organic compounds
4,4′-Bipyridine–2-hydroxypropane-1,2,3-tricarboxylic acid (3/2)
aDepartment of Chemistry, Faculty of Science, Ilam University, Ilam, Iran, and bFaculty of Chemistry, Tarbiat Moallem University, 49 Mofateh Avenue, 15614 Tehran, Iran
*Correspondence e-mail: janet_soleimannejad@yahoo.com
The combination of 2-hydroxypropane-1,2,3-tricarboxylic acid (H3hypta, also called citric acid) and 4,4′-bipyridine (4,4′-bipy) in a 1:1.5 molar ratio leads to the formation of the title molecular cocrystal, 1.5C10H8N2·C6H8O7. The contains one and a half 4,4′-bipy units, with one lying across a centre of inversion, and one H3hypta molecule. The significant differences in the C—O bond distances support the existence of the un-ionized acid molecule and confirm the formation of a cocrystal. There are π–π and C—H⋯π stacking interactions between the aromatic rings of 4,4′-bipy [with interplanar distances of 3.7739 (8) and 3.7970 (8) Å] and between CH groups of H3hypta [with an H⋯π distance of 2.63 Å]. In the intermolecular O—H⋯N hydrogen bonds occur and an O—H⋯O hydrogen bond occurs within the citric acid moiety.
Related literature
For related literature on cocrystals and hydrogen bonding, see: Aakeroy & Seddon (1993); Aghabozorg et al. (2006); Aghabozorg, Heidari et al. (2008); Aghabozorg, Manteghi & Sheshmani (2008); Baures (1999); Biradha et al. (1993); Desiraju (1989); Desiraju & Steiner (1999); Houk et al. (1999).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809004607/su2092sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809004607/su2092Isup2.hkl
An aqueous solution (50 ml) of 4,4'-bipyridine (100 mg, 6 mmol) and 84 mg (4 mmol) of 2-hydroxypropane-1,2,3-tricarboxylicacid, [H3hypta, also called citric acid] were refluxed for two hours. Yellow crystals of the title compound were obtained from the solution after a few weeks at room temperature.
The H atoms were included in calculated positions and treated as riding atoms: O—H = 0.84 Å, C—H = 0.95–0.99 Å, with Uiso(H) = 1.2Ueq(parent O or C atom).
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound, showing the displacement ellipsoids drawn at the 50% probability level. [The suffix a denotes atoms generated by the symmetry operator (-x, -y, -z + 1). | |
Fig. 2. A view of the π–π stacking interaction between two Cg1 and Cg2 aromatic rings of the 4,4'-bipyridine units, with distances of 3.7739 (8) Å; 1/2 + x, 1/2 - y, -1/2 + z and 3.7970 (8) Å; -1/2 + x, 1/2 - y, -1/2 + z [Cg1 and Cg2 are centroids for the aromatic rings N1/C7–C9/C15/C16 and N2/C10–C14, respectively]. | |
Fig. 3. A view of the C—H···π stacking interactions between CH groups of 2-hydroxypropane-1,2,3-tricarboxylic acid with the aromatic rings of 4,4'-bipyridine: H···π distance of 2.634 Å for C2—O2A···Cg3 (-1 + x, y, z) [Cg3 is the centroid of ring N3/C17–C21]. | |
Fig. 4. Two 4,4'-bipy and H3hypta fragments are linked together by O—H···N and C—H···O hydrogen bonds. | |
Fig. 5. Crystal packing of the title compound viewed down the c axis (hydrogen bonds are shown as dashed lines). |
1.5C10H8N2·C6H8O7 | F(000) = 892 |
Mr = 426.40 | Dx = 1.418 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 20381 reflections |
a = 7.0371 (2) Å | θ = 2.7–29.6° |
b = 33.5054 (10) Å | µ = 0.11 mm−1 |
c = 8.4715 (2) Å | T = 150 K |
β = 90.302 (2)° | Block, yellow |
V = 1997.39 (9) Å3 | 0.31 × 0.26 × 0.22 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 6045 independent reflections |
Radiation source: fine-focus sealed tube | 4986 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
ϕ and ω scans | θmax = 30.5°, θmin = 1.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −9→10 |
Tmin = 0.896, Tmax = 0.977 | k = −47→47 |
63749 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.046P)2 + 1.026P] where P = (Fo2 + 2Fc2)/3 |
6045 reflections | (Δ/σ)max < 0.001 |
284 parameters | Δρmax = 0.40 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
1.5C10H8N2·C6H8O7 | V = 1997.39 (9) Å3 |
Mr = 426.40 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.0371 (2) Å | µ = 0.11 mm−1 |
b = 33.5054 (10) Å | T = 150 K |
c = 8.4715 (2) Å | 0.31 × 0.26 × 0.22 mm |
β = 90.302 (2)° |
Bruker SMART CCD area-detector diffractometer | 6045 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 4986 reflections with I > 2σ(I) |
Tmin = 0.896, Tmax = 0.977 | Rint = 0.033 |
63749 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.40 e Å−3 |
6045 reflections | Δρmin = −0.24 e Å−3 |
284 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 1.22826 (14) | 0.02331 (3) | 0.66535 (13) | 0.0327 (2) | |
H1A | 1.3359 | 0.0254 | 0.7078 | 0.049* | |
O2 | 1.27436 (15) | 0.08764 (3) | 0.60893 (15) | 0.0360 (3) | |
O3 | 0.85874 (15) | 0.12663 (3) | 0.72640 (11) | 0.0274 (2) | |
H3A | 0.8845 | 0.1464 | 0.7838 | 0.041* | |
O4 | 1.00936 (14) | 0.16212 (3) | 0.54053 (11) | 0.0258 (2) | |
O5 | 0.59732 (15) | 0.15627 (3) | 0.37884 (11) | 0.0274 (2) | |
O6 | 0.52218 (17) | 0.10777 (3) | 0.20888 (12) | 0.0339 (3) | |
H6A | 0.4824 | 0.1270 | 0.1541 | 0.051* | |
O7 | 0.99435 (14) | 0.10297 (3) | 0.33252 (10) | 0.02327 (19) | |
H7A | 1.0802 | 0.1200 | 0.3467 | 0.035* | |
C1 | 1.17363 (18) | 0.05848 (4) | 0.61136 (14) | 0.0207 (2) | |
C2 | 0.97059 (17) | 0.05761 (3) | 0.55534 (15) | 0.0195 (2) | |
H2A | 0.8884 | 0.0516 | 0.6468 | 0.023* | |
H2B | 0.9561 | 0.0354 | 0.4789 | 0.023* | |
C3 | 0.89834 (17) | 0.09596 (3) | 0.47738 (13) | 0.0173 (2) | |
C4 | 0.68742 (18) | 0.08896 (4) | 0.43974 (15) | 0.0208 (2) | |
H4A | 0.6741 | 0.0632 | 0.3832 | 0.025* | |
H4B | 0.6168 | 0.0867 | 0.5401 | 0.025* | |
C5 | 0.59840 (18) | 0.12151 (4) | 0.34080 (14) | 0.0206 (2) | |
C6 | 0.92786 (18) | 0.13235 (3) | 0.58559 (14) | 0.0194 (2) | |
N1 | 0.42826 (18) | 0.31593 (3) | 0.42264 (13) | 0.0263 (2) | |
N2 | 0.42914 (18) | 0.16451 (3) | 1.00572 (14) | 0.0278 (2) | |
C7 | 0.4111 (2) | 0.32444 (4) | 0.57535 (16) | 0.0285 (3) | |
H7 | 0.3926 | 0.3515 | 0.6050 | 0.034* | |
C8 | 0.4188 (2) | 0.29590 (4) | 0.69282 (15) | 0.0262 (3) | |
H8 | 0.4064 | 0.3034 | 0.8004 | 0.031* | |
C9 | 0.44484 (18) | 0.25603 (4) | 0.65244 (14) | 0.0206 (2) | |
C10 | 0.44274 (18) | 0.22416 (4) | 0.77407 (14) | 0.0203 (2) | |
C11 | 0.4672 (2) | 0.23319 (4) | 0.93413 (15) | 0.0262 (3) | |
H11 | 0.4887 | 0.2599 | 0.9670 | 0.031* | |
C12 | 0.4597 (2) | 0.20272 (4) | 1.04392 (16) | 0.0291 (3) | |
H12 | 0.4772 | 0.2093 | 1.1521 | 0.035* | |
C13 | 0.4046 (2) | 0.15593 (4) | 0.85302 (16) | 0.0275 (3) | |
H13 | 0.3824 | 0.1289 | 0.8240 | 0.033* | |
C14 | 0.4101 (2) | 0.18445 (4) | 0.73488 (15) | 0.0243 (3) | |
H14 | 0.3917 | 0.1769 | 0.6278 | 0.029* | |
C15 | 0.4680 (2) | 0.24726 (4) | 0.49209 (15) | 0.0262 (3) | |
H15 | 0.4899 | 0.2206 | 0.4587 | 0.031* | |
C16 | 0.4587 (2) | 0.27789 (4) | 0.38298 (15) | 0.0282 (3) | |
H16 | 0.4747 | 0.2716 | 0.2745 | 0.034* | |
N3 | 0.56382 (16) | 0.01882 (4) | 0.80165 (13) | 0.0261 (2) | |
C17 | 0.6626 (2) | −0.01444 (4) | 0.77585 (17) | 0.0292 (3) | |
H17 | 0.6137 | −0.0332 | 0.7021 | 0.035* | |
C18 | 0.83276 (19) | −0.02304 (4) | 0.85097 (16) | 0.0257 (3) | |
H18 | 0.8979 | −0.0472 | 0.8286 | 0.031* | |
C19 | 0.90778 (16) | 0.00392 (4) | 0.95940 (13) | 0.0183 (2) | |
C20 | 0.8034 (2) | 0.03831 (4) | 0.98728 (16) | 0.0274 (3) | |
H20 | 0.8478 | 0.0575 | 1.0613 | 0.033* | |
C21 | 0.6342 (2) | 0.04450 (4) | 0.90668 (17) | 0.0295 (3) | |
H21 | 0.5649 | 0.0682 | 0.9274 | 0.035* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0243 (5) | 0.0270 (5) | 0.0467 (6) | 0.0001 (4) | −0.0148 (4) | 0.0088 (4) |
O2 | 0.0232 (5) | 0.0249 (5) | 0.0597 (7) | −0.0039 (4) | −0.0068 (5) | 0.0009 (5) |
O3 | 0.0403 (6) | 0.0231 (5) | 0.0190 (4) | −0.0043 (4) | 0.0041 (4) | −0.0039 (3) |
O4 | 0.0326 (5) | 0.0186 (4) | 0.0262 (5) | −0.0057 (4) | −0.0031 (4) | 0.0012 (3) |
O5 | 0.0372 (6) | 0.0198 (4) | 0.0250 (5) | 0.0051 (4) | −0.0040 (4) | −0.0013 (3) |
O6 | 0.0534 (7) | 0.0212 (5) | 0.0269 (5) | 0.0017 (4) | −0.0190 (5) | 0.0016 (4) |
O7 | 0.0287 (5) | 0.0223 (4) | 0.0189 (4) | −0.0030 (3) | 0.0044 (3) | −0.0009 (3) |
C1 | 0.0199 (6) | 0.0214 (6) | 0.0207 (6) | 0.0014 (4) | −0.0018 (4) | −0.0021 (4) |
C2 | 0.0196 (6) | 0.0158 (5) | 0.0231 (6) | 0.0000 (4) | −0.0042 (4) | 0.0014 (4) |
C3 | 0.0200 (6) | 0.0153 (5) | 0.0165 (5) | −0.0001 (4) | −0.0003 (4) | 0.0000 (4) |
C4 | 0.0208 (6) | 0.0177 (5) | 0.0238 (6) | −0.0007 (4) | −0.0053 (4) | 0.0034 (4) |
C5 | 0.0218 (6) | 0.0200 (5) | 0.0200 (6) | 0.0016 (4) | −0.0011 (4) | 0.0022 (4) |
C6 | 0.0221 (6) | 0.0172 (5) | 0.0190 (5) | 0.0012 (4) | −0.0030 (4) | −0.0008 (4) |
N1 | 0.0366 (6) | 0.0232 (5) | 0.0193 (5) | 0.0002 (4) | 0.0017 (4) | 0.0028 (4) |
N2 | 0.0362 (6) | 0.0247 (5) | 0.0225 (5) | 0.0027 (5) | −0.0070 (5) | 0.0041 (4) |
C7 | 0.0443 (8) | 0.0197 (6) | 0.0214 (6) | 0.0031 (5) | 0.0013 (5) | 0.0003 (5) |
C8 | 0.0405 (8) | 0.0215 (6) | 0.0164 (6) | 0.0039 (5) | 0.0013 (5) | −0.0005 (4) |
C9 | 0.0239 (6) | 0.0205 (5) | 0.0175 (5) | 0.0026 (4) | −0.0006 (4) | 0.0008 (4) |
C10 | 0.0216 (6) | 0.0214 (6) | 0.0178 (5) | 0.0036 (4) | −0.0013 (4) | 0.0010 (4) |
C11 | 0.0379 (7) | 0.0211 (6) | 0.0196 (6) | 0.0038 (5) | −0.0045 (5) | −0.0003 (4) |
C12 | 0.0430 (8) | 0.0255 (6) | 0.0188 (6) | 0.0047 (6) | −0.0061 (5) | 0.0011 (5) |
C13 | 0.0348 (7) | 0.0216 (6) | 0.0259 (6) | 0.0005 (5) | −0.0072 (5) | 0.0013 (5) |
C14 | 0.0296 (7) | 0.0234 (6) | 0.0198 (6) | 0.0014 (5) | −0.0037 (5) | −0.0009 (4) |
C15 | 0.0389 (8) | 0.0200 (6) | 0.0198 (6) | 0.0041 (5) | 0.0028 (5) | −0.0019 (4) |
C16 | 0.0419 (8) | 0.0258 (6) | 0.0168 (6) | 0.0025 (5) | 0.0037 (5) | −0.0005 (5) |
N3 | 0.0197 (5) | 0.0314 (6) | 0.0272 (6) | 0.0009 (4) | −0.0037 (4) | 0.0068 (4) |
C17 | 0.0244 (7) | 0.0292 (7) | 0.0338 (7) | −0.0025 (5) | −0.0087 (5) | −0.0018 (5) |
C18 | 0.0229 (6) | 0.0208 (6) | 0.0333 (7) | 0.0032 (5) | −0.0062 (5) | −0.0041 (5) |
C19 | 0.0176 (5) | 0.0203 (5) | 0.0169 (5) | 0.0015 (4) | −0.0009 (4) | 0.0017 (4) |
C20 | 0.0278 (7) | 0.0268 (6) | 0.0274 (6) | 0.0086 (5) | −0.0065 (5) | −0.0057 (5) |
C21 | 0.0277 (7) | 0.0300 (7) | 0.0306 (7) | 0.0114 (5) | −0.0046 (5) | −0.0002 (5) |
O1—C1 | 1.3205 (15) | C8—C9 | 1.3915 (17) |
O1—H1A | 0.8400 | C8—H8 | 0.9500 |
O2—C1 | 1.2073 (16) | C9—C15 | 1.4002 (17) |
O3—C6 | 1.3048 (15) | C9—C10 | 1.4838 (17) |
O3—H3A | 0.8400 | C10—C14 | 1.3902 (17) |
O4—C6 | 1.2131 (15) | C10—C11 | 1.3990 (17) |
O5—C5 | 1.2084 (15) | C11—C12 | 1.3820 (18) |
O6—C5 | 1.3200 (15) | C11—H11 | 0.9500 |
O6—H6A | 0.8400 | C12—H12 | 0.9500 |
O7—C3 | 1.4235 (14) | C13—C14 | 1.3844 (18) |
O7—H7A | 0.8400 | C13—H13 | 0.9500 |
C1—C2 | 1.5035 (17) | C14—H14 | 0.9500 |
C2—C3 | 1.5306 (16) | C15—C16 | 1.3825 (18) |
C2—H2A | 0.9900 | C15—H15 | 0.9500 |
C2—H2B | 0.9900 | C16—H16 | 0.9500 |
C3—C4 | 1.5345 (17) | N3—C21 | 1.3313 (18) |
C3—C6 | 1.5389 (16) | N3—C17 | 1.3323 (18) |
C4—C5 | 1.5096 (16) | C17—C18 | 1.3832 (18) |
C4—H4A | 0.9900 | C17—H17 | 0.9500 |
C4—H4B | 0.9900 | C18—C19 | 1.3906 (17) |
N1—C7 | 1.3309 (17) | C18—H18 | 0.9500 |
N1—C16 | 1.3357 (17) | C19—C20 | 1.3875 (17) |
N2—C13 | 1.3355 (17) | C19—C19i | 1.489 (2) |
N2—C12 | 1.3379 (18) | C20—C21 | 1.3851 (18) |
C7—C8 | 1.3810 (18) | C20—H20 | 0.9500 |
C7—H7 | 0.9500 | C21—H21 | 0.9500 |
C1—O1—H1A | 109.5 | C8—C9—C10 | 121.22 (11) |
C6—O3—H3A | 109.5 | C15—C9—C10 | 121.63 (11) |
C5—O6—H6A | 109.5 | C14—C10—C11 | 117.23 (11) |
C3—O7—H7A | 109.5 | C14—C10—C9 | 121.67 (11) |
O2—C1—O1 | 123.93 (12) | C11—C10—C9 | 121.06 (11) |
O2—C1—C2 | 124.57 (11) | C12—C11—C10 | 119.19 (12) |
O1—C1—C2 | 111.49 (10) | C12—C11—H11 | 120.4 |
C1—C2—C3 | 115.65 (10) | C10—C11—H11 | 120.4 |
C1—C2—H2A | 108.4 | N2—C12—C11 | 123.41 (12) |
C3—C2—H2A | 108.4 | N2—C12—H12 | 118.3 |
C1—C2—H2B | 108.4 | C11—C12—H12 | 118.3 |
C3—C2—H2B | 108.4 | N2—C13—C14 | 123.22 (12) |
H2A—C2—H2B | 107.4 | N2—C13—H13 | 118.4 |
O7—C3—C2 | 110.63 (10) | C14—C13—H13 | 118.4 |
O7—C3—C4 | 108.00 (9) | C13—C14—C10 | 119.55 (12) |
C2—C3—C4 | 106.27 (9) | C13—C14—H14 | 120.2 |
O7—C3—C6 | 108.65 (9) | C10—C14—H14 | 120.2 |
C2—C3—C6 | 111.39 (9) | C16—C15—C9 | 119.18 (12) |
C4—C3—C6 | 111.86 (10) | C16—C15—H15 | 120.4 |
C5—C4—C3 | 113.77 (10) | C9—C15—H15 | 120.4 |
C5—C4—H4A | 108.8 | N1—C16—C15 | 123.18 (12) |
C3—C4—H4A | 108.8 | N1—C16—H16 | 118.4 |
C5—C4—H4B | 108.8 | C15—C16—H16 | 118.4 |
C3—C4—H4B | 108.8 | C21—N3—C17 | 117.24 (11) |
H4A—C4—H4B | 107.7 | N3—C17—C18 | 123.37 (13) |
O5—C5—O6 | 123.98 (11) | N3—C17—H17 | 118.3 |
O5—C5—C4 | 123.46 (11) | C18—C17—H17 | 118.3 |
O6—C5—C4 | 112.56 (10) | C17—C18—C19 | 119.56 (12) |
O4—C6—O3 | 125.98 (11) | C17—C18—H18 | 120.2 |
O4—C6—C3 | 121.77 (11) | C19—C18—H18 | 120.2 |
O3—C6—C3 | 112.24 (10) | C20—C19—C18 | 116.91 (11) |
C7—N1—C16 | 117.68 (11) | C20—C19—C19i | 121.93 (14) |
C13—N2—C12 | 117.39 (12) | C18—C19—C19i | 121.17 (13) |
N1—C7—C8 | 123.27 (12) | C21—C20—C19 | 119.66 (12) |
N1—C7—H7 | 118.4 | C21—C20—H20 | 120.2 |
C8—C7—H7 | 118.4 | C19—C20—H20 | 120.2 |
C7—C8—C9 | 119.50 (12) | N3—C21—C20 | 123.26 (13) |
C7—C8—H8 | 120.2 | N3—C21—H21 | 118.4 |
C9—C8—H8 | 120.2 | C20—C21—H21 | 118.4 |
C8—C9—C15 | 117.13 (11) | ||
O2—C1—C2—C3 | 5.62 (19) | C8—C9—C10—C11 | −17.8 (2) |
O1—C1—C2—C3 | −174.98 (11) | C15—C9—C10—C11 | 163.88 (13) |
C1—C2—C3—O7 | 66.37 (13) | C14—C10—C11—C12 | 0.6 (2) |
C1—C2—C3—C4 | −176.64 (10) | C9—C10—C11—C12 | 178.46 (13) |
C1—C2—C3—C6 | −54.58 (14) | C13—N2—C12—C11 | −0.1 (2) |
O7—C3—C4—C5 | −52.92 (13) | C10—C11—C12—N2 | −0.3 (2) |
C2—C3—C4—C5 | −171.64 (10) | C12—N2—C13—C14 | 0.2 (2) |
C6—C3—C4—C5 | 66.59 (13) | N2—C13—C14—C10 | 0.1 (2) |
C3—C4—C5—O5 | −56.85 (17) | C11—C10—C14—C13 | −0.5 (2) |
C3—C4—C5—O6 | 123.21 (12) | C9—C10—C14—C13 | −178.34 (13) |
O7—C3—C6—O4 | 4.99 (16) | C8—C9—C15—C16 | −1.8 (2) |
C2—C3—C6—O4 | 127.10 (12) | C10—C9—C15—C16 | 176.56 (13) |
C4—C3—C6—O4 | −114.14 (13) | C7—N1—C16—C15 | 1.7 (2) |
O7—C3—C6—O3 | −174.06 (10) | C9—C15—C16—N1 | 0.0 (2) |
C2—C3—C6—O3 | −51.95 (14) | C21—N3—C17—C18 | −0.6 (2) |
C4—C3—C6—O3 | 66.82 (13) | N3—C17—C18—C19 | −0.1 (2) |
C16—N1—C7—C8 | −1.6 (2) | C17—C18—C19—C20 | 0.8 (2) |
N1—C7—C8—C9 | −0.3 (2) | C17—C18—C19—C19i | −178.91 (15) |
C7—C8—C9—C15 | 2.0 (2) | C18—C19—C20—C21 | −0.8 (2) |
C7—C8—C9—C10 | −176.40 (13) | C19i—C19—C20—C21 | 178.91 (15) |
C8—C9—C10—C14 | 159.96 (13) | C17—N3—C21—C20 | 0.7 (2) |
C15—C9—C10—C14 | −18.3 (2) | C19—C20—C21—N3 | 0.1 (2) |
Symmetry code: (i) −x+2, −y, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···N3ii | 0.84 | 1.80 | 2.6275 (14) | 168 |
O3—H3A···N1iii | 0.84 | 1.75 | 2.5880 (14) | 173 |
O6—H6A···N2iv | 0.84 | 1.82 | 2.6443 (14) | 168 |
O7—H7A···O4 | 0.84 | 2.22 | 2.6538 (13) | 112 |
C2—H2A···Cgv | 0.99 | 2.63 | 3.5579 (13) | 160 |
Symmetry codes: (ii) x+1, y, z; (iii) x+1/2, −y+1/2, z+1/2; (iv) x, y, z−1; (v) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | 1.5C10H8N2·C6H8O7 |
Mr | 426.40 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 150 |
a, b, c (Å) | 7.0371 (2), 33.5054 (10), 8.4715 (2) |
β (°) | 90.302 (2) |
V (Å3) | 1997.39 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.31 × 0.26 × 0.22 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.896, 0.977 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 63749, 6045, 4986 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.715 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.116, 1.05 |
No. of reflections | 6045 |
No. of parameters | 284 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.40, −0.24 |
Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···N3i | 0.84 | 1.80 | 2.6275 (14) | 168 |
O3—H3A···N1ii | 0.84 | 1.75 | 2.5880 (14) | 173 |
O6—H6A···N2iii | 0.84 | 1.82 | 2.6443 (14) | 168 |
O7—H7A···O4 | 0.84 | 2.22 | 2.6538 (13) | 112 |
C2—H2A···Cgiv | 0.99 | 2.63 | 3.5579 (13) | 160 |
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, −y+1/2, z+1/2; (iii) x, y, z−1; (iv) x−1, y, z. |
Acknowledgements
Financial support from Ilam University is gratefully acknowledged.
References
Aakeroy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397–407. CrossRef CAS Web of Science Google Scholar
Aghabozorg, H., Ghadermazi, M. & Attar Gharamaleki, J. (2006). Acta Cryst. E62, o3445–o3447. Web of Science CSD CrossRef IUCr Journals Google Scholar
Aghabozorg, H., Heidari, M., Ghadermazi, M. & Attar Gharamaleki, J. (2008). Acta Cryst. E64, o1045–o1046. Web of Science CSD CrossRef IUCr Journals Google Scholar
Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227. CrossRef CAS Google Scholar
Baures, P. W. (1999). Org. Lett. 1, 249–252. Web of Science CrossRef PubMed CAS Google Scholar
Biradha, K., Sharma, C. V. K., Panneerselvam, K., Shimoni, L., Carrell, H. L., Zacharias, D. E. & Desiraju, G. R. (1993). Chem. Commun. pp. 1473–1475. CrossRef Google Scholar
Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier. Google Scholar
Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond In Structural Chemistry and Biology. New York: Oxford University Press. Google Scholar
Houk, K. N., Menzer, S., Newton, S. P., Raymo, F. M., Stoddart, J. F. & Williams, D. J. (1999). J. Am. Chem. Soc. 121, 1479–1487. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The creation of new functional materials through the control of intermolecular bonding is a key aim of crystal engineering (Desiraju, 1989). The synthesis of crystalline supramolecular structures mediated by hydrogen bonds is of considerable importance. Among all the non-bonded interactions, hydrogen bonding has proved to be the most useful and reliable, because of its strength and directional properties (Aakeroy & Seddon, 1993; Aghabozorg, Heidari et al., 2008).
In the case of cocrystals, these are generally formed by dissolution and recrystallization from a suitable solvent, although sublimation and growth from the melt are also used. Co-crystallization is a deliberate attempt at bringing together different molecular species in one crystalline lattice without making or breaking covalent bonds (Aghabozorg et al., 2006). Cocrystals are used to reveal specific recognition motifs, such as those proposed for rational drug design (Baures, 1999; Houk et al., 1999) and crystal engineering applications.
The asymmetric unit of the title cocrystal is shown in Fig. 1, and geometrical parameters are availabe in the archived CIF. The asymmetric unit contains one and a half 4,4'-bipy units and one H3hypta molecule. One 4,4'-bipy unit is located on a center of inversion. The C—O distances support the existence of the unionized acid molecules, indicating cocrystal formation; the C1—O1 [1.3203 (15) Å], C5—O6 [1.3197 (15) Å] and C6—O3 [1.3045 (15) Å] bond lengths are significantly longer than the C1—O2 [1.2070 (16) Å], C5—O5 [1.2084 (15) Å] and C6—O4 [1.2131 (15) Å] bond lengths.
The dihedral angle involving the aromatic rings, N1/C7–C9/C15/C16 (Cg1) and N2/C10–C14 (Cg2), of a 4,4'-bipy is 18.67°, which shows these units are not in the same plane, and also indicates the flexibility of the central C—C bond.
As shown in Fig. 2, there are π–π stacking interactions between two aromatic rings, Cg1 and Cg2, of the 4,4'-bipy units, with distances of 3.7739 (8) Å [1/2 + x, 1/2 - y, -1/2 + z] and 3.7970 (8) Å [-1/2 + x, 1/2 - y, -1/2 + z]. It can be seen in Fig. 3, that there are also C—H···π stacking interactions between CH groups of 2-hydroxypropane-1,2,3-tricarboxylic acid and the aromatic rings of 4,4'-bipyridine, with an H···π distance of 2.63 Å for C2—O2A···Cg3 [-1 + x, y, z; where Cg3 is the centroid of ring N3/C17–C21].
A remarkable feature in the crystal structure of the title compound is the presence of a large number of O—H···O, O—H···N and C—H···O hydrogen bonds (Table 1). There is an intramolecular O7—H7A···O4 hydrogen bond between the hydroxyl group and the carboxylate carbonyl group of the H3hypta unit, with distance D···A of 2.6538 (13) Å. Two 4,4'-bipy and H3hypta fragments are linked together by O—H···N and C—H···O hydrogen bonds and form chains (Fig. 4). C—H···O hydrogen bonding is widely accepted (Desiraju & Steiner, 1999; Biradha et al., 1993), and weak hydrogen bonding can be exploited in supramolecular chemistry and crystal structure design (Aghabozorg, Manteghi & Sheshmani, 2008). The crystal packing of the title compound is illustrated in Fig. 5.