organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Bromo­phenyl)-2-methyl-2,6-di­phenyl-2H-thio­pyran

aInstitute of Chemical Industries, Iranian Research Organization for Science and Technology, PO Box 15815-358, Tehran, Iran, bDepartment of Chemistry, College of Science, University of Tehran, PO Box 13145-143, Tehran, Iran, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 18 February 2009; accepted 19 February 2009; online 25 February 2009)

The six-membered thio­pyran ring in the title compound, C24H19BrS, adopts an approximate envelope conformation, with the S atom displaced by 0.26 (1) Å and the 2-methyl­ene C atom by −0.54 (1) Å from the plane of the other four sp2-hydridized C atoms. The methyl substituent on the methyl­ene carbon lies in a pseudo-axial position with the phenyl ring in a pseudo-equatorial position.

Related literature

For the background to 4-alkyl-2,4,6-triaryl-4H-thio­pyrans, see: Rahmani et al. (2009[Rahmani, H., Pirelahi, H. & Ng, S. W. (2009). Acta Cryst. E65, o603.]). For the general synthesis from a Grignard reaction, see: Suld & Price (1962[Suld, G. & Price, C. C. (1962). J. Am. Chem. Soc. 84, 2090-2094.]).

[Scheme 1]

Experimental

Crystal data
  • C24H19BrS

  • Mr = 419.36

  • Orthorhombic, P c a 21

  • a = 23.3348 (8) Å

  • b = 5.9991 (2) Å

  • c = 13.6866 (5) Å

  • V = 1916.0 (1) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.26 mm−1

  • T = 115 K

  • 0.40 × 0.15 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.465, Tmax = 0.895

  • 16215 measured reflections

  • 4407 independent reflections

  • 3017 reflections with I > 2σ(I)

  • Rint = 0.093

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.190

  • S = 1.09

  • 4407 reflections

  • 236 parameters

  • 145 restraints

  • H-atom parameters constrained

  • Δρmax = 1.53 e Å−3

  • Δρmin = −0.91 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2108 Friedel pairs

  • Flack parameter: 0.01 (2)

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For the background to 4-alkyl-2,4,6-triaryl-4H-thiopyrans, see: Rahmani et al. (2009). For the general synthesis from a Grignard reaction, see: Suld & Price (1962).

Experimental top

The compound was obtained as the rearranged product from the reaction of methyl magnesium bromide and 4-(4-bromophenyl)-2,6-diphenyl thiopyrylium perchlorate in dry ether under an argon atmosphere according to a reported method (Suld & Price, 1962). The product was isolated by TLC on neutral alumina (petroleum ether 40–60 °C) and purified by recrystalization from ethanol.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

The final difference Fourier map had a large peak/deep hole in the vicinity of the bromine.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellisoid plot (Barbour, 2001) of C24H19BrS; probability levels are set at 70% and H-atoms are drawn as spheres of arbitrary radius.
4-(4-Bromophenyl)-2-methyl-2,6-diphenyl-2H-thiopyran top
Crystal data top
C24H19BrSF(000) = 856
Mr = 419.36Dx = 1.454 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2506 reflections
a = 23.3348 (8) Åθ = 2.3–22.9°
b = 5.9991 (2) ŵ = 2.26 mm1
c = 13.6866 (5) ÅT = 115 K
V = 1916.0 (1) Å3Prism, pale yellow
Z = 40.40 × 0.15 × 0.05 mm
Data collection top
Bruker SMART APEX
diffractometer
4407 independent reflections
Radiation source: fine-focus sealed tube3017 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3029
Tmin = 0.465, Tmax = 0.895k = 77
16215 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.075H-atom parameters constrained
wR(F2) = 0.190 w = 1/[σ2(Fo2) + (0.0672P)2 + 10.0175P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
4407 reflectionsΔρmax = 1.53 e Å3
236 parametersΔρmin = 0.91 e Å3
145 restraintsAbsolute structure: Flack (1983), 2108 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (2)
Crystal data top
C24H19BrSV = 1916.0 (1) Å3
Mr = 419.36Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 23.3348 (8) ŵ = 2.26 mm1
b = 5.9991 (2) ÅT = 115 K
c = 13.6866 (5) Å0.40 × 0.15 × 0.05 mm
Data collection top
Bruker SMART APEX
diffractometer
4407 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3017 reflections with I > 2σ(I)
Tmin = 0.465, Tmax = 0.895Rint = 0.093
16215 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.075H-atom parameters constrained
wR(F2) = 0.190 w = 1/[σ2(Fo2) + (0.0672P)2 + 10.0175P]
where P = (Fo2 + 2Fc2)/3
S = 1.09Δρmax = 1.53 e Å3
4407 reflectionsΔρmin = 0.91 e Å3
236 parametersAbsolute structure: Flack (1983), 2108 Friedel pairs
145 restraintsAbsolute structure parameter: 0.01 (2)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.55183 (4)0.84726 (15)0.50001 (7)0.0381 (3)
S10.76405 (9)0.1684 (4)0.84041 (14)0.0245 (4)
C10.7867 (4)0.2735 (13)0.6484 (6)0.0260 (18)
H1A0.80050.22730.58380.039*
H1B0.74690.32460.64310.039*
H1C0.81070.39520.67300.039*
C20.7898 (3)0.0738 (13)0.7196 (5)0.0198 (16)
C30.7503 (3)0.1075 (12)0.6851 (5)0.0206 (17)
H30.76690.23720.65710.025*
C40.6924 (3)0.0971 (13)0.6915 (5)0.0191 (16)
C50.6643 (3)0.0773 (13)0.7470 (5)0.0183 (16)
H50.62520.10830.73320.022*
C60.6907 (4)0.1988 (12)0.8174 (5)0.0204 (17)
C70.8509 (3)0.0024 (14)0.7371 (5)0.0202 (17)
C80.8986 (4)0.1115 (16)0.7095 (6)0.032 (2)
H80.89370.24940.67640.039*
C90.9534 (4)0.0388 (16)0.7267 (6)0.033 (2)
H90.98520.12340.70390.040*
C100.9623 (4)0.1547 (18)0.7762 (7)0.034 (2)
H101.00000.20160.79220.041*
C110.9148 (4)0.2837 (15)0.8034 (6)0.0263 (19)
H110.92060.42380.83420.032*
C120.8604 (4)0.2107 (13)0.7863 (5)0.0225 (17)
H120.82870.29790.80690.027*
C130.6567 (3)0.2668 (12)0.6448 (5)0.0168 (15)
C140.6740 (4)0.3678 (14)0.5562 (5)0.0236 (17)
H140.70810.31870.52530.028*
C150.6422 (3)0.5366 (13)0.5137 (6)0.0274 (18)
H150.65520.60580.45530.033*
C160.5923 (4)0.6028 (14)0.5560 (6)0.0276 (19)
C170.5729 (4)0.5021 (14)0.6414 (5)0.0223 (17)
H170.53760.54740.66980.027*
C180.6048 (4)0.3370 (14)0.6844 (6)0.0230 (17)
H180.59120.26910.74270.028*
C190.6600 (4)0.3593 (13)0.8826 (5)0.0222 (17)
C200.6058 (4)0.2976 (14)0.9198 (6)0.0258 (19)
H200.58960.15640.90460.031*
C210.5766 (4)0.4471 (14)0.9787 (5)0.0284 (19)
H210.53930.41061.00170.034*
C220.6007 (4)0.6463 (15)1.0043 (8)0.0363 (19)
H220.58080.74361.04730.044*
C230.6542 (4)0.7082 (13)0.9679 (6)0.0259 (19)
H230.67020.84890.98430.031*
C240.6841 (4)0.5623 (13)0.9073 (5)0.0214 (17)
H240.72090.60210.88310.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0382 (5)0.0361 (4)0.0401 (5)0.0017 (4)0.0071 (5)0.0148 (5)
S10.0254 (10)0.0295 (11)0.0186 (9)0.0016 (9)0.0016 (8)0.0090 (9)
C10.041 (5)0.014 (4)0.023 (4)0.005 (3)0.002 (4)0.000 (3)
C20.029 (4)0.015 (3)0.016 (3)0.004 (3)0.001 (3)0.001 (3)
C30.027 (4)0.021 (4)0.014 (3)0.001 (3)0.003 (3)0.005 (3)
C40.031 (4)0.018 (4)0.008 (3)0.002 (3)0.003 (3)0.006 (3)
C50.023 (4)0.016 (4)0.016 (3)0.002 (3)0.001 (3)0.000 (3)
C60.031 (4)0.015 (4)0.015 (3)0.000 (3)0.001 (3)0.002 (3)
C70.031 (4)0.020 (4)0.010 (3)0.004 (3)0.000 (3)0.007 (3)
C80.028 (4)0.041 (5)0.028 (4)0.004 (4)0.003 (3)0.010 (4)
C90.028 (4)0.042 (5)0.028 (4)0.005 (4)0.005 (4)0.005 (4)
C100.020 (4)0.047 (5)0.036 (4)0.007 (4)0.004 (3)0.010 (4)
C110.032 (5)0.023 (4)0.024 (4)0.001 (4)0.002 (4)0.010 (3)
C120.033 (4)0.020 (4)0.015 (3)0.002 (3)0.005 (3)0.004 (3)
C130.022 (4)0.014 (3)0.015 (3)0.002 (3)0.004 (3)0.004 (3)
C140.025 (4)0.030 (4)0.016 (3)0.004 (3)0.002 (3)0.004 (3)
C150.036 (4)0.029 (4)0.017 (4)0.006 (3)0.001 (3)0.010 (3)
C160.035 (5)0.024 (4)0.024 (4)0.004 (3)0.002 (4)0.012 (3)
C170.029 (4)0.025 (4)0.013 (3)0.001 (3)0.001 (3)0.007 (3)
C180.025 (4)0.026 (4)0.017 (3)0.007 (3)0.001 (3)0.010 (3)
C190.032 (4)0.019 (4)0.016 (3)0.004 (3)0.004 (3)0.002 (3)
C200.032 (4)0.025 (4)0.020 (3)0.002 (3)0.001 (3)0.007 (3)
C210.032 (4)0.032 (4)0.022 (4)0.002 (3)0.001 (3)0.006 (3)
C220.043 (4)0.041 (4)0.025 (3)0.018 (4)0.006 (5)0.009 (4)
C230.046 (5)0.010 (4)0.022 (4)0.003 (3)0.006 (3)0.006 (3)
C240.031 (4)0.020 (4)0.013 (3)0.000 (3)0.002 (3)0.002 (3)
Geometric parameters (Å, º) top
Br1—C161.905 (8)C11—C121.363 (12)
S1—C61.750 (8)C11—H110.9500
S1—C21.849 (8)C12—H120.9500
C1—C21.547 (11)C13—C181.391 (11)
C1—H1A0.9800C13—C141.414 (10)
C1—H1B0.9800C14—C151.383 (11)
C1—H1C0.9800C14—H140.9500
C2—C31.501 (10)C15—C161.360 (12)
C2—C71.516 (11)C15—H150.9500
C3—C41.356 (11)C16—C171.392 (11)
C3—H30.9500C17—C181.373 (11)
C4—C51.448 (10)C17—H170.9500
C4—C131.463 (10)C18—H180.9500
C5—C61.357 (11)C19—C241.383 (11)
C5—H50.9500C19—C201.414 (12)
C6—C191.495 (11)C20—C211.385 (11)
C7—C81.361 (12)C20—H200.9500
C7—C121.436 (11)C21—C221.366 (13)
C8—C91.372 (12)C21—H210.9500
C8—H80.9500C22—C231.395 (13)
C9—C101.360 (14)C22—H220.9500
C9—H90.9500C23—C241.393 (11)
C10—C111.402 (13)C23—H230.9500
C10—H100.9500C24—H240.9500
C6—S1—C2100.9 (4)C11—C12—C7120.3 (8)
C2—C1—H1A109.5C11—C12—H12119.8
C2—C1—H1B109.5C7—C12—H12119.8
H1A—C1—H1B109.5C18—C13—C14116.9 (7)
C2—C1—H1C109.5C18—C13—C4122.4 (6)
H1A—C1—H1C109.5C14—C13—C4120.7 (7)
H1B—C1—H1C109.5C15—C14—C13121.5 (8)
C3—C2—C7114.1 (7)C15—C14—H14119.3
C3—C2—C1109.5 (6)C13—C14—H14119.3
C7—C2—C1112.2 (7)C16—C15—C14119.5 (7)
C3—C2—S1107.7 (5)C16—C15—H15120.2
C7—C2—S1104.9 (5)C14—C15—H15120.2
C1—C2—S1108.1 (5)C15—C16—C17120.7 (8)
C4—C3—C2123.9 (7)C15—C16—Br1118.6 (6)
C4—C3—H3118.0C17—C16—Br1120.7 (7)
C2—C3—H3118.0C18—C17—C16119.8 (8)
C3—C4—C5121.2 (7)C18—C17—H17120.1
C3—C4—C13120.5 (7)C16—C17—H17120.1
C5—C4—C13118.3 (7)C17—C18—C13121.6 (7)
C6—C5—C4123.7 (7)C17—C18—H18119.2
C6—C5—H5118.1C13—C18—H18119.2
C4—C5—H5118.1C24—C19—C20120.4 (7)
C5—C6—C19123.6 (8)C24—C19—C6121.2 (8)
C5—C6—S1121.0 (6)C20—C19—C6118.4 (7)
C19—C6—S1115.3 (6)C21—C20—C19118.7 (8)
C8—C7—C12116.1 (8)C21—C20—H20120.6
C8—C7—C2125.1 (8)C19—C20—H20120.6
C12—C7—C2118.8 (7)C22—C21—C20120.9 (8)
C7—C8—C9123.8 (9)C22—C21—H21119.6
C7—C8—H8118.1C20—C21—H21119.6
C9—C8—H8118.1C21—C22—C23120.6 (9)
C10—C9—C8119.9 (9)C21—C22—H22119.7
C10—C9—H9120.1C23—C22—H22119.7
C8—C9—H9120.1C24—C23—C22119.6 (8)
C9—C10—C11118.9 (8)C24—C23—H23120.2
C9—C10—H10120.5C22—C23—H23120.2
C11—C10—H10120.5C19—C24—C23119.7 (8)
C12—C11—C10120.8 (9)C19—C24—H24120.2
C12—C11—H11119.6C23—C24—H24120.2
C10—C11—H11119.6
C6—S1—C2—C346.9 (6)C2—C7—C12—C11179.8 (7)
C6—S1—C2—C7168.8 (5)C3—C4—C13—C18146.5 (8)
C6—S1—C2—C171.3 (6)C5—C4—C13—C1831.7 (11)
C7—C2—C3—C4160.3 (7)C3—C4—C13—C1433.4 (11)
C1—C2—C3—C473.0 (9)C5—C4—C13—C14148.5 (7)
S1—C2—C3—C444.3 (9)C18—C13—C14—C153.2 (12)
C2—C3—C4—C510.0 (11)C4—C13—C14—C15176.6 (7)
C2—C3—C4—C13171.9 (7)C13—C14—C15—C162.1 (13)
C3—C4—C5—C619.9 (12)C14—C15—C16—C170.2 (13)
C13—C4—C5—C6158.2 (7)C14—C15—C16—Br1176.4 (6)
C4—C5—C6—C19172.4 (7)C15—C16—C17—C181.2 (13)
C4—C5—C6—S15.3 (11)Br1—C16—C17—C18175.3 (7)
C2—S1—C6—C526.8 (7)C16—C17—C18—C130.0 (13)
C2—S1—C6—C19155.3 (6)C14—C13—C18—C172.2 (12)
C3—C2—C7—C8136.8 (8)C4—C13—C18—C17177.7 (8)
C1—C2—C7—C811.5 (11)C5—C6—C19—C24139.8 (8)
S1—C2—C7—C8105.6 (8)S1—C6—C19—C2442.3 (9)
C3—C2—C7—C1243.0 (9)C5—C6—C19—C2040.9 (11)
C1—C2—C7—C12168.3 (6)S1—C6—C19—C20136.9 (7)
S1—C2—C7—C1274.6 (7)C24—C19—C20—C211.9 (12)
C12—C7—C8—C90.4 (12)C6—C19—C20—C21178.8 (7)
C2—C7—C8—C9179.8 (8)C19—C20—C21—C222.9 (13)
C7—C8—C9—C101.9 (13)C20—C21—C22—C233.0 (14)
C8—C9—C10—C114.1 (13)C21—C22—C23—C242.0 (13)
C9—C10—C11—C124.2 (13)C20—C19—C24—C231.0 (11)
C10—C11—C12—C71.9 (12)C6—C19—C24—C23179.7 (7)
C8—C7—C12—C110.4 (11)C22—C23—C24—C191.0 (12)

Experimental details

Crystal data
Chemical formulaC24H19BrS
Mr419.36
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)115
a, b, c (Å)23.3348 (8), 5.9991 (2), 13.6866 (5)
V3)1916.0 (1)
Z4
Radiation typeMo Kα
µ (mm1)2.26
Crystal size (mm)0.40 × 0.15 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.465, 0.895
No. of measured, independent and
observed [I > 2σ(I)] reflections
16215, 4407, 3017
Rint0.093
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.190, 1.09
No. of reflections4407
No. of parameters236
No. of restraints145
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0672P)2 + 10.0175P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.53, 0.91
Absolute structureFlack (1983), 2108 Friedel pairs
Absolute structure parameter0.01 (2)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

 

Acknowledgements

We thank the Iranian Research Organization for Science and Technology and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRahmani, H., Pirelahi, H. & Ng, S. W. (2009). Acta Cryst. E65, o603.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuld, G. & Price, C. C. (1962). J. Am. Chem. Soc. 84, 2090–2094.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds