C18—H18119.5
C3—C6—H6B109.5C13—C18—H18119.5
H6A—C6—H6B109.5C20—C19—C24118.78 (14)
C3—C6—H6C109.5C20—C19—C5119.41 (13)
H6A—C6—H6C109.5C24—C19—C5121.68 (13)
H6B—C6—H6C109.5C21—C20—C19120.60 (15)
C8—C7—C12118.32 (14)C21—C20—H20119.7
C8—C7—C1120.06 (14)C19—C20—H20119.7
C12—C7—C1121.62 (14)C22—C21—C20120.09 (15)
C9—C8—C7120.86 (15)C22—C21—H21120.0
C9—C8—H8119.6C20—C21—H21120.0
C7—C8—H8119.6C21—C22—C23119.82 (15)
C8—C9—C10120.22 (15)C21—C22—H22120.1
C8—C9—H9119.9C23—C22—H22120.1
C10—C9—H9119.9C24—C23—C22120.22 (15)
C11—C10—C9119.59 (15)C24—C23—H23119.9
C11—C10—H10120.2C22—C23—H23119.9
C9—C10—H10120.2C23—C24—C19120.44 (14)
C12—C11—C10120.30 (15)C23—C24—H24119.8
C12—C11—H11119.9C19—C24—H24119.8
C10—C11—H11119.9
C5—S1—C1—C217.61 (15)C4—C3—C13—C14157.18 (14)
C5—S1—C1—C7161.33 (11)C2—C3—C13—C1482.11 (17)
C7—C1—C2—C3179.48 (15)C6—C3—C13—C1438.2 (2)
S1—C1—C2—C31.7 (2)C4—C3—C13—C1826.78 (19)
C1—C2—C3—C424.4 (2)C2—C3—C13—C1893.93 (16)
C1—C2—C3—C13144.35 (16)C6—C3—C13—C18145.80 (14)
C1—C2—C3—C694.01 (19)C18—C13—C14—C150.2 (2)
C2—C3—C4—C526.5 (2)C3—C13—C14—C15175.99 (16)
C13—C3—C4—C5145.30 (15)C13—C14—C15—C161.0 (3)
C6—C3—C4—C593.12 (19)C14—C15—C16—C170.9 (3)
C3—C4—C5—C19177.18 (14)C15—C16—C17—C180.0 (3)
C3—C4—C5—S15.5 (2)C16—C17—C18—C130.8 (2)
C1—S1—C5—C415.81 (15)C14—C13—C18—C170.7 (2)
C1—S1—C5—C19161.67 (11)C3—C13—C18—C17176.85 (14)
C2—C1—C7—C831.3 (2)C4—C5—C19—C2037.1 (2)
S1—C1—C7—C8147.59 (12)S1—C5—C19—C20145.37 (12)
C2—C1—C7—C12149.37 (16)C4—C5—C19—C24138.58 (16)
S1—C1—C7—C1231.71 (19)S1—C5—C19—C2438.92 (19)
C12—C7—C8—C90.1 (2)C24—C19—C20—C212.1 (2)
C1—C7—C8—C9179.21 (15)C5—C19—C20—C21173.78 (14)
C7—C8—C9—C100.5 (3)C19—C20—C21—C220.1 (2)
C8—C9—C10—C110.2 (3)C20—C21—C22—C231.0 (2)
C9—C10—C11—C120.4 (3)C21—C22—C23—C240.3 (2)
C10—C11—C12—C70.8 (3)C22—C23—C24—C191.7 (2)
C8—C7—C12—C110.5 (2)C20—C19—C24—C232.8 (2)
C1—C7—C12—C11179.82 (15)C5—C19—C24—C23172.93 (14)

Experimental details

Crystal data
Chemical formulaC24H20S
Mr340.46
Crystal system, space groupMonoclinic, Cc
Temperature (K)115
a, b, c (Å)9.8737 (2), 22.5282 (4), 9.2288 (2)
β (°) 118.987 (1)
V3)1795.67 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.35 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.917, 0.982
No. of measured, independent and
observed [I > σ(I)] reflections
8464, 3883, 3698
Rint0.024
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.072, 1.03
No. of reflections3883
No. of parameters227
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.18
Absolute structureFlack (1983), 1825 Friedel pairs
Absolute structure parameter0.00 (5)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

 

Acknowledgements

We thank the Iranian Research Organization for Science and Technology and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMori, Y. & Maeda, K. (1991). J. Chem. Soc. Perkin Trans. 2, pp. 2061–2066.  CrossRef Google Scholar
First citationPirelahi, H., Atarodiekashani, A., Seyyedmoossavi, S. & Daryanavardedargahani, H. (2004). Monatsh. Chem. 135, 973–978.  CrossRef CAS Google Scholar
First citationPirelahi, H. & Rahmani, H. (1997). J. Photochem. Photobiol. A, 111, 15–21.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuld, G. & Price, C. C. (1962). J. Am. Chem. Soc. 84, 2090–2094.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds