organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A triclinic polymorph of hexa­nedioic acid

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 20 February 2009; accepted 22 February 2009; online 28 February 2009)

Hexane­dioic acid (or adipic acid), C6H10O4, crystallizes with two crystallographically independent half-mol­ecules in the asymmetric unit of the triclinic unit cell, space group P[\overline{1}], as each mol­ecule lies across a crystallographic inversion centre. A monoclinic polymorph has been reported previously, most recently by Ranganathan, Kulkarni & Rao [J. Phys. Chem. A, (2003), 107, 6073–6081]. The mol­ecules adopt the expected zigzag structure and are linked via centrosymmetric pairs of O—H⋯O hydrogen bonds, forming infinite one-dimensional chains along [011]. These chains are stacked along the a axis. The crystal is further stabilized by weak C—H⋯O inter­actions.

Related literature

For bond-length data, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see, for example: Ranganathan et al. (2003[Ranganathan, A., Kulkarni, G. U. & Rao, C. N. R. (2003). J. Phys. Chem. A, 107, 6073-6081.]); Srinivasa Gopalan et al. (1999[Srinivasa Gopalan, R., Kumaradhas, P. & Kulkarni, G. U. (1999). J. Solid State Chem. 148, 129-134.], 2000[Srinivasa Gopalan, R., Kumaradhas, P., Kulkarni, G. U. & Rao, C. N. R. (2000). J. Mol. Struct. 521, 97-106.]). For general background to the influence of hydrogen bonding on phase transitions, see, for example: Chantrapromma et al. (2006[Chantrapromma, S., Fun, H.-K. & Usman, A. (2006). J. Mol. Struct. 789, 30-36.]); Dunitz (1991[Dunitz, J. D. (1991). Pure Appl. Chem. 63, 177-185.]); Fun et al. (2003[Fun, H.-K., Usman, A., Chantrapromma, S., Osman, J., Ong, L. H., Tilley, D. H. & Ishibashi, Y. (2003). Solid State Commun. 127, 677-682.], 2006[Fun, H.-K., Rosli, M. M., Lee, B. S., Ong, L.-H. & Chantrapromma, S. (2006). J. Mol. Struct. 837, 132-141.]); How et al. (2005[How, P.-T., Lee, B.-S., Fun, H.-K., Razak, A. A. & Chantrapromma, S. (2005). Phys. Rev. B71, 174109.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C6H10O4

  • Mr = 146.14

  • Triclinic, [P \overline 1]

  • a = 6.7666 (5) Å

  • b = 6.9992 (5) Å

  • c = 7.7180 (5) Å

  • α = 93.794 (4)°

  • β = 104.321 (4)°

  • γ = 102.689 (4)°

  • V = 342.70 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.55 × 0.11 × 0.06 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.847, Tmax = 0.993

  • 7773 measured reflections

  • 1553 independent reflections

  • 1419 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.094

  • S = 1.09

  • 1553 reflections

  • 91 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2A—H2OA⋯O1Ai 0.82 1.82 2.6397 (13) 172
O2B—H2OB⋯O1Bii 0.82 1.82 2.6421 (13) 174
C2A—H2AB⋯O2Aiii 0.97 2.58 3.5415 (16) 171
Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y+1, -z; (iii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Structural investigation of crystalline solids undergoing phase transition has been an interesting area of research. Molecular solids are more interesting in that they often crystallize in different structural forms and exhibit polymorphic transformations (Dunitz, 1991). We have previously reported reversible phase transitions due to hydrogen bonds in some organic compounds (Chantrapromma et al., 2006; Fun et al., 2003; 2006); How et al., 2005). Aliphatic dicarboxylic acids form an interesting class of organic compounds for hydrogen bonding and phase transition studies. In the course of our research on the influence of hydrogen bonding on phase transitions, we have found that adipic acid exists in both monoclinic and triclinic polymorphs. The triclinic form does not undergo a phase transition in sharp contrast to the behaviour of the monoclinic form (Srinivasa Gopalan et al., (1999). We report herein the crystal structure of the triclinic polymorph of adipic acid (I).

The crystal structure of the hexanedioic acid or adipic acid was previously reported by Ranganathan et al., (2003) and Srinivasa Gopalan et al., (1999, 2000) in the monoclinic space group P21/c. It was found that adipic acid exhibits a phase transition at around 136 K (Srinivasa Gopalan et al., 1999) and does not exhibit polymorphism (Srinivasa Gopalan et al., 2000). However, in the present work, we have found that adipic acid actually does exhibit polymorphisim in which the compound crystallized out in the triclinic space group P -1.

In the structure of (I), Fig. 1, each of the two unique adipic acid molecules, C6H10O4, lies across a different crystallographic inversion centre. There are two crystallographically independent half molecules in the asymmetric unit, A and B, with slightly different bond lengths and bond angles. The molecules exist in an zigzag form. Atoms O1A, O2A, C1A, C2A and C3 lie on the same plane in one molecule with a maximum deviation of 0.006 (1) Å for C1A while atoms O1B, O2B, C1B and C2B in the other molecule are also coplanar with a maximum deviation -0.005 (1) Å for atom C1B. The interplanar angle between these two planes is 61.14 (7)°. Bond lengths and angles in the title compound are within normal ranges (Allen et al., 1987) and comparable to those in related structures (Ranganathan et al., 2003; Srinivasa Gopalan et al., 1999; 2000).

In the crystal packing (Fig. 2), the molecules are linked by centrosymmetric pairs of O—H···O hydrogen bonds forming infinite one-dimensional chains along the [0 1 1] directions and these molecular chains are stacked along the a axis. The crystal is stablized by O—H···O hydrogen bonds and weak C—H···O interactions (Table 1). It is interesting to note that this triclinic polymorph has fewer O—H···O hydrogen bonds and weak C—H···O interactions in comparison to the monoclinic form (Srinivasa Gopalan et al., 1999; 2000).

Related literature top

For bond-length data, see Allen et al. (1987). For related structures, see, for example: Ranganathan et al. (2003); Srinivasa Gopalan et al. (1999, 2000). For general background to the influence of hydrogen bonding on phase transitions, see, for example: Chantrapromma et al. (2006); Dunitz (1991); Fun et al. (2003, 2006); How et al. (2005). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Adipic acid was obtained commercially (Fluka, Germany). Single crystals of adipic acid were grown by slow evaporation of ethyl acetate solution at room temperature.

Refinement top

All the H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.96 Å and O—H = 0.82 Å. The Uiso values were constrained to be -1.2Ueq of the carrier atom for all hydrogen atoms. The highest residual electron density peak is located at 0.72 Å from C1A and the deepest hole is located at 0.70 Å from C3A.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. [Symmetry code: (AA) -x, -y+1, -z+1 and (BA) -x+1, -y+2, -z+1].
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis showing one-dimensional chains along the [0 1 1] direction. Hydrogen bonds are shown as dashed lines.
hexanedioic acid top
Crystal data top
C6H10O4Z = 2
Mr = 146.14F(000) = 156
Triclinic, P1Dx = 1.416 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7666 (5) ÅCell parameters from 1553 reflections
b = 6.9992 (5) Åθ = 2.8–27.5°
c = 7.7180 (5) ŵ = 0.12 mm1
α = 93.794 (4)°T = 100 K
β = 104.321 (4)°Needle, colorless
γ = 102.689 (4)°0.55 × 0.11 × 0.06 mm
V = 342.70 (4) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1553 independent reflections
Radiation source: sealed tube1419 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.847, Tmax = 0.993k = 99
7773 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0402P)2 + 0.1411P]
where P = (Fo2 + 2Fc2)/3
1553 reflections(Δ/σ)max = 0.001
91 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C6H10O4γ = 102.689 (4)°
Mr = 146.14V = 342.70 (4) Å3
Triclinic, P1Z = 2
a = 6.7666 (5) ÅMo Kα radiation
b = 6.9992 (5) ŵ = 0.12 mm1
c = 7.7180 (5) ÅT = 100 K
α = 93.794 (4)°0.55 × 0.11 × 0.06 mm
β = 104.321 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1553 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1419 reflections with I > 2σ(I)
Tmin = 0.847, Tmax = 0.993Rint = 0.027
7773 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.09Δρmax = 0.32 e Å3
1553 reflectionsΔρmin = 0.20 e Å3
91 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.07345 (14)0.10624 (13)0.21778 (12)0.0182 (2)
O2A0.11534 (14)0.20271 (13)0.02751 (12)0.0198 (2)
H2OA0.09610.10420.07790.030*
C1A0.02548 (19)0.22010 (17)0.14771 (16)0.0156 (3)
C2A0.0623 (2)0.39330 (18)0.24950 (16)0.0174 (3)
H2AA0.21270.37870.22690.021*
H2AB0.00570.51240.20260.021*
C3A0.03484 (19)0.41932 (17)0.45233 (16)0.0167 (3)
H3AA0.17940.44480.47770.020*
H3AB0.01080.30120.49960.020*
O1B0.45905 (14)0.56597 (12)0.19844 (12)0.0189 (2)
O2B0.61849 (14)0.75868 (13)0.02759 (12)0.0204 (2)
H2OB0.59060.65390.03800.031*
C1B0.54652 (19)0.72852 (18)0.17064 (16)0.0159 (3)
C2B0.5885 (2)0.91565 (18)0.29479 (16)0.0173 (3)
H2BA0.54571.01600.22360.021*
H2BB0.73890.96030.34910.021*
C3B0.47841 (19)0.89970 (17)0.44459 (16)0.0161 (3)
H3BA0.52660.81060.52380.019*
H3BB0.33560.85190.39470.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0225 (5)0.0180 (4)0.0144 (4)0.0084 (4)0.0033 (3)0.0012 (3)
O2A0.0287 (5)0.0185 (4)0.0129 (4)0.0113 (4)0.0033 (4)0.0023 (3)
C1A0.0165 (6)0.0157 (6)0.0135 (6)0.0019 (4)0.0049 (4)0.0014 (4)
C2A0.0218 (6)0.0156 (6)0.0151 (6)0.0066 (5)0.0044 (5)0.0013 (5)
C3A0.0192 (6)0.0155 (6)0.0149 (6)0.0050 (5)0.0039 (5)0.0021 (5)
O1B0.0248 (5)0.0160 (4)0.0166 (4)0.0050 (4)0.0078 (4)0.0008 (3)
O2B0.0278 (5)0.0164 (4)0.0173 (5)0.0022 (4)0.0111 (4)0.0034 (3)
C1B0.0157 (6)0.0177 (6)0.0140 (6)0.0056 (5)0.0028 (4)0.0009 (5)
C2B0.0204 (6)0.0149 (6)0.0156 (6)0.0029 (5)0.0055 (5)0.0028 (5)
C3B0.0185 (6)0.0150 (6)0.0138 (6)0.0034 (5)0.0039 (5)0.0019 (5)
Geometric parameters (Å, º) top
O1A—C1A1.2199 (15)O1B—C1B1.2207 (15)
O2A—C1A1.3237 (14)O2B—C1B1.3238 (15)
O2A—H2OA0.8200O2B—H2OB0.8200
C1A—C2A1.5007 (16)C1B—C2B1.5001 (16)
C2A—C3A1.5220 (16)C2B—C3B1.5201 (17)
C2A—H2AA0.9700C2B—H2BA0.9700
C2A—H2AB0.9700C2B—H2BB0.9700
C3A—C3Ai1.528 (2)C3B—C3Bii1.525 (2)
C3A—H3AA0.9222C3B—H3BA0.9537
C3A—H3AB0.9462C3B—H3BB0.9224
C1A—O2A—H2OA109.5C1B—O2B—H2OB109.5
O1A—C1A—O2A123.52 (11)O1B—C1B—O2B123.41 (11)
O1A—C1A—C2A124.18 (11)O1B—C1B—C2B124.33 (11)
O2A—C1A—C2A112.29 (10)O2B—C1B—C2B112.25 (10)
C1A—C2A—C3A114.73 (10)C1B—C2B—C3B115.27 (10)
C1A—C2A—H2AA108.6C1B—C2B—H2BA108.5
C3A—C2A—H2AA108.6C3B—C2B—H2BA108.5
C1A—C2A—H2AB108.6C1B—C2B—H2BB108.5
C3A—C2A—H2AB108.6C3B—C2B—H2BB108.5
H2AA—C2A—H2AB107.6H2BA—C2B—H2BB107.5
C2A—C3A—C3Ai111.19 (13)C2B—C3B—C3Bii110.83 (12)
C2A—C3A—H3AA110.2C2B—C3B—H3BA110.6
C3Ai—C3A—H3AA111.6C3Bii—C3B—H3BA108.1
C2A—C3A—H3AB109.9C2B—C3B—H3BB109.3
C3Ai—C3A—H3AB106.7C3Bii—C3B—H3BB109.7
H3AA—C3A—H3AB107.0H3BA—C3B—H3BB108.3
O1A—C1A—C2A—C3A0.07 (17)O1B—C1B—C2B—C3B11.15 (18)
O2A—C1A—C2A—C3A179.19 (10)O2B—C1B—C2B—C3B169.89 (10)
C1A—C2A—C3A—C3Ai172.28 (12)C1B—C2B—C3B—C3Bii176.67 (13)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2A—H2OA···O1Aiii0.821.822.6397 (13)172
O2B—H2OB···O1Biv0.821.822.6421 (13)174
C2A—H2AB···O2Av0.972.583.5415 (16)171
Symmetry codes: (iii) x, y, z; (iv) x+1, y+1, z; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC6H10O4
Mr146.14
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.7666 (5), 6.9992 (5), 7.7180 (5)
α, β, γ (°)93.794 (4), 104.321 (4), 102.689 (4)
V3)342.70 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.55 × 0.11 × 0.06
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.847, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
7773, 1553, 1419
Rint0.027
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.094, 1.09
No. of reflections1553
No. of parameters91
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.20

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2A—H2OA···O1Ai0.821.822.6397 (13)172
O2B—H2OB···O1Bii0.821.822.6421 (13)174
C2A—H2AB···O2Aiii0.972.583.5415 (16)171
Symmetry codes: (i) x, y, z; (ii) x+1, y+1, z; (iii) x, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: suchada.c@psu.ac.th.

Acknowledgements

SC thanks Prince of Songkla University for financial support through the Crystal Materials Research Unit. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose Grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Fun, H.-K. & Usman, A. (2006). J. Mol. Struct. 789, 30–36.  Web of Science CSD CrossRef CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDunitz, J. D. (1991). Pure Appl. Chem. 63, 177–185.  CrossRef CAS Web of Science Google Scholar
First citationFun, H.-K., Rosli, M. M., Lee, B. S., Ong, L.-H. & Chantrapromma, S. (2006). J. Mol. Struct. 837, 132–141.  Web of Science CSD CrossRef Google Scholar
First citationFun, H.-K., Usman, A., Chantrapromma, S., Osman, J., Ong, L. H., Tilley, D. H. & Ishibashi, Y. (2003). Solid State Commun. 127, 677–682.  Web of Science CSD CrossRef CAS Google Scholar
First citationHow, P.-T., Lee, B.-S., Fun, H.-K., Razak, A. A. & Chantrapromma, S. (2005). Phys. Rev. B71, 174109.  CrossRef Google Scholar
First citationRanganathan, A., Kulkarni, G. U. & Rao, C. N. R. (2003). J. Phys. Chem. A, 107, 6073–6081.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrinivasa Gopalan, R., Kumaradhas, P. & Kulkarni, G. U. (1999). J. Solid State Chem. 148, 129–134.  CSD CrossRef CAS Google Scholar
First citationSrinivasa Gopalan, R., Kumaradhas, P., Kulkarni, G. U. & Rao, C. N. R. (2000). J. Mol. Struct. 521, 97–106.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds