organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Iodo­benzenesulfonamido)acetic acid

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore, Pakistan, and bInstitute for Chemical Technology and Analytics, Vienna University of Technology, Vienna, Austria
*Correspondence e-mail: mnachemist@hotmail.com

(Received 24 January 2009; accepted 13 February 2009; online 18 February 2009)

The title compound, C8H8INO4S, is a halogenated sulfon­amide, a medicinally important class of organic compounds. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds involving the carboxylic acid groups form characteristic centrosymmetric dimers. These dimers are further linked through centrosymmetric dimeric N—H⋯O inter­actions involving the amido H atom and a sulfonyl O atom. This leads to the formation of a ribbon-like polymer structure propagating in the b direction.

Related literature

For background on sulfonamides, or sulfa drugs, see: Pandya et al. (2003[Pandya, R., Murashima, T., Tedeschi, L. & Barrett, A. G. M. (2003). J. Org. Chem. 68, 8274-8276.]). For the structure of the non-halogenated analogue, see: Arshad et al. (2008b[Arshad, M. N., Khan, I. U. & Zia-ur-Rehman, M. (2008b). Acta Cryst. E64, o2283-o2284.]). For the synthesis of the title compound, see: Deng & Mani (2006[Deng, X. & Mani, N. S. (2006). Green Chem. 8, 835-838.]). For details of related structures: see Arshad et al. (2008a[Arshad, M. N., Khan, I. U., Ahmad, S., Shafiq, M. & Stoeckli-Evans, H. (2008a). Acta Cryst. E64, m994.],c[Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008c). Acta Cryst. E64, m1628.]). For background on related thia­zine heterocycles, see: Arshad et al. (2008d[Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008d). Acta Cryst. E64, o2045.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8INO4S

  • Mr = 341.11

  • Triclinic, [P \overline 1]

  • a = 5.5877 (2) Å

  • b = 8.0145 (2) Å

  • c = 12.3584 (4) Å

  • α = 80.923 (2)°

  • β = 83.398 (2)°

  • γ = 88.038 (2)°

  • V = 542.81 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.14 mm−1

  • T = 296 K

  • 0.22 × 0.10 × 0.06 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.691, Tmax = 0.834

  • 11492 measured reflections

  • 2691 independent reflections

  • 2297 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.086

  • S = 1.02

  • 2691 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 1.43 e Å−3

  • Δρmin = −1.09 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 2.47 3.142 (3) 135
O2—H2O⋯O1ii 0.82 1.86 2.676 (4) 176
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Sulfonamides, commonly known as sulfa drugs, belong to a class of organic compounds which have widespread applications in Medicinal Chemistry for curing bacterial infections (Pandya et al., 2003). As a continuation of our studies on the synthesis of thiazine related compounds (Arshad et al., 2008a,b,c,d) we present here the structure of the title compound.

The molecular structure of the title compound is illustrated in Fig. 1. We have previously reported on the crystal structures of the non-halogenated analogue of the title compound, 2-(phenylsulfonamido)acetic acid, (Arshad et al., 2008b), and the K+ and Na+ salts of 2-iodobenzenesulfonates (Arshad et al., 2008a,c). The bond lengths and angles in the title compound are similar to those reported there and are within normal ranges (Allen et al., 1987).

In the crystal structure intermolecular O—H···O hydrogen bonds involving the carboxylic acid groups form characteristic centrosymmetric dimers. These dimers are further linked through centrosymmetric intermolecular N—H···O interactions involving the amido H atoms and a sulfonyl O atom (Fig. 2). This leads to the formation of a ribbon-like polymer structure propagating along the b axis. This arrangement is very similar to that observed in the non-halogenated analogue mentioned above.

Related literature top

For background on sulfonamides, or sulfa drugs, see: Pandya et al. (2003). For the structure of the non-halogenated analogue, see: Arshad et al. (2008b). For the synthesis of the title compound, see: Deng & Mani (2006). For details of related structures: see Arshad et al. (2008a,c). For background on related thiazine heterocycles, see: Arshad et al. (2008d). For standard bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was synthesized following the literature method (Deng & Mani, 2006). Glycine methyl ester hydrochloride (207 mg, 1.653 mmol) was dissolved in distilled water (5 ml). The pH of the solution was maintained at 8–9 using 1M, Na2CO3 solution. 2-Iodo benzene sulfonyl chloride (500 mg, 1.653 mmol) was then added to the solution, which was stirred at room temperature until all the 2-iodo benzene sulfonyl chloride had been consumed. During the reaction the pH was again strictly maintained at 8–9 using 1M, Na2CO3. On completion of the reaction the pH was adjusted 1–2, using 1N HCl under vigorous stirring. The precipitate obtained was filtered off, washed with distilled water and dried. Crystals of the title compound were obtained by recrystallisation from methanol.

Refinement top

The O, N and C-bound H atoms were included in calculated positions and treated as riding: O—H = 0.82 Å, N—H = 0.86 Å, C—H = 0.93–0.97 Å, with Uiso(H) = 1.5Ueq(parent O atom) and = 1.2Ueq(parent C and N atom).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. The thermal ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed along the axis, showing the intermolecular hydrogen bonds as dashed lines.
2-(2-Iodobenzenesulfonamido)acetic acid top
Crystal data top
C8H8INO4SZ = 2
Mr = 341.11F(000) = 328
Triclinic, P1Dx = 2.087 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.5877 (2) ÅCell parameters from 6313 reflections
b = 8.0145 (2) Åθ = 2.6–28.3°
c = 12.3584 (4) ŵ = 3.14 mm1
α = 80.923 (2)°T = 296 K
β = 83.398 (2)°Needle-like, light brown
γ = 88.038 (2)°0.22 × 0.10 × 0.06 mm
V = 542.81 (3) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2691 independent reflections
Radiation source: fine-focus sealed tube2297 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 77
Tmin = 0.691, Tmax = 0.834k = 1010
11492 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0454P)2 + 0.6546P]
where P = (Fo2 + 2Fc2)/3
2691 reflections(Δ/σ)max = 0.001
137 parametersΔρmax = 1.43 e Å3
0 restraintsΔρmin = 1.09 e Å3
Crystal data top
C8H8INO4Sγ = 88.038 (2)°
Mr = 341.11V = 542.81 (3) Å3
Triclinic, P1Z = 2
a = 5.5877 (2) ÅMo Kα radiation
b = 8.0145 (2) ŵ = 3.14 mm1
c = 12.3584 (4) ÅT = 296 K
α = 80.923 (2)°0.22 × 0.10 × 0.06 mm
β = 83.398 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2691 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2297 reflections with I > 2σ(I)
Tmin = 0.691, Tmax = 0.834Rint = 0.028
11492 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.02Δρmax = 1.43 e Å3
2691 reflectionsΔρmin = 1.09 e Å3
137 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.10590 (5)0.34414 (3)0.90179 (2)0.0537 (1)
S10.59293 (13)0.42594 (9)0.68657 (7)0.0327 (2)
O10.5522 (4)0.7909 (3)0.5250 (2)0.0405 (7)
O20.2240 (4)0.9320 (3)0.5837 (3)0.0506 (8)
O30.6165 (5)0.5362 (3)0.7649 (2)0.0447 (8)
O40.7874 (4)0.4121 (3)0.6022 (2)0.0448 (8)
N10.3478 (5)0.4818 (3)0.6322 (2)0.0348 (8)
C10.5418 (5)0.2165 (4)0.7568 (3)0.0319 (8)
C20.3582 (6)0.1730 (4)0.8409 (3)0.0376 (9)
C30.3352 (8)0.0057 (4)0.8907 (3)0.0496 (11)
C40.4944 (8)0.1169 (4)0.8574 (3)0.0520 (13)
C50.6787 (8)0.0735 (4)0.7758 (4)0.0514 (11)
C60.7032 (7)0.0926 (4)0.7254 (3)0.0434 (10)
C70.2290 (6)0.6417 (4)0.6433 (3)0.0371 (9)
C80.3550 (6)0.7946 (4)0.5770 (3)0.0346 (9)
H1N0.286400.414500.595500.0420*
H2O0.298001.013800.549300.0760*
H30.211600.024100.946900.0600*
H40.476300.228900.890500.0630*
H50.787400.155800.754300.0620*
H60.828700.121700.670000.0520*
H7A0.212200.654800.720500.0440*
H7B0.068100.638900.621400.0440*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0578 (2)0.0421 (2)0.0529 (2)0.0132 (1)0.0143 (1)0.0003 (1)
S10.0304 (3)0.0232 (3)0.0442 (4)0.0049 (3)0.0027 (3)0.0042 (3)
O10.0375 (12)0.0252 (10)0.0551 (14)0.0047 (9)0.0058 (10)0.0016 (9)
O20.0413 (13)0.0247 (11)0.0772 (18)0.0014 (9)0.0106 (12)0.0057 (11)
O30.0498 (14)0.0282 (11)0.0602 (16)0.0014 (10)0.0147 (12)0.0130 (10)
O40.0337 (11)0.0411 (13)0.0565 (15)0.0076 (10)0.0046 (10)0.0034 (11)
N10.0353 (13)0.0217 (11)0.0466 (15)0.0039 (9)0.0051 (11)0.0016 (10)
C10.0348 (15)0.0227 (12)0.0391 (16)0.0011 (11)0.0065 (12)0.0059 (11)
C20.0442 (17)0.0279 (14)0.0394 (17)0.0028 (12)0.0029 (13)0.0035 (12)
C30.063 (2)0.0326 (17)0.048 (2)0.0015 (15)0.0038 (17)0.0022 (14)
C40.075 (3)0.0260 (16)0.054 (2)0.0038 (16)0.009 (2)0.0024 (14)
C50.062 (2)0.0287 (16)0.065 (2)0.0135 (15)0.0084 (19)0.0137 (16)
C60.0454 (18)0.0322 (16)0.052 (2)0.0049 (13)0.0002 (15)0.0102 (14)
C70.0333 (15)0.0247 (13)0.0495 (18)0.0027 (11)0.0011 (13)0.0018 (12)
C80.0343 (15)0.0229 (13)0.0449 (17)0.0033 (11)0.0040 (13)0.0002 (12)
Geometric parameters (Å, º) top
I1—C22.094 (3)C2—C31.388 (5)
S1—O31.429 (3)C3—C41.382 (5)
S1—O41.431 (2)C4—C51.369 (6)
S1—N11.613 (3)C5—C61.382 (5)
S1—C11.780 (3)C7—C81.509 (5)
O1—C81.212 (4)C3—H30.9300
O2—C81.310 (4)C4—H40.9300
O2—H2O0.8200C5—H50.9300
N1—C71.442 (4)C6—H60.9300
N1—H1N0.8600C7—H7A0.9700
C1—C61.389 (5)C7—H7B0.9700
C1—C21.385 (5)
O3—S1—O4118.92 (15)C1—C6—C5120.5 (4)
O3—S1—N1106.70 (15)N1—C7—C8115.3 (3)
O3—S1—C1109.54 (16)O1—C8—O2124.4 (3)
O4—S1—N1110.20 (14)O1—C8—C7124.5 (3)
O4—S1—C1105.65 (15)O2—C8—C7111.1 (3)
N1—S1—C1105.02 (13)C2—C3—H3120.00
C8—O2—H2O109.00C4—C3—H3120.00
S1—N1—C7121.8 (2)C3—C4—H4120.00
C7—N1—H1N119.00C5—C4—H4120.00
S1—N1—H1N119.00C4—C5—H5120.00
C2—C1—C6119.5 (3)C6—C5—H5120.00
S1—C1—C6116.4 (3)C1—C6—H6120.00
S1—C1—C2124.1 (2)C5—C6—H6120.00
I1—C2—C1124.6 (2)N1—C7—H7A108.00
I1—C2—C3116.0 (3)N1—C7—H7B108.00
C1—C2—C3119.5 (3)C8—C7—H7A108.00
C2—C3—C4120.5 (4)C8—C7—H7B108.00
C3—C4—C5120.1 (3)H7A—C7—H7B107.00
C4—C5—C6120.0 (4)
O3—S1—N1—C715.3 (3)C6—C1—C2—I1178.1 (3)
O4—S1—N1—C7115.1 (3)C6—C1—C2—C31.5 (5)
C1—S1—N1—C7131.6 (3)S1—C1—C6—C5179.6 (3)
O3—S1—C1—C254.6 (3)C2—C1—C6—C51.3 (5)
O3—S1—C1—C6123.6 (3)I1—C2—C3—C4179.3 (3)
O4—S1—C1—C2176.2 (3)C1—C2—C3—C40.3 (6)
O4—S1—C1—C65.6 (3)C2—C3—C4—C50.9 (6)
N1—S1—C1—C259.7 (3)C3—C4—C5—C61.1 (6)
N1—S1—C1—C6122.1 (3)C4—C5—C6—C10.1 (6)
S1—N1—C7—C872.2 (4)N1—C7—C8—O16.5 (5)
S1—C1—C2—I10.0 (4)N1—C7—C8—O2174.0 (3)
S1—C1—C2—C3179.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.473.142 (3)135
O2—H2O···O1ii0.821.862.676 (4)176
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC8H8INO4S
Mr341.11
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.5877 (2), 8.0145 (2), 12.3584 (4)
α, β, γ (°)80.923 (2), 83.398 (2), 88.038 (2)
V3)542.81 (3)
Z2
Radiation typeMo Kα
µ (mm1)3.14
Crystal size (mm)0.22 × 0.10 × 0.06
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.691, 0.834
No. of measured, independent and
observed [I > 2σ(I)] reflections
11492, 2691, 2297
Rint0.028
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.086, 1.02
No. of reflections2691
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.43, 1.09

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.473.142 (3)135
O2—H2O···O1ii0.821.862.676 (4)176
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1.
 

Acknowledgements

MNA acknowledges the Higher Education Commission, Pakistan, for providing a PhD Scholarship under PIN 042-120607-PS2-183.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationArshad, M. N., Khan, I. U., Ahmad, S., Shafiq, M. & Stoeckli-Evans, H. (2008a). Acta Cryst. E64, m994.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Khan, I. U. & Zia-ur-Rehman, M. (2008b). Acta Cryst. E64, o2283–o2284.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008c). Acta Cryst. E64, m1628.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008d). Acta Cryst. E64, o2045.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, X. & Mani, N. S. (2006). Green Chem. 8, 835–838.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationPandya, R., Murashima, T., Tedeschi, L. & Barrett, A. G. M. (2003). J. Org. Chem. 68, 8274–8276.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds