organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages o532-o533

4,4′-Bi­pyridine–2-hy­droxy­propane-1,2,3-tri­carboxylic acid (3/2)

aDepartment of Chemistry, Faculty of Science, Ilam University, Ilam, Iran, and bFaculty of Chemistry, Tarbiat Moallem University, 49 Mofateh Avenue, 15614 Tehran, Iran
*Correspondence e-mail: janet_soleimannejad@yahoo.com

(Received 19 January 2009; accepted 9 February 2009; online 18 February 2009)

The combination of 2-hydroxy­propane-1,2,3-tricarboxylic acid (H3hypta, also called citric acid) and 4,4′-bipyridine (4,4′-bipy) in a 1:1.5 molar ratio leads to the formation of the title mol­ecular cocrystal, 1.5C10H8N2·C6H8O7. The asymmetric unit contains one and a half 4,4′-bipy units, with one lying across a centre of inversion, and one H3hypta mol­ecule. The significant differences in the C—O bond distances support the existence of the un-ionized acid mol­ecule and confirm the formation of a cocrystal. There are ππ and C—H⋯π stacking inter­actions between the aromatic rings of 4,4′-bipy [with inter­planar distances of 3.7739 (8) and 3.7970 (8) Å] and between CH groups of H3hypta [with an H⋯π distance of 2.63 Å]. In the crystal structure, intermolecular O—H⋯N hydrogen bonds occur and an O—H⋯O hydrogen bond occurs within the citric acid moiety.

Related literature

For related literature on cocrystals and hydrogen bonding, see: Aakeroy & Seddon (1993[Aakeroy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397-407.]); Aghabozorg et al. (2006[Aghabozorg, H., Ghadermazi, M. & Attar Gharamaleki, J. (2006). Acta Cryst. E62, o3445-o3447.]); Aghabozorg, Heidari et al. (2008[Aghabozorg, H., Heidari, M., Ghadermazi, M. & Attar Gharamaleki, J. (2008). Acta Cryst. E64, o1045-o1046.]); Aghabozorg, Manteghi & Sheshmani (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.]); Baures (1999[Baures, P. W. (1999). Org. Lett. 1, 249-252.]); Biradha et al. (1993[Biradha, K., Sharma, C. V. K., Panneerselvam, K., Shimoni, L., Carrell, H. L., Zacharias, D. E. & Desiraju, G. R. (1993). Chem. Commun. pp. 1473-1475.]); Desiraju (1989[Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.]); Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond In Structural Chemistry and Biology. New York: Oxford University Press.]); Houk et al. (1999[Houk, K. N., Menzer, S., Newton, S. P., Raymo, F. M., Stoddart, J. F. & Williams, D. J. (1999). J. Am. Chem. Soc. 121, 1479-1487.]).

[Scheme 1]

Experimental

Crystal data
  • 1.5C10H8N2·C6H8O7

  • Mr = 426.40

  • Monoclinic, P 21 /n

  • a = 7.0371 (2) Å

  • b = 33.5054 (10) Å

  • c = 8.4715 (2) Å

  • β = 90.302 (2)°

  • V = 1997.39 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 150 K

  • 0.31 × 0.26 × 0.22 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.896, Tmax = 0.977

  • 63749 measured reflections

  • 6045 independent reflections

  • 4986 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.116

  • S = 1.05

  • 6045 reflections

  • 284 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N3i 0.84 1.80 2.6275 (14) 168
O3—H3A⋯N1ii 0.84 1.75 2.5880 (14) 173
O6—H6A⋯N2iii 0.84 1.82 2.6443 (14) 168
O7—H7A⋯O4 0.84 2.22 2.6538 (13) 112
C2—H2ACgiv 0.99 2.63 3.5579 (13) 160
Symmetry codes: (i) x+1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x, y, z-1; (iv) x-1, y, z. Cg is the centroid of the N3,C17–C21 ring.

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The creation of new functional materials through the control of intermolecular bonding is a key aim of crystal engineering (Desiraju, 1989). The synthesis of crystalline supramolecular structures mediated by hydrogen bonds is of considerable importance. Among all the non-bonded interactions, hydrogen bonding has proved to be the most useful and reliable, because of its strength and directional properties (Aakeroy & Seddon, 1993; Aghabozorg, Heidari et al., 2008).

In the case of cocrystals, these are generally formed by dissolution and recrystallization from a suitable solvent, although sublimation and growth from the melt are also used. Co-crystallization is a deliberate attempt at bringing together different molecular species in one crystalline lattice without making or breaking covalent bonds (Aghabozorg et al., 2006). Cocrystals are used to reveal specific recognition motifs, such as those proposed for rational drug design (Baures, 1999; Houk et al., 1999) and crystal engineering applications.

The asymmetric unit of the title cocrystal is shown in Fig. 1, and geometrical parameters are availabe in the archived CIF. The asymmetric unit contains one and a half 4,4'-bipy units and one H3hypta molecule. One 4,4'-bipy unit is located on a center of inversion. The C—O distances support the existence of the unionized acid molecules, indicating cocrystal formation; the C1—O1 [1.3203 (15) Å], C5—O6 [1.3197 (15) Å] and C6—O3 [1.3045 (15) Å] bond lengths are significantly longer than the C1—O2 [1.2070 (16) Å], C5—O5 [1.2084 (15) Å] and C6—O4 [1.2131 (15) Å] bond lengths.

The dihedral angle involving the aromatic rings, N1/C7–C9/C15/C16 (Cg1) and N2/C10–C14 (Cg2), of a 4,4'-bipy is 18.67°, which shows these units are not in the same plane, and also indicates the flexibility of the central C—C bond.

As shown in Fig. 2, there are ππ stacking interactions between two aromatic rings, Cg1 and Cg2, of the 4,4'-bipy units, with distances of 3.7739 (8) Å [1/2 + x, 1/2 - y, -1/2 + z] and 3.7970 (8) Å [-1/2 + x, 1/2 - y, -1/2 + z]. It can be seen in Fig. 3, that there are also C—H···π stacking interactions between CH groups of 2-hydroxypropane-1,2,3-tricarboxylic acid and the aromatic rings of 4,4'-bipyridine, with an H···π distance of 2.63 Å for C2—O2A···Cg3 [-1 + x, y, z; where Cg3 is the centroid of ring N3/C17–C21].

A remarkable feature in the crystal structure of the title compound is the presence of a large number of O—H···O, O—H···N and C—H···O hydrogen bonds (Table 1). There is an intramolecular O7—H7A···O4 hydrogen bond between the hydroxyl group and the carboxylate carbonyl group of the H3hypta unit, with distance D···A of 2.6538 (13) Å. Two 4,4'-bipy and H3hypta fragments are linked together by O—H···N and C—H···O hydrogen bonds and form chains (Fig. 4). C—H···O hydrogen bonding is widely accepted (Desiraju & Steiner, 1999; Biradha et al., 1993), and weak hydrogen bonding can be exploited in supramolecular chemistry and crystal structure design (Aghabozorg, Manteghi & Sheshmani, 2008). The crystal packing of the title compound is illustrated in Fig. 5.

Related literature top

For related literature on cocrystals and hydrogen bonding, see: Aakeroy & Seddon (1993); Aghabozorg et al. (2006); Aghabozorg, Heidari et al. (2008); Aghabozorg, Manteghi & Sheshmani (2008); Baures (1999); Biradha et al. (1993); Desiraju (1989); Desiraju & Steiner (1999); Houk et al. (1999).

Experimental top

An aqueous solution (50 ml) of 4,4'-bipyridine (100 mg, 6 mmol) and 84 mg (4 mmol) of 2-hydroxypropane-1,2,3-tricarboxylicacid, [H3hypta, also called citric acid] were refluxed for two hours. Yellow crystals of the title compound were obtained from the solution after a few weeks at room temperature.

Refinement top

The H atoms were included in calculated positions and treated as riding atoms: O—H = 0.84 Å, C—H = 0.95–0.99 Å, with Uiso(H) = 1.2Ueq(parent O or C atom).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the displacement ellipsoids drawn at the 50% probability level. [The suffix a denotes atoms generated by the symmetry operator (-x, -y, -z + 1).
[Figure 2] Fig. 2. A view of the ππ stacking interaction between two Cg1 and Cg2 aromatic rings of the 4,4'-bipyridine units, with distances of 3.7739 (8) Å; 1/2 + x, 1/2 - y, -1/2 + z and 3.7970 (8) Å; -1/2 + x, 1/2 - y, -1/2 + z [Cg1 and Cg2 are centroids for the aromatic rings N1/C7–C9/C15/C16 and N2/C10–C14, respectively].
[Figure 3] Fig. 3. A view of the C—H···π stacking interactions between CH groups of 2-hydroxypropane-1,2,3-tricarboxylic acid with the aromatic rings of 4,4'-bipyridine: H···π distance of 2.634 Å for C2—O2A···Cg3 (-1 + x, y, z) [Cg3 is the centroid of ring N3/C17–C21].
[Figure 4] Fig. 4. Two 4,4'-bipy and H3hypta fragments are linked together by O—H···N and C—H···O hydrogen bonds.
[Figure 5] Fig. 5. Crystal packing of the title compound viewed down the c axis (hydrogen bonds are shown as dashed lines).
4,4'-Bipyridine–2-hydroxypropane-1,2,3-tricarboxylic acid (3/2) top
Crystal data top
1.5C10H8N2·C6H8O7F(000) = 892
Mr = 426.40Dx = 1.418 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 20381 reflections
a = 7.0371 (2) Åθ = 2.7–29.6°
b = 33.5054 (10) ŵ = 0.11 mm1
c = 8.4715 (2) ÅT = 150 K
β = 90.302 (2)°Block, yellow
V = 1997.39 (9) Å30.31 × 0.26 × 0.22 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
6045 independent reflections
Radiation source: fine-focus sealed tube4986 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 30.5°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 910
Tmin = 0.896, Tmax = 0.977k = 4747
63749 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.046P)2 + 1.026P]
where P = (Fo2 + 2Fc2)/3
6045 reflections(Δ/σ)max < 0.001
284 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
1.5C10H8N2·C6H8O7V = 1997.39 (9) Å3
Mr = 426.40Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.0371 (2) ŵ = 0.11 mm1
b = 33.5054 (10) ÅT = 150 K
c = 8.4715 (2) Å0.31 × 0.26 × 0.22 mm
β = 90.302 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6045 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4986 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 0.977Rint = 0.033
63749 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.05Δρmax = 0.40 e Å3
6045 reflectionsΔρmin = 0.24 e Å3
284 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.22826 (14)0.02331 (3)0.66535 (13)0.0327 (2)
H1A1.33590.02540.70780.049*
O21.27436 (15)0.08764 (3)0.60893 (15)0.0360 (3)
O30.85874 (15)0.12663 (3)0.72640 (11)0.0274 (2)
H3A0.88450.14640.78380.041*
O41.00936 (14)0.16212 (3)0.54053 (11)0.0258 (2)
O50.59732 (15)0.15627 (3)0.37884 (11)0.0274 (2)
O60.52218 (17)0.10777 (3)0.20888 (12)0.0339 (3)
H6A0.48240.12700.15410.051*
O70.99435 (14)0.10297 (3)0.33252 (10)0.02327 (19)
H7A1.08020.12000.34670.035*
C11.17363 (18)0.05848 (4)0.61136 (14)0.0207 (2)
C20.97059 (17)0.05761 (3)0.55534 (15)0.0195 (2)
H2A0.88840.05160.64680.023*
H2B0.95610.03540.47890.023*
C30.89834 (17)0.09596 (3)0.47738 (13)0.0173 (2)
C40.68742 (18)0.08896 (4)0.43974 (15)0.0208 (2)
H4A0.67410.06320.38320.025*
H4B0.61680.08670.54010.025*
C50.59840 (18)0.12151 (4)0.34080 (14)0.0206 (2)
C60.92786 (18)0.13235 (3)0.58559 (14)0.0194 (2)
N10.42826 (18)0.31593 (3)0.42264 (13)0.0263 (2)
N20.42914 (18)0.16451 (3)1.00572 (14)0.0278 (2)
C70.4111 (2)0.32444 (4)0.57535 (16)0.0285 (3)
H70.39260.35150.60500.034*
C80.4188 (2)0.29590 (4)0.69282 (15)0.0262 (3)
H80.40640.30340.80040.031*
C90.44484 (18)0.25603 (4)0.65244 (14)0.0206 (2)
C100.44274 (18)0.22416 (4)0.77407 (14)0.0203 (2)
C110.4672 (2)0.23319 (4)0.93413 (15)0.0262 (3)
H110.48870.25990.96700.031*
C120.4597 (2)0.20272 (4)1.04392 (16)0.0291 (3)
H120.47720.20931.15210.035*
C130.4046 (2)0.15593 (4)0.85302 (16)0.0275 (3)
H130.38240.12890.82400.033*
C140.4101 (2)0.18445 (4)0.73488 (15)0.0243 (3)
H140.39170.17690.62780.029*
C150.4680 (2)0.24726 (4)0.49209 (15)0.0262 (3)
H150.48990.22060.45870.031*
C160.4587 (2)0.27789 (4)0.38298 (15)0.0282 (3)
H160.47470.27160.27450.034*
N30.56382 (16)0.01882 (4)0.80165 (13)0.0261 (2)
C170.6626 (2)0.01444 (4)0.77585 (17)0.0292 (3)
H170.61370.03320.70210.035*
C180.83276 (19)0.02304 (4)0.85097 (16)0.0257 (3)
H180.89790.04720.82860.031*
C190.90778 (16)0.00392 (4)0.95940 (13)0.0183 (2)
C200.8034 (2)0.03831 (4)0.98728 (16)0.0274 (3)
H200.84780.05751.06130.033*
C210.6342 (2)0.04450 (4)0.90668 (17)0.0295 (3)
H210.56490.06820.92740.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0243 (5)0.0270 (5)0.0467 (6)0.0001 (4)0.0148 (4)0.0088 (4)
O20.0232 (5)0.0249 (5)0.0597 (7)0.0039 (4)0.0068 (5)0.0009 (5)
O30.0403 (6)0.0231 (5)0.0190 (4)0.0043 (4)0.0041 (4)0.0039 (3)
O40.0326 (5)0.0186 (4)0.0262 (5)0.0057 (4)0.0031 (4)0.0012 (3)
O50.0372 (6)0.0198 (4)0.0250 (5)0.0051 (4)0.0040 (4)0.0013 (3)
O60.0534 (7)0.0212 (5)0.0269 (5)0.0017 (4)0.0190 (5)0.0016 (4)
O70.0287 (5)0.0223 (4)0.0189 (4)0.0030 (3)0.0044 (3)0.0009 (3)
C10.0199 (6)0.0214 (6)0.0207 (6)0.0014 (4)0.0018 (4)0.0021 (4)
C20.0196 (6)0.0158 (5)0.0231 (6)0.0000 (4)0.0042 (4)0.0014 (4)
C30.0200 (6)0.0153 (5)0.0165 (5)0.0001 (4)0.0003 (4)0.0000 (4)
C40.0208 (6)0.0177 (5)0.0238 (6)0.0007 (4)0.0053 (4)0.0034 (4)
C50.0218 (6)0.0200 (5)0.0200 (6)0.0016 (4)0.0011 (4)0.0022 (4)
C60.0221 (6)0.0172 (5)0.0190 (5)0.0012 (4)0.0030 (4)0.0008 (4)
N10.0366 (6)0.0232 (5)0.0193 (5)0.0002 (4)0.0017 (4)0.0028 (4)
N20.0362 (6)0.0247 (5)0.0225 (5)0.0027 (5)0.0070 (5)0.0041 (4)
C70.0443 (8)0.0197 (6)0.0214 (6)0.0031 (5)0.0013 (5)0.0003 (5)
C80.0405 (8)0.0215 (6)0.0164 (6)0.0039 (5)0.0013 (5)0.0005 (4)
C90.0239 (6)0.0205 (5)0.0175 (5)0.0026 (4)0.0006 (4)0.0008 (4)
C100.0216 (6)0.0214 (6)0.0178 (5)0.0036 (4)0.0013 (4)0.0010 (4)
C110.0379 (7)0.0211 (6)0.0196 (6)0.0038 (5)0.0045 (5)0.0003 (4)
C120.0430 (8)0.0255 (6)0.0188 (6)0.0047 (6)0.0061 (5)0.0011 (5)
C130.0348 (7)0.0216 (6)0.0259 (6)0.0005 (5)0.0072 (5)0.0013 (5)
C140.0296 (7)0.0234 (6)0.0198 (6)0.0014 (5)0.0037 (5)0.0009 (4)
C150.0389 (8)0.0200 (6)0.0198 (6)0.0041 (5)0.0028 (5)0.0019 (4)
C160.0419 (8)0.0258 (6)0.0168 (6)0.0025 (5)0.0037 (5)0.0005 (5)
N30.0197 (5)0.0314 (6)0.0272 (6)0.0009 (4)0.0037 (4)0.0068 (4)
C170.0244 (7)0.0292 (7)0.0338 (7)0.0025 (5)0.0087 (5)0.0018 (5)
C180.0229 (6)0.0208 (6)0.0333 (7)0.0032 (5)0.0062 (5)0.0041 (5)
C190.0176 (5)0.0203 (5)0.0169 (5)0.0015 (4)0.0009 (4)0.0017 (4)
C200.0278 (7)0.0268 (6)0.0274 (6)0.0086 (5)0.0065 (5)0.0057 (5)
C210.0277 (7)0.0300 (7)0.0306 (7)0.0114 (5)0.0046 (5)0.0002 (5)
Geometric parameters (Å, º) top
O1—C11.3205 (15)C8—C91.3915 (17)
O1—H1A0.8400C8—H80.9500
O2—C11.2073 (16)C9—C151.4002 (17)
O3—C61.3048 (15)C9—C101.4838 (17)
O3—H3A0.8400C10—C141.3902 (17)
O4—C61.2131 (15)C10—C111.3990 (17)
O5—C51.2084 (15)C11—C121.3820 (18)
O6—C51.3200 (15)C11—H110.9500
O6—H6A0.8400C12—H120.9500
O7—C31.4235 (14)C13—C141.3844 (18)
O7—H7A0.8400C13—H130.9500
C1—C21.5035 (17)C14—H140.9500
C2—C31.5306 (16)C15—C161.3825 (18)
C2—H2A0.9900C15—H150.9500
C2—H2B0.9900C16—H160.9500
C3—C41.5345 (17)N3—C211.3313 (18)
C3—C61.5389 (16)N3—C171.3323 (18)
C4—C51.5096 (16)C17—C181.3832 (18)
C4—H4A0.9900C17—H170.9500
C4—H4B0.9900C18—C191.3906 (17)
N1—C71.3309 (17)C18—H180.9500
N1—C161.3357 (17)C19—C201.3875 (17)
N2—C131.3355 (17)C19—C19i1.489 (2)
N2—C121.3379 (18)C20—C211.3851 (18)
C7—C81.3810 (18)C20—H200.9500
C7—H70.9500C21—H210.9500
C1—O1—H1A109.5C8—C9—C10121.22 (11)
C6—O3—H3A109.5C15—C9—C10121.63 (11)
C5—O6—H6A109.5C14—C10—C11117.23 (11)
C3—O7—H7A109.5C14—C10—C9121.67 (11)
O2—C1—O1123.93 (12)C11—C10—C9121.06 (11)
O2—C1—C2124.57 (11)C12—C11—C10119.19 (12)
O1—C1—C2111.49 (10)C12—C11—H11120.4
C1—C2—C3115.65 (10)C10—C11—H11120.4
C1—C2—H2A108.4N2—C12—C11123.41 (12)
C3—C2—H2A108.4N2—C12—H12118.3
C1—C2—H2B108.4C11—C12—H12118.3
C3—C2—H2B108.4N2—C13—C14123.22 (12)
H2A—C2—H2B107.4N2—C13—H13118.4
O7—C3—C2110.63 (10)C14—C13—H13118.4
O7—C3—C4108.00 (9)C13—C14—C10119.55 (12)
C2—C3—C4106.27 (9)C13—C14—H14120.2
O7—C3—C6108.65 (9)C10—C14—H14120.2
C2—C3—C6111.39 (9)C16—C15—C9119.18 (12)
C4—C3—C6111.86 (10)C16—C15—H15120.4
C5—C4—C3113.77 (10)C9—C15—H15120.4
C5—C4—H4A108.8N1—C16—C15123.18 (12)
C3—C4—H4A108.8N1—C16—H16118.4
C5—C4—H4B108.8C15—C16—H16118.4
C3—C4—H4B108.8C21—N3—C17117.24 (11)
H4A—C4—H4B107.7N3—C17—C18123.37 (13)
O5—C5—O6123.98 (11)N3—C17—H17118.3
O5—C5—C4123.46 (11)C18—C17—H17118.3
O6—C5—C4112.56 (10)C17—C18—C19119.56 (12)
O4—C6—O3125.98 (11)C17—C18—H18120.2
O4—C6—C3121.77 (11)C19—C18—H18120.2
O3—C6—C3112.24 (10)C20—C19—C18116.91 (11)
C7—N1—C16117.68 (11)C20—C19—C19i121.93 (14)
C13—N2—C12117.39 (12)C18—C19—C19i121.17 (13)
N1—C7—C8123.27 (12)C21—C20—C19119.66 (12)
N1—C7—H7118.4C21—C20—H20120.2
C8—C7—H7118.4C19—C20—H20120.2
C7—C8—C9119.50 (12)N3—C21—C20123.26 (13)
C7—C8—H8120.2N3—C21—H21118.4
C9—C8—H8120.2C20—C21—H21118.4
C8—C9—C15117.13 (11)
O2—C1—C2—C35.62 (19)C8—C9—C10—C1117.8 (2)
O1—C1—C2—C3174.98 (11)C15—C9—C10—C11163.88 (13)
C1—C2—C3—O766.37 (13)C14—C10—C11—C120.6 (2)
C1—C2—C3—C4176.64 (10)C9—C10—C11—C12178.46 (13)
C1—C2—C3—C654.58 (14)C13—N2—C12—C110.1 (2)
O7—C3—C4—C552.92 (13)C10—C11—C12—N20.3 (2)
C2—C3—C4—C5171.64 (10)C12—N2—C13—C140.2 (2)
C6—C3—C4—C566.59 (13)N2—C13—C14—C100.1 (2)
C3—C4—C5—O556.85 (17)C11—C10—C14—C130.5 (2)
C3—C4—C5—O6123.21 (12)C9—C10—C14—C13178.34 (13)
O7—C3—C6—O44.99 (16)C8—C9—C15—C161.8 (2)
C2—C3—C6—O4127.10 (12)C10—C9—C15—C16176.56 (13)
C4—C3—C6—O4114.14 (13)C7—N1—C16—C151.7 (2)
O7—C3—C6—O3174.06 (10)C9—C15—C16—N10.0 (2)
C2—C3—C6—O351.95 (14)C21—N3—C17—C180.6 (2)
C4—C3—C6—O366.82 (13)N3—C17—C18—C190.1 (2)
C16—N1—C7—C81.6 (2)C17—C18—C19—C200.8 (2)
N1—C7—C8—C90.3 (2)C17—C18—C19—C19i178.91 (15)
C7—C8—C9—C152.0 (2)C18—C19—C20—C210.8 (2)
C7—C8—C9—C10176.40 (13)C19i—C19—C20—C21178.91 (15)
C8—C9—C10—C14159.96 (13)C17—N3—C21—C200.7 (2)
C15—C9—C10—C1418.3 (2)C19—C20—C21—N30.1 (2)
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N3ii0.841.802.6275 (14)168
O3—H3A···N1iii0.841.752.5880 (14)173
O6—H6A···N2iv0.841.822.6443 (14)168
O7—H7A···O40.842.222.6538 (13)112
C2—H2A···Cgv0.992.633.5579 (13)160
Symmetry codes: (ii) x+1, y, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y, z1; (v) x1, y, z.

Experimental details

Crystal data
Chemical formula1.5C10H8N2·C6H8O7
Mr426.40
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)7.0371 (2), 33.5054 (10), 8.4715 (2)
β (°) 90.302 (2)
V3)1997.39 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.31 × 0.26 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.896, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
63749, 6045, 4986
Rint0.033
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.116, 1.05
No. of reflections6045
No. of parameters284
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.24

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N3i0.841.802.6275 (14)168
O3—H3A···N1ii0.841.752.5880 (14)173
O6—H6A···N2iii0.841.822.6443 (14)168
O7—H7A···O40.842.222.6538 (13)112
C2—H2A···Cgiv0.992.633.5579 (13)160
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y, z1; (iv) x1, y, z.
 

Acknowledgements

Financial support from Ilam University is gratefully acknowledged.

References

First citationAakeroy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397–407.  CrossRef CAS Web of Science Google Scholar
First citationAghabozorg, H., Ghadermazi, M. & Attar Gharamaleki, J. (2006). Acta Cryst. E62, o3445–o3447.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Heidari, M., Ghadermazi, M. & Attar Gharamaleki, J. (2008). Acta Cryst. E64, o1045–o1046.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationBaures, P. W. (1999). Org. Lett. 1, 249–252.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBiradha, K., Sharma, C. V. K., Panneerselvam, K., Shimoni, L., Carrell, H. L., Zacharias, D. E. & Desiraju, G. R. (1993). Chem. Commun. pp. 1473–1475.  CrossRef Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond In Structural Chemistry and Biology. New York: Oxford University Press.  Google Scholar
First citationHouk, K. N., Menzer, S., Newton, S. P., Raymo, F. M., Stoddart, J. F. & Williams, D. J. (1999). J. Am. Chem. Soc. 121, 1479–1487.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages o532-o533
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds