organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-N-{6-[Bromo­(hydr­­oxy)meth­yl]-2-pyrid­yl}pivalamide

aMain Building, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, Wales, and bSchool of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England
*Correspondence e-mail: knightjc@cardiff.ac.uk

(Received 21 February 2009; accepted 24 February 2009; online 28 February 2009)

The title compound, C11H15BrN2O2, contains an amide group which is close to coplanar with the adjacent pyridine ring, the dihedral angle between the planes being 9.0 (5)°. The mol­ecular packing reveals a mutual hydrogen-bond inter­action between centrosymmetrically related hydroxyl O atoms. Further hydrogen bonding involving O—H⋯Br and N—H⋯Br inter­actions also appears to consolidate the packing.

Related literature

For a related structure, see: Goswami et al. (2005[Goswami, S., Dey, S., Chantrapromma, S. & Fun, H.-K. (2005). Acta Cryst. E61, o105-o107.]). For the synthesis, see Harata et al. (1995[Harata, M., Jitsukawa, K. M. H. & Einaga, H. (1995). Chem. Lett. 61-62.]).

[Scheme 1]

Experimental

Crystal data
  • C11H15BrN2O2

  • Mr = 287.16

  • Monoclinic, P 21 /c

  • a = 13.2980 (5) Å

  • b = 10.0848 (3) Å

  • c = 9.4890 (3) Å

  • β = 106.858 (1)°

  • V = 1217.86 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.36 mm−1

  • T = 150 K

  • 0.10 × 0.08 × 0.08 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.730, Tmax = 0.771

  • 11933 measured reflections

  • 2773 independent reflections

  • 2142 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.166

  • S = 1.10

  • 2773 reflections

  • 149 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.99 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O1i 0.84 2.03 2.472 (10) 113
O1—H1A⋯Br1ii 0.84 2.85 3.509 (5) 137
N2—H2⋯Br1ii 0.88 2.97 3.690 (4) 140
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and CHEMDRAW Ultra (Cambridge Soft 2001).

Supporting information


Comment top

During research focused on new synthetic routes towards novel poly-pyridyl co-ordination compounds, we observed an unexpected by-product in one of our syntheses. As we attempted to prepare N-(6-(bromomethyl)pyridin-2-yl)pivalamide (1) from N-(6-methylpyridin-2-yl)pivalamide and N-bromosuccinimide (NBS) in the presence of azobisisobutyronitrile (AIBN) (Harata et al., 1995), the title compound (2) was isolated in low yield (Fig. 3).

We postulate that during the free-radical driven mono-bromination reaction (Scheme 2), a small quantity of N-(6-(dibromomethyl)pyridin-2-yl)pivalamide is generated. The formation of 2 would proceed via an SN1 reaction involving water, arising as a minor contaminant within the solvent. Subsequent elimination of HBr would lead to the formation of the corresponding aldehyde, however, we have isolated this intermediate prior to HBr elimination.

The formation of the stereogenic centre (C1) from achiral starting materials without any optically active agent has naturally led to a racemic compound. The geometry surrounding the C1 atom is a distorted tetrahedron, which supports the sp3-hybridization of this carbon, and the comparatively long C1–O1 bond (1.440 (8) Å) confirms the presence of an alcohol rather than a ketone. Additionally, while no hydroxyl proton was observed in the 1H NMR, the spectrum revealed a diagnostic singlet at a considerable downfield shift of 6.40 p.p.m. which, according to the 1H NMR prediction software (CHEMDRAW Ultra 8.0; Cambridge Soft 2001), is indicative of a proton (H1) in an α-position to a hydroxyl group and a bromine atom. The single-crystal infrared spectrum of this compound also features just a single band in the carbonyl region (1694.0 cm-1) attributable to the amide carbonyl stretch. The bond lengths and angles of the title compound are in good agreement with the expected values (Goswami et al., 2005).

The mutual H-bond interaction between hydroxyl oxygen atoms O1 and O1i (Fig. 2) results in a short H···H distance (1.87 Å) which is indicative of some disorder between the hydroxyl groups. Attempts at modeling this disorder have given unsatisfactory results. See Table 1 for details of other H-bond interactions which support the crystal packing (Fig. 3).

Related literature top

For a related structure, see, for example: Goswami et al. (2005). For synthetic procedures, see Harata et al. (1995).

Experimental top

N-(6-methylpyridin-2-yl)pivalamide (40 g, 0.207 mol), NBS (56 g, 0.315 mol), and a catalytic amount of AIBN were dissolved in carbon tetrachloride (400 ml). The reaction mixture was heated at reflux for 13 h. The resulting crude brown oil was purified via column chromatography (hexane:ethyl acetate (95:5)). Recrystallization from hexane afforded crystals (yield 1.7%) suitable for X-ray diffraction. 1H NMR (400 MHz; CDCl3): 7.94 (s, 1H, H2), 7.92 (d, 1H, J = 7.87 Hz, py-H5), 7.70 (t, 1H, J = 7.89 Hz, py-H4), 7.37 (d, 1H, J = 7.60 Hz, py-H3), 6.40 (s, 1H, H1), 1.27 (s, 9H, H9–11). IR (KBr disk): 1694.0 cm-1 (—C=O). HRMS (EI) m/z: calc. for C11H15BrN2O 270.0368, found 270.0373.

Refinement top

H atoms attached to C, N and O atoms were placed in calculated positions and subsequently treated as riding with C—H distances of 0.95–1.00 Å, an N—H distance of 0.88 Å, and an O—H distance of 0.84 Å. The Uiso(H) was set to be 1.5Ueq of the carrier atom for hydroxyl and methyl H atoms, and Uiso(H) = 1.2Ueq(C) for all other H atoms. The deepest hole in electron density (-0.99 e A-3) is located at the distance of 0.36 Å from O1.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999) and CHEMDRAW Ultra (Cambridge Soft 2001).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom numbering. Displacement ellipsoids are drawn at the 50% probablility level. H atoms are represented by circles of arbitrary size.
[Figure 2] Fig. 2. A view showing the mutual H-bond interaction between centrosymmetrically related hydroxyl oxygen atoms O1 and O1i. A short H···H distance is suggestive of unresolved synchronized disorder between these groups. The hydrogen atom is also involved in H-bonding with a bromine acceptor atom located on a different molecule. [symmetry code (i): 1 - x, y - 1/2, 3/2 - z.]
[Figure 3] Fig. 3. A view of the molecular packing. H-bonding interactions are indicated by a dashed line. Displacement ellipsoids are drawn at the 50% probablility level. H atoms are represented by circles of arbitrary size.
[Figure 4] Fig. 4. Preparation of the title compound.
rac-N-{6-[Bromo(hydroxy)methyl]-2-pyridyl}pivalamide top
Crystal data top
C11H15BrN2O2F(000) = 584
Mr = 287.16Dx = 1.566 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9199 reflections
a = 13.2980 (5) Åθ = 2.9–27.5°
b = 10.0848 (3) ŵ = 3.36 mm1
c = 9.4890 (3) ÅT = 150 K
β = 106.858 (1)°Prism, colourless
V = 1217.86 (7) Å30.10 × 0.08 × 0.08 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2773 independent reflections
Radiation source: fine-focus sealed tube2142 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 1717
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1313
Tmin = 0.730, Tmax = 0.771l = 1212
11933 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.166 w = 1/[σ2(Fo2) + (0.0702P)2 + 2.6431P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
2773 reflectionsΔρmax = 0.53 e Å3
149 parametersΔρmin = 0.99 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (2)
Crystal data top
C11H15BrN2O2V = 1217.86 (7) Å3
Mr = 287.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.2980 (5) ŵ = 3.36 mm1
b = 10.0848 (3) ÅT = 150 K
c = 9.4890 (3) Å0.10 × 0.08 × 0.08 mm
β = 106.858 (1)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2773 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
2142 reflections with I > 2σ(I)
Tmin = 0.730, Tmax = 0.771Rint = 0.081
11933 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.166H-atom parameters constrained
S = 1.10Δρmax = 0.53 e Å3
2773 reflectionsΔρmin = 0.99 e Å3
149 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4573 (5)0.1876 (6)0.5557 (7)0.0503 (14)
H10.44970.20930.45030.060*
C20.3456 (4)0.1520 (5)0.5509 (5)0.0377 (11)
C30.2616 (5)0.1806 (5)0.4307 (5)0.0420 (12)
H30.27180.22210.34600.050*
C40.1622 (4)0.1473 (5)0.4365 (6)0.0428 (12)
H40.10270.16750.35580.051*
C50.1492 (4)0.0846 (5)0.5600 (5)0.0357 (11)
H50.08140.06150.56620.043*
C60.2389 (3)0.0566 (4)0.6742 (5)0.0285 (9)
C70.1548 (3)0.0513 (4)0.8487 (5)0.0304 (10)
C80.1806 (4)0.1281 (5)0.9947 (5)0.0344 (11)
C90.0890 (5)0.2212 (7)0.9885 (8)0.0646 (19)
H9A0.10610.27641.07720.097*
H9B0.07630.27800.90130.097*
H9C0.02590.16890.98290.097*
C100.2806 (5)0.2096 (6)1.0243 (6)0.0511 (14)
H10A0.34070.15031.03450.077*
H10B0.27500.27070.94210.077*
H10C0.29060.26031.11540.077*
C110.1918 (6)0.0255 (7)1.1159 (6)0.0621 (17)
H11A0.20440.07071.21090.093*
H11B0.12710.02681.09610.093*
H11C0.25110.03321.11890.093*
N10.3360 (3)0.0902 (4)0.6727 (4)0.0344 (9)
N20.2386 (3)0.0119 (4)0.8029 (4)0.0319 (9)
H20.30090.03230.86220.038*
O10.5396 (4)0.0896 (5)0.5873 (5)0.0644 (12)
H1A0.51490.01570.60120.097*
O20.0655 (3)0.0259 (4)0.7793 (4)0.0514 (10)
Br10.49376 (4)0.36048 (6)0.65166 (6)0.0461 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.054 (3)0.056 (3)0.051 (3)0.015 (3)0.031 (3)0.010 (3)
C20.048 (3)0.033 (3)0.036 (2)0.012 (2)0.019 (2)0.007 (2)
C30.061 (3)0.036 (3)0.030 (2)0.011 (2)0.015 (2)0.001 (2)
C40.047 (3)0.043 (3)0.030 (2)0.000 (2)0.001 (2)0.005 (2)
C50.033 (2)0.032 (2)0.037 (3)0.003 (2)0.003 (2)0.000 (2)
C60.026 (2)0.028 (2)0.031 (2)0.0052 (17)0.0074 (17)0.0011 (18)
C70.030 (2)0.028 (2)0.034 (2)0.0002 (18)0.0111 (19)0.0038 (19)
C80.030 (2)0.038 (3)0.036 (2)0.001 (2)0.012 (2)0.007 (2)
C90.045 (3)0.068 (4)0.081 (5)0.010 (3)0.018 (3)0.036 (4)
C100.050 (3)0.054 (4)0.049 (3)0.009 (3)0.015 (3)0.019 (3)
C110.088 (5)0.060 (4)0.040 (3)0.012 (4)0.022 (3)0.003 (3)
N10.033 (2)0.039 (2)0.034 (2)0.0047 (17)0.0135 (17)0.0003 (18)
N20.0209 (17)0.043 (2)0.0293 (19)0.0010 (16)0.0028 (14)0.0090 (17)
O10.061 (3)0.055 (3)0.084 (3)0.004 (2)0.032 (2)0.004 (2)
O20.0238 (17)0.083 (3)0.046 (2)0.0002 (18)0.0081 (15)0.018 (2)
Br10.0413 (4)0.0561 (4)0.0409 (3)0.0175 (2)0.0118 (2)0.0002 (2)
Geometric parameters (Å, º) top
C1—O11.440 (8)C7—C81.536 (7)
C1—C21.516 (7)C8—C101.518 (7)
C1—Br11.962 (6)C8—C111.522 (8)
C1—H11.0000C8—C91.526 (7)
C2—N11.352 (6)C9—H9A0.9800
C2—C31.376 (8)C9—H9B0.9800
C3—C41.380 (8)C9—H9C0.9800
C3—H30.9500C10—H10A0.9800
C4—C51.386 (7)C10—H10B0.9800
C4—H40.9500C10—H10C0.9800
C5—C61.388 (6)C11—H11A0.9800
C5—H50.9500C11—H11B0.9800
C6—N11.339 (6)C11—H11C0.9800
C6—N21.404 (6)N2—H20.8800
C7—O21.207 (6)O1—H1A0.8400
C7—N21.367 (6)
O1—C1—C2121.5 (5)C10—C8—C7113.2 (4)
O1—C1—Br1116.2 (4)C11—C8—C7106.7 (4)
C2—C1—Br1109.4 (4)C9—C8—C7107.9 (4)
O1—C1—H1102.0C8—C9—H9A109.5
C2—C1—H1102.0C8—C9—H9B109.5
Br1—C1—H1102.0H9A—C9—H9B109.5
N1—C2—C3123.4 (5)C8—C9—H9C109.5
N1—C2—C1114.7 (5)H9A—C9—H9C109.5
C3—C2—C1121.9 (5)H9B—C9—H9C109.5
C2—C3—C4118.2 (5)C8—C10—H10A109.5
C2—C3—H3120.9C8—C10—H10B109.5
C4—C3—H3120.9H10A—C10—H10B109.5
C3—C4—C5120.0 (5)C8—C10—H10C109.5
C3—C4—H4120.0H10A—C10—H10C109.5
C5—C4—H4120.0H10B—C10—H10C109.5
C4—C5—C6117.6 (5)C8—C11—H11A109.5
C4—C5—H5121.2C8—C11—H11B109.5
C6—C5—H5121.2H11A—C11—H11B109.5
N1—C6—C5123.6 (4)C8—C11—H11C109.5
N1—C6—N2112.3 (4)H11A—C11—H11C109.5
C5—C6—N2124.1 (4)H11B—C11—H11C109.5
O2—C7—N2121.9 (4)C6—N1—C2117.2 (4)
O2—C7—C8121.8 (4)C7—N2—C6128.9 (4)
N2—C7—C8116.3 (4)C7—N2—H2115.6
C10—C8—C11109.9 (5)C6—N2—H2115.6
C10—C8—C9108.7 (5)C1—O1—H1A109.5
C11—C8—C9110.4 (5)
O1—C1—C2—N153.7 (7)O2—C7—C8—C1188.7 (6)
Br1—C1—C2—N186.3 (5)N2—C7—C8—C1190.4 (5)
O1—C1—C2—C3126.0 (6)O2—C7—C8—C930.0 (7)
Br1—C1—C2—C393.9 (5)N2—C7—C8—C9150.9 (5)
N1—C2—C3—C41.7 (8)C5—C6—N1—C21.6 (7)
C1—C2—C3—C4178.7 (5)N2—C6—N1—C2177.4 (4)
C2—C3—C4—C51.2 (8)C3—C2—N1—C60.3 (7)
C3—C4—C5—C60.5 (8)C1—C2—N1—C6180.0 (4)
C4—C5—C6—N12.0 (7)O2—C7—N2—C62.2 (8)
C4—C5—C6—N2176.9 (5)C8—C7—N2—C6178.7 (4)
O2—C7—C8—C10150.3 (5)N1—C6—N2—C7173.7 (4)
N2—C7—C8—C1030.6 (6)C5—C6—N2—C77.3 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O1i0.842.032.472 (10)113
O1—H1A···Br1ii0.842.853.509 (5)137
N2—H2···Br1ii0.882.973.690 (4)140
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC11H15BrN2O2
Mr287.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)13.2980 (5), 10.0848 (3), 9.4890 (3)
β (°) 106.858 (1)
V3)1217.86 (7)
Z4
Radiation typeMo Kα
µ (mm1)3.36
Crystal size (mm)0.10 × 0.08 × 0.08
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.730, 0.771
No. of measured, independent and
observed [I > 2σ(I)] reflections
11933, 2773, 2142
Rint0.081
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.166, 1.10
No. of reflections2773
No. of parameters149
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.99

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), WinGX (Farrugia, 1999) and CHEMDRAW Ultra (Cambridge Soft 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O1i0.842.032.472 (10)112.5
O1—H1A···Br1ii0.842.853.509 (5)136.7
N2—H2···Br1ii0.882.973.690 (4)139.7
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y1/2, z+3/2.
 

Acknowledgements

We thank the Ministry of Higher Education, Kingdom of Saudi Arabia, for financial support.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGoswami, S., Dey, S., Chantrapromma, S. & Fun, H.-K. (2005). Acta Cryst. E61, o105–o107.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarata, M., Jitsukawa, K. M. H. & Einaga, H. (1995). Chem. Lett. 61–62.  Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds