metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m345-m346

Tetra­kis[(3-hy­droxy­prop­yl)di­methyl­ammonium] tetra-μ-acetato-κ8O:O′-bis­­[chloridocuprate(II)](Cu—Cu) dichloride

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bSTaRBURSTT-Cyberdiffraction Consortium at YSU, and Department of Chemistry, Youngstown State University, 1 University Plaza, Youngstown, Ohio 44555-3663, USA
*Correspondence e-mail: mazhar42pk@yahoo.com

(Received 31 January 2009; accepted 23 February 2009; online 28 February 2009)

The title compound (C5H14NO)4[Cu2(CH3COO)4Cl2]Cl2, consists of a pair of CuII ions bridged by four acetate groups, resulting in a Cu2(CH3COO)4 unit, four (3-hydroxy­prop­yl)dimethyl­ammonium cations (two crystallographically independent pairs) and two chloride anions. The Cu atoms at both termini are bonded to chloride anions. The latter are hydrogen bonded to one of the two pairs of crystallographically independent (3-hydroxy­prop­yl)dimethyl­ammonium cations. The Cu2(CH3COO)4 unit is located on a crystallographic inversion center, and the geometry around each metal center is close to octa­hedral. The Cl—Cu—Cu angles are nearly linear [177.48 (2)°] and the Cu—O bond lengths are in the range 1.9712 (18)–1.9809 (19) Å. The Cu⋯Cu separation between the two acetate-bridged CuII centers is 2.6793 (8) Å. The packing of the crystal structure is dominated by N—H⋯Cl hydrogen bonding between the ammonium groups and the chloride anions, as well as by O—H⋯O and O—H⋯Cl hydrogen bonds. One of the 3-hydroxypropyldimethylammonium cations shows orientational disorder with an occupancy ratio of 0.812 (4): 0.188 (4).

Related literature

For the structure of binuclear copper(II) complexes, see: Ackermann et al. (2000[Ackermann, H., Neumüller, B. & Dehnicke, K. (2000). Z. Anorg. Allg. Chem. 626, 1712-1714.]); Shahid, Mazhar, Helliwell et al. (2008[Shahid, M., Mazhar, M., Helliwell, M., Akhtar, J. & Ahmad, K. (2008). Acta Cryst. E64, m1139-m1140.]). For reports on the X-ray diffraction analysis of cupric acetate hydrate, Cu2(CH3COO)4(H2O)2, see: Van Niekerk & Schoening (1953[Van Niekerk, J. N. & Schoening, F. R. L. (1953). Nature (London), 171, 36-37.]); de Meester et al. (1973[Meester, P. de, Fletcher, S. R. & Skapski, A. C. (1973). J. Chem. Soc. Dalton Trans. pp. 2575-2578.]); Nieger (2001[Nieger, M. (2001). Private communication (refcode CUAQAC05). CCDC, Cambridge, England.]); Ferguson & Glidewell (2003[Ferguson, G. & Glidewell, C. (2003). Acta Cryst. E59, m710-m712.]); Steed et al. (1998[Steed, J. W., McCool, B. J. & Junk, P. C. (1998). J. Chem. Soc. Dalton Trans. pp. 3417-3423.]); Vives et al. (2003[Vives, G., Mason, S. A., Prince, P. D., Junk, P. C. & Steed, J. W. (2003). Cryst. Growth Des. 3, 699-704.]); Golzar Hossain (2007[Golzar Hossain, G. M. (2007). Private communication (refcode CUAQAC27). CCDC, Cambridge, England.]); Mahmoudkhani & Langer (1998[Mahmoudkhani, A. H. & Langer, V. (1998). Private communication (refcode CUAQAC01). CCDC, Cambridge, England.]). For the neutron-diffraction analysis of the same compound, see: Brown & Chidambaram (1973[Brown, G. M. & Chidambaram, R. (1973). Acta Cryst. B29, 2393-2403.]). For details concerning the geometric parameters of organo-copper complexes, see: Shahid, Mazhar, Malik et al. (2008[Shahid, M., Mazhar, M., Malik, M. A., 'O Brien, P. & Raftery, J. (2008). Polyhedron, 27, 3337-3342.]); Shahid et al. (2009[Shahid, M., Mazhar, M., O'Brien, P., Afzaal, M. & Raftery, J. (2009). Acta Cryst. E65, m163-m164.]); Zhang et al. (2004[Zhang, Y.-L., Chen, S.-W., Liu, W.-S. & Wang, D.-Q. (2004). Acta Cryst. E60, m196-m197.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H14NO)4[Cu2(C2H3O2)4Cl2]Cl2

  • Mr = 921.74

  • Monoclinic, P 21 /c

  • a = 11.438 (3) Å

  • b = 11.266 (3) Å

  • c = 16.876 (4) Å

  • β = 97.940 (5)°

  • V = 2153.8 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.29 mm−1

  • T = 100 K

  • 0.39 × 0.33 × 0.30 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (TWINABS; Sheldrick, 2007[Sheldrick, G. M. (2007). TWINABS. University of Göttingen, Germany, and Bruker AXS Inc, Madison, Wisconsin, USA.]) Tmin = 0.562, Tmax = 0.679

  • 19624 measured reflections

  • 5259 independent reflections

  • 4776 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.094

  • S = 1.02

  • 5259 reflections

  • 246 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.67 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl2 0.93 2.15 3.072 (3) 169
N1B—H1B⋯Cl1i 0.93 2.53 3.404 (13) 156
N2—H2⋯Cl1 0.93 2.16 3.074 (2) 166
O5—H5⋯O6ii 0.837 (19) 1.99 (2) 2.810 (3) 166 (4)
O6—H6⋯Cl2iii 0.84 2.25 3.082 (2) 173
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and CELL NOW (Sheldrick, 2005[Sheldrick, G. M. (2005). CELL NOW. University of Göttingen, Germany, and Bruker AXS Inc, Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In relation to our previous work on the structural chemistry of copper complexes (Shahid, Mazhar, Helliwell et al., 2008) we described here the crystal structure of the title compound. It consists of a centrosymmetric acetate bridged Cu2(CH3COO)4 moiety with chloride anions at both termini, four (dimethylammonium)propanol cations and two chloride anions.

In the title compound (Fig. 1) the two metal centers are related by a crystallographic inversion cernter; each has a coordination environment close to octahedral, with a CuO4CuCl set of ligating atoms, composed of four oxygen atoms of four bridging acetate groups, a terminal chloride atom and the second copper atom. The equatorial plane is made up of atoms O1, O2, O3 and O4 of the four bridging acetate ligands connecting both copper atoms, while the chloride ion Cl1 links to Cu1 in the axial position of the octahedron. The inversion related copper atoms are linked by a Cu—Cu bond thus completing the octahedral coordination of each copper center. The trans angles in the equatorial plane deviate slightly from the ideal value of 180°, and the Cu—O bond lengths fall in the range of 1.9712 (18)–1.9809 (19) Å. These values are in good agreement with the values reported for Cu2(CH3COO)4(H2O)2 (Van Niekerk & Schoening,1953), and in more accurate structure determinations of this compound (Meester et al., 1973; Nieger, 2001; Ferguson & Glidewell, 2003; Steed et al., 1998; Vives et al., 2003; Golzar Hossain, 2007; Mahmoudkhani & Langer, 1998) and for similar complexes (Shahid, Mazhar, Malik et al., 2008; Shahid et al., 2009; Zhang et al., 2004). They indicate a slightly distorted octahedral geometry around both copper centers in the complex. The length of the central Cu—Cu bond of 2.6793 (8) Å is significantly longer than the value reported for dinuclear copper (II) acetate monohydrate by X-ray diffraction (see above) as well as by neutron diffraction analysis (Brown & Chidambaram, 1973), but it does agree well with that of the only other structurally determined tetra-µ-acetato-k8O:O'-dicuprate(II) with two terminal chloride ligands, which was reported by Ackermann et al. (2000) as 2.687 Å.

In the crystal structure the terminal chlorides are hydrogen bonded to one of crystallography independent (dimethylammonium)propanol cations (Fig. 2 and Table 1). The other crystallographically indepenent dimethyl(3-hydroxypropyl) ammonium ion is disordered over two positions, with both moieties being approximate mirror images of each other (see refinement section for details). This disorder results in a significantlty different hydrogen bonding environment for the two moieties. The dominant orientation exhibits an N—H···Cl hydrogen bond of ca 2.15 Å between H1 and Cl2. The less prevalent moiety shows a much weaker bond with an N1B—H1B···Cl1i bond distance of 2.53 Å (symmetry operator (i): -x + 1, y - 1/2, -z + 3/2). The packing of the crystal structure is dominated by hydrogen bonding between the ammonium N—H units and the chloride (Cl2) anions, as well as O—H···O and O—H···Cl hydrogen bonds (Fig. 3 and Table 1).

Related literature top

For the structure of binuclear copper(II) complexes, see: Ackermann et al. (2000); Shahid, Mazhar, Helliwell et al. (2008). For reports on the X-ray diffraction analysis of cupric acetate hydrate, Cu2(CH3COO)4(H2O)2, see: Van Niekerk et al. (1953); de Meester et al. (1973); Nieger (2001); Ferguson & Glidewell (2003); Steed et al. (1998); Vives et al. (2003); Golzar Hossain (2007); Mahmoudkhani & Langer (1998). For the neutron-diffraction analysis of the same compound, see: Brown et al. (1973). For details concerning the geometric parameters of organo-copper complexes, see: Shahid, Mazhar, Malik et al. (2008); Shahid et al. (2009); Zhang et al. (2004).

Experimental top

N,N-Dimethylaminopropanol (dmapH) (0.76 g, 7.43 mmol) and acetic acid (0.45 g, 7.43 mmol) were added to a stirred suspension of Cu(CH3COO)2.H2O (0.74 g, 3.72 mmol) and anhydrous CuCl2 (0.50 g, 3.72 mmol) in 30 ml tetrahydrofuran (THF). After two hours stirring, the mixture was vacuum evaporated to dryness and the solid was redissolved in a minimum amount of THF to give green block-shaped crystals at room temperature after 10 days.

Refinement top

The crystal under investigation was found to be non-merohedrally twinned. The orientation matrices for the two components were identified using the program Cell Now (Sheldrick, 2005). The twin operation was found to be a two fold rotation around the a axis. The two components were integrated using Saint implemented in Apex2, resulting in a total of 19624 reflections. 1995 reflections (1332 unique ones) involved component 1 only (mean I/sigma = 16.7), 1945 reflections (1310 unique ones) involved component 2 only (mean I/sigma = 5.6), and 15684 reflections (6317 unique ones) involved both components (mean I/sigma = 10.8). The exact twin matrix identified by the integration program was found to be 1.00091 0.00101 0.00457, 0.00080 - 1.00000 - 0.00090, -0.39803 0.00179 - 1.00091.

The data were corrected for absorption using Twinabs, and the structure was solved using direct methods with only the non-overlapping reflections of component 1. The structure was refined using the hklf 5 routine with all reflections of component 1 (including the overlapping ones) below a d-spacing threshold of 3/4, resulting in a BASF value of 0.118 (6). The Rint value given is for all reflections before the cutoff at d = 0.75 and is based on agreement between observed single and composite intensities and those calculated from refined unique intensities and twin fractions [Twinabs (Sheldrick, 2007)].

One of the 3-dimethylamine-propan-1-ol ligands shows orientational disorder with an occupancy ratio of 0.812 (4) to 0.188 (4), with both moieties being approximate mirror images of each other. Atoms N1, C5 and C6, which significantely overlap with their equivalent counterparts, were constrained to have the same ADPs as their equivalent partners in the minor moiety. No restraints were applied for non-hydrogen atoms.

The hydroxyl hydrogen atom bonded to O5 did not show any visible disorder [despite being part of the disordered dimethyl(3-hydroxypropyl)ammonium group] and was freely refined with an O—H distance restraint of 0.837 (19) Å. The C—H and N—H atoms were placed in calculated positions and treated as riding atoms: N-H = 0.93 Å, C-H = 0.98 - 0.99 Å, with Uiso(H) = k × Ueq(parent atom), where k is 1.2 for C-methylene and N-ammonium, and 1.5 for C-methyl and O-hydroxyl.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008) and CELL NOW (Sheldrick, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids (50% probability level). Minor moiety atoms of the disordered (dimethylammonium)propanol cation have been omitted for clarity.
[Figure 2] Fig. 2. View along the a axis of the title compound, showing one of the H-bonded planes. H-bonding interactions are indicated by dashed blue lines.
[Figure 3] Fig. 3. View of the title compound down the b axis (perpendicular to one of the hydrogen bonded planes). H-bonding interactions are indicated by dashed blue lines.
Tetrakis[(3-hydroxypropyl)dimethylammonium] tetra-µ-acetato- κ8O:O'-bis[chloridocuprate(II)](Cu—Cu) dichloride top
Crystal data top
(C5H14NO)4[Cu2(C2H3O2)4Cl2]Cl2F(000) = 972
Mr = 921.74Dx = 1.421 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2075 reflections
a = 11.438 (3) Åθ = 2.7–30.4°
b = 11.266 (3) ŵ = 1.29 mm1
c = 16.876 (4) ÅT = 100 K
β = 97.940 (5)°Block, green
V = 2153.8 (9) Å30.39 × 0.33 × 0.30 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
5259 independent reflections
Radiation source: fine-focus sealed tube4776 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2007)
h = 1515
Tmin = 0.562, Tmax = 0.679k = 015
19624 measured reflectionsl = 022
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0511P)2 + 2.2181P]
where P = (Fo2 + 2Fc2)/3
5259 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 1.67 e Å3
1 restraintΔρmin = 0.66 e Å3
3 constraints
Crystal data top
(C5H14NO)4[Cu2(C2H3O2)4Cl2]Cl2V = 2153.8 (9) Å3
Mr = 921.74Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.438 (3) ŵ = 1.29 mm1
b = 11.266 (3) ÅT = 100 K
c = 16.876 (4) Å0.39 × 0.33 × 0.30 mm
β = 97.940 (5)°
Data collection top
Bruker SMART APEX CCD
diffractometer
5259 independent reflections
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2007)
4776 reflections with I > 2σ(I)
Tmin = 0.562, Tmax = 0.679Rint = 0.030
19624 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 1.67 e Å3
5259 reflectionsΔρmin = 0.66 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.7197 (2)0.9685 (2)0.54155 (15)0.0174 (5)
C20.8514 (3)0.9625 (4)0.5660 (2)0.0406 (9)
H2A0.88540.90460.53230.061*
H2B0.86830.93820.62210.061*
H2C0.88601.04080.55930.061*
C30.4643 (2)0.7863 (2)0.45644 (15)0.0166 (5)
C40.4394 (3)0.6600 (2)0.42948 (17)0.0239 (5)
H4A0.44180.65410.37180.036*
H4B0.36100.63660.44110.036*
H4C0.49910.60730.45800.036*
N10.7861 (2)0.7142 (2)0.78810 (17)0.0189 (6)0.812 (4)
H10.84490.76660.77770.023*0.812 (4)
C50.7036 (4)0.6247 (3)0.5698 (2)0.0245 (8)0.812 (4)
H5A0.63120.58090.57780.029*0.812 (4)
H5B0.67970.70550.55110.029*0.812 (4)
C60.7825 (4)0.6345 (4)0.6499 (2)0.0252 (8)0.812 (4)
H6A0.81150.55480.66770.030*0.812 (4)
H6B0.85170.68490.64400.030*0.812 (4)
N1B0.7363 (11)0.6648 (11)0.7942 (7)0.0189 (6)0.188 (4)
H1B0.67730.61200.80380.023*0.188 (4)
C6B0.7335 (17)0.6065 (17)0.6489 (11)0.0252 (8)0.188 (4)
H6B10.66450.55270.64060.030*0.188 (4)
H6B20.80280.55730.66950.030*0.188 (4)
C5B0.7530 (17)0.6512 (16)0.5689 (11)0.0245 (8)0.188 (4)
H5B10.68950.70860.55050.029*0.188 (4)
H5B20.82860.69520.57520.029*0.188 (4)
C70.7144 (3)0.6879 (3)0.71129 (18)0.0278 (6)
H7C0.76090.75970.70250.033*0.188 (4)
H7D0.63040.71140.70010.033*0.188 (4)
H7A0.67770.76260.68920.033*0.812 (4)
H7B0.64990.63330.72060.033*0.812 (4)
C80.8470 (2)0.6073 (2)0.82870 (17)0.0235 (5)
H8D0.89530.59120.78620.035*0.188 (4)
H8E0.82930.53240.85410.035*0.188 (4)
H8F0.89040.65980.86880.035*0.188 (4)
H8A0.91180.58190.80010.035*0.812 (4)
H8B0.79040.54220.82950.035*0.812 (4)
H8C0.87880.62910.88380.035*0.812 (4)
C90.7160 (3)0.7754 (3)0.84400 (19)0.0300 (6)
H9D0.69660.84320.80820.045*0.188 (4)
H9E0.78780.79300.88090.045*0.188 (4)
H9F0.65060.76060.87460.045*0.188 (4)
H9A0.69520.85530.82380.045*0.812 (4)
H9B0.76250.78100.89730.045*0.812 (4)
H9C0.64360.73020.84740.045*0.812 (4)
C100.0463 (3)0.6724 (3)0.49916 (18)0.0293 (6)
H10A0.02390.62120.48490.035*
H10B0.02070.75630.49400.035*
C110.1022 (3)0.6472 (3)0.58522 (18)0.0283 (6)
H11A0.04060.64910.62100.034*
H11B0.13800.56700.58830.034*
C120.1966 (3)0.7392 (3)0.61261 (18)0.0267 (6)
H12A0.23940.75890.56720.032*
H12B0.15780.81250.62810.032*
C130.3698 (3)0.6112 (3)0.6563 (2)0.0321 (7)
H13A0.41990.57980.70340.048*
H13B0.41920.65070.62120.048*
H13C0.32650.54590.62720.048*
C140.2309 (3)0.6569 (3)0.75181 (19)0.0360 (7)
H14A0.17470.71640.76580.054*
H14B0.29290.64490.79730.054*
H14C0.18950.58180.73860.054*
Cl10.44011 (5)0.92078 (5)0.71072 (4)0.01876 (13)
Cl20.99391 (6)0.88351 (7)0.77784 (4)0.03015 (16)
Cu10.48200 (3)0.97068 (2)0.574297 (18)0.01280 (8)
N20.2843 (2)0.6984 (2)0.68207 (14)0.0217 (5)
H20.32850.76510.69940.026*
O10.65475 (16)0.94688 (18)0.59419 (11)0.0222 (4)
O20.68435 (16)0.99580 (19)0.46970 (11)0.0226 (4)
O30.45992 (18)0.80971 (15)0.52892 (11)0.0217 (4)
O40.48787 (17)0.85928 (15)0.40413 (11)0.0215 (4)
O50.7561 (2)0.5676 (2)0.50998 (13)0.0322 (5)
H50.787 (4)0.506 (3)0.531 (2)0.048*
O60.13091 (19)0.6490 (2)0.44697 (13)0.0319 (5)
H60.09690.64510.39960.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0166 (11)0.0172 (11)0.0174 (12)0.0003 (9)0.0008 (9)0.0002 (9)
C20.0172 (13)0.074 (3)0.0297 (16)0.0020 (15)0.0012 (12)0.0113 (17)
C30.0147 (10)0.0146 (10)0.0202 (12)0.0002 (9)0.0012 (9)0.0039 (9)
C40.0353 (15)0.0133 (11)0.0241 (13)0.0064 (10)0.0076 (12)0.0036 (10)
N10.0184 (13)0.0156 (13)0.0238 (13)0.0010 (10)0.0070 (11)0.0008 (11)
C50.024 (2)0.0215 (17)0.0265 (16)0.0052 (15)0.0011 (17)0.0015 (14)
C60.022 (2)0.0281 (19)0.0245 (16)0.0078 (16)0.0001 (16)0.0018 (14)
N1B0.0184 (13)0.0156 (13)0.0238 (13)0.0010 (10)0.0070 (11)0.0008 (11)
C6B0.022 (2)0.0281 (19)0.0245 (16)0.0078 (16)0.0001 (16)0.0018 (14)
C5B0.024 (2)0.0215 (17)0.0265 (16)0.0052 (15)0.0011 (17)0.0015 (14)
C70.0301 (15)0.0265 (14)0.0254 (15)0.0084 (11)0.0015 (12)0.0017 (12)
C80.0252 (13)0.0225 (13)0.0223 (13)0.0028 (11)0.0012 (11)0.0018 (11)
C90.0338 (15)0.0266 (14)0.0325 (16)0.0026 (12)0.0145 (13)0.0064 (12)
C100.0205 (13)0.0357 (15)0.0301 (15)0.0026 (11)0.0019 (11)0.0038 (13)
C110.0247 (13)0.0304 (14)0.0296 (15)0.0043 (11)0.0031 (11)0.0016 (12)
C120.0274 (14)0.0220 (13)0.0288 (15)0.0013 (11)0.0033 (12)0.0007 (11)
C130.0256 (14)0.0264 (14)0.0431 (18)0.0033 (12)0.0003 (13)0.0048 (13)
C140.0360 (17)0.0467 (19)0.0249 (15)0.0124 (15)0.0024 (13)0.0013 (14)
Cl10.0248 (3)0.0182 (3)0.0133 (3)0.0063 (2)0.0026 (2)0.0005 (2)
Cl20.0299 (3)0.0342 (4)0.0242 (3)0.0153 (3)0.0042 (3)0.0082 (3)
Cu10.01441 (13)0.01100 (13)0.01291 (14)0.00040 (10)0.00160 (11)0.00054 (10)
N20.0254 (11)0.0159 (10)0.0215 (11)0.0030 (9)0.0048 (9)0.0011 (9)
O10.0167 (8)0.0294 (10)0.0202 (9)0.0011 (7)0.0020 (7)0.0052 (8)
O20.0158 (8)0.0337 (10)0.0180 (9)0.0035 (8)0.0010 (7)0.0050 (8)
O30.0331 (10)0.0135 (8)0.0189 (9)0.0045 (7)0.0054 (8)0.0026 (7)
O40.0332 (10)0.0129 (8)0.0187 (9)0.0031 (7)0.0043 (8)0.0020 (7)
O50.0470 (13)0.0255 (11)0.0234 (11)0.0082 (10)0.0022 (10)0.0015 (9)
O60.0281 (10)0.0425 (13)0.0235 (10)0.0065 (10)0.0021 (8)0.0025 (9)
Geometric parameters (Å, º) top
C1—O11.258 (3)C8—H8F0.9800
C1—O21.262 (3)C8—H8A0.9804
C1—C21.506 (4)C8—H8B0.9801
C2—H2A0.9800C8—H8C0.9821
C2—H2B0.9800C9—H9D0.9800
C2—H2C0.9800C9—H9E0.9800
C3—O31.259 (3)C9—H9F0.9800
C3—O41.262 (3)C9—H9A0.9799
C3—C41.509 (3)C9—H9B0.9824
C4—H4A0.9800C9—H9C0.9805
C4—H4B0.9800C10—O61.421 (4)
C4—H4C0.9800C10—C111.531 (4)
N1—C71.465 (4)C10—H10A0.9900
N1—C91.489 (4)C10—H10B0.9900
N1—C81.508 (4)C11—C121.522 (4)
N1—H10.9300C11—H11A0.9900
C5—O51.399 (4)C11—H11B0.9900
C5—C61.522 (6)C12—N21.506 (4)
C5—H5A0.9900C12—H12A0.9900
C5—H5B0.9900C12—H12B0.9900
C6—C71.505 (5)C13—N21.493 (4)
C6—H6A0.9900C13—H13A0.9800
C6—H6B0.9900C13—H13B0.9800
N1B—C71.412 (13)C13—H13C0.9800
N1B—C81.469 (12)C14—N21.475 (4)
N1B—C91.538 (12)C14—H14A0.9800
N1B—H1B0.9300C14—H14B0.9800
C6B—C71.435 (18)C14—H14C0.9800
C6B—C5B1.49 (3)Cl1—Cu12.4800 (9)
C6B—H6B10.9900Cu1—O31.9712 (18)
C6B—H6B20.9900Cu1—O4i1.9714 (18)
C5B—O51.374 (18)Cu1—O11.9762 (19)
C5B—H5B10.9900Cu1—O2i1.9809 (19)
C5B—H5B20.9900Cu1—Cu1i2.6793 (8)
C7—H7C0.9900N2—H20.9300
C7—H7D0.9900O2—Cu1i1.9809 (19)
C7—H7A0.9902O4—Cu1i1.9714 (18)
C7—H7B0.9902O5—H50.837 (19)
C8—H8D0.9800O6—H60.8400
C8—H8E0.9800
O1—C1—O2125.7 (2)H8A—C8—H8B109.5
O1—C1—C2117.6 (2)N1—C8—H8C108.5
O2—C1—C2116.7 (2)H8A—C8—H8C109.4
C1—C2—H2A109.5H8B—C8—H8C109.5
C1—C2—H2B109.5N1B—C9—H9D109.5
H2A—C2—H2B109.5N1B—C9—H9E109.5
C1—C2—H2C109.5H9D—C9—H9E109.5
H2A—C2—H2C109.5N1B—C9—H9F109.5
H2B—C2—H2C109.5H9D—C9—H9F109.5
O3—C3—O4125.7 (2)H9E—C9—H9F109.5
O3—C3—C4117.3 (2)N1—C9—H9A109.4
O4—C3—C4116.9 (2)N1—C9—H9B109.8
C3—C4—H4A109.5H9A—C9—H9B109.5
C3—C4—H4B109.5N1—C9—H9C109.2
H4A—C4—H4B109.5H9D—C9—H9C108.7
C3—C4—H4C109.5H9A—C9—H9C109.4
H4A—C4—H4C109.5H9B—C9—H9C109.5
H4B—C4—H4C109.5O6—C10—C11108.8 (2)
C7—N1—C9111.7 (2)O6—C10—H10A109.9
C7—N1—C8114.1 (2)C11—C10—H10A109.9
C9—N1—C8109.8 (2)O6—C10—H10B109.9
C7—N1—H1107.0C11—C10—H10B109.9
C9—N1—H1107.0H10A—C10—H10B108.3
C8—N1—H1107.0C12—C11—C10110.4 (2)
O5—C5—C6114.4 (3)C12—C11—H11A109.6
O5—C5—H5A108.6C10—C11—H11A109.6
C6—C5—H5A108.6C12—C11—H11B109.6
O5—C5—H5B108.6C10—C11—H11B109.6
C6—C5—H5B108.6H11A—C11—H11B108.1
H5A—C5—H5B107.6N2—C12—C11113.4 (2)
C7—C6—C5110.0 (3)N2—C12—H12A108.9
C7—C6—H6A109.7C11—C12—H12A108.9
C5—C6—H6A109.7N2—C12—H12B108.9
C7—C6—H6B109.7C11—C12—H12B108.9
C5—C6—H6B109.7H12A—C12—H12B107.7
H6A—C6—H6B108.2N2—C13—H13A109.5
C7—N1B—C8119.9 (8)N2—C13—H13B109.5
C7—N1B—C9111.9 (8)H13A—C13—H13B109.5
C8—N1B—C9109.2 (8)N2—C13—H13C109.5
C7—N1B—H1B104.8H13A—C13—H13C109.5
C8—N1B—H1B104.8H13B—C13—H13C109.5
C9—N1B—H1B104.8N2—C14—H14A109.5
C7—C6B—C5B120.5 (15)N2—C14—H14B109.5
C7—C6B—H6B1107.2H14A—C14—H14B109.5
C5B—C6B—H6B1107.2N2—C14—H14C109.5
C7—C6B—H6B2107.2H14A—C14—H14C109.5
C5B—C6B—H6B2107.2H14B—C14—H14C109.5
H6B1—C6B—H6B2106.8O3—Cu1—O4i167.29 (7)
O5—C5B—C6B116.6 (15)O3—Cu1—O190.72 (8)
O5—C5B—H5B1108.1O4i—Cu1—O187.44 (8)
C6B—C5B—H5B1108.1O3—Cu1—O2i87.99 (9)
O5—C5B—H5B2108.1O4i—Cu1—O2i91.05 (9)
C6B—C5B—H5B2108.1O1—Cu1—O2i167.32 (8)
H5B1—C5B—H5B2107.3O3—Cu1—Cl196.96 (6)
N1B—C7—C6B125.9 (9)O4i—Cu1—Cl195.74 (6)
N1—C7—C6114.3 (3)O1—Cu1—Cl197.38 (6)
N1B—C7—H7C105.9O2i—Cu1—Cl195.30 (6)
C6B—C7—H7C105.9O3—Cu1—Cu1i83.76 (6)
N1B—C7—H7D105.9O4i—Cu1—Cu1i83.56 (6)
C6B—C7—H7D105.9O1—Cu1—Cu1i85.02 (6)
H7C—C7—H7D106.2O2i—Cu1—Cu1i82.30 (6)
N1—C7—H7A108.5Cl1—Cu1—Cu1i177.48 (2)
C6—C7—H7A108.3C14—N2—C13112.6 (2)
N1—C7—H7B108.9C14—N2—C12114.4 (2)
C6—C7—H7B109.2C13—N2—C12111.5 (2)
H7A—C7—H7B107.6C14—N2—H2105.9
N1B—C8—H8D109.5C13—N2—H2105.9
N1B—C8—H8E109.5C12—N2—H2105.9
H8D—C8—H8E109.5C1—O1—Cu1121.88 (17)
N1B—C8—H8F109.5C1—O2—Cu1i124.78 (16)
H8D—C8—H8F109.5C3—O3—Cu1123.36 (16)
H8E—C8—H8F109.5C3—O4—Cu1i123.53 (16)
N1—C8—H8A110.0C5B—O5—H5109 (3)
N1—C8—H8B109.8C5—O5—H5106 (3)
H8D—C8—H8B108.2C10—O6—H6109.5
O5—C5—C6—C7175.3 (3)C7—N1B—C9—N167.1 (9)
C7—C6B—C5B—O5172.2 (12)C8—N1B—C9—N168.0 (9)
C8—N1B—C7—C6B45.4 (17)O6—C10—C11—C1269.3 (3)
C9—N1B—C7—C6B175.1 (11)C10—C11—C12—N2159.0 (2)
C8—N1B—C7—N166.4 (10)C11—C12—N2—C1453.9 (3)
C9—N1B—C7—N163.3 (8)C11—C12—N2—C1375.3 (3)
C8—N1B—C7—C614.5 (14)O2—C1—O1—Cu17.1 (4)
C9—N1B—C7—C6144.3 (5)C2—C1—O1—Cu1172.3 (2)
C5B—C6B—C7—N1B155.9 (14)O3—Cu1—O1—C186.9 (2)
C5B—C6B—C7—N1114.2 (15)O4i—Cu1—O1—C180.6 (2)
C5B—C6B—C7—C659.1 (19)O2i—Cu1—O1—C12.8 (5)
C9—N1—C7—N1B67.2 (9)Cl1—Cu1—O1—C1176.03 (19)
C8—N1—C7—N1B57.9 (9)Cu1i—Cu1—O1—C13.18 (19)
C9—N1—C7—C6B162.1 (11)O1—C1—O2—Cu1i7.4 (4)
C8—N1—C7—C6B37.0 (12)C2—C1—O2—Cu1i172.0 (2)
C9—N1—C7—C6175.5 (3)O4—C3—O3—Cu13.2 (4)
C8—N1—C7—C659.4 (4)C4—C3—O3—Cu1176.89 (18)
C5—C6—C7—N1B151.0 (7)O4i—Cu1—O3—C35.5 (5)
C5—C6—C7—C6B49.7 (18)O1—Cu1—O3—C387.0 (2)
C5—C6—C7—N1173.2 (3)O2i—Cu1—O3—C380.3 (2)
C7—N1B—C8—N166.6 (10)Cl1—Cu1—O3—C3175.4 (2)
C9—N1B—C8—N164.3 (8)Cu1i—Cu1—O3—C32.1 (2)
C7—N1—C8—N1B57.1 (9)O3—C3—O4—Cu1i2.1 (4)
C9—N1—C8—N1B69.1 (9)C4—C3—O4—Cu1i177.95 (17)
C7—N1—C9—N1B62.5 (9)C6B—C5B—O5—C554.7 (17)
C8—N1—C9—N1B65.1 (9)C6—C5—O5—C5B51.9 (17)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl20.932.153.072 (3)169
N1B—H1B···Cl1ii0.932.533.404 (13)156
N2—H2···Cl10.932.163.074 (2)166
O5—H5···O6iii0.84 (2)1.99 (2)2.810 (3)166 (4)
O6—H6···Cl2iv0.842.253.082 (2)173
Symmetry codes: (ii) x+1, y1/2, z+3/2; (iii) x+1, y+1, z+1; (iv) x1, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula(C5H14NO)4[Cu2(C2H3O2)4Cl2]Cl2
Mr921.74
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.438 (3), 11.266 (3), 16.876 (4)
β (°) 97.940 (5)
V3)2153.8 (9)
Z2
Radiation typeMo Kα
µ (mm1)1.29
Crystal size (mm)0.39 × 0.33 × 0.30
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(TWINABS; Sheldrick, 2007)
Tmin, Tmax0.562, 0.679
No. of measured, independent and
observed [I > 2σ(I)] reflections
19624, 5259, 4776
Rint0.030
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.094, 1.02
No. of reflections5259
No. of parameters246
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.67, 0.66

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008) and CELL NOW (Sheldrick, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl20.932.153.072 (3)169
N1B—H1B···Cl1i0.932.533.404 (13)156
N2—H2···Cl10.932.163.074 (2)166
O5—H5···O6ii0.837 (19)1.99 (2)2.810 (3)166 (4)
O6—H6···Cl2iii0.842.253.082 (2)173
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1, z+1; (iii) x1, y+3/2, z1/2.
 

Acknowledgements

MS is grateful to the Higher Education Commission of Pakistan and the Pakistan Science Foundation Islamabad, Pakistan for financial support via its PhD program. The X-ray diffractometer at Youngstown State University was funded by NSF Grant 0087210, Ohio Board of Regents Grant CAP-491, and by Youngstown State University.

References

First citationAckermann, H., Neumüller, B. & Dehnicke, K. (2000). Z. Anorg. Allg. Chem. 626, 1712-1714.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrown, G. M. & Chidambaram, R. (1973). Acta Cryst. B29, 2393–2403.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFerguson, G. & Glidewell, C. (2003). Acta Cryst. E59, m710–m712.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGolzar Hossain, G. M. (2007). Private communication (refcode CUAQAC27). CCDC, Cambridge, England.  Google Scholar
First citationMahmoudkhani, A. H. & Langer, V. (1998). Private communication (refcode CUAQAC01). CCDC, Cambridge, England.  Google Scholar
First citationMeester, P. de, Fletcher, S. R. & Skapski, A. C. (1973). J. Chem. Soc. Dalton Trans. pp. 2575–2578.  Google Scholar
First citationNieger, M. (2001). Private communication (refcode CUAQAC05). CCDC, Cambridge, England.  Google Scholar
First citationShahid, M., Mazhar, M., Helliwell, M., Akhtar, J. & Ahmad, K. (2008). Acta Cryst. E64, m1139–m1140.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahid, M., Mazhar, M., Malik, M. A., 'O Brien, P. & Raftery, J. (2008). Polyhedron, 27, 3337–3342.  Web of Science CSD CrossRef CAS Google Scholar
First citationShahid, M., Mazhar, M., O'Brien, P., Afzaal, M. & Raftery, J. (2009). Acta Cryst. E65, m163–m164.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2005). CELL NOW. University of Göttingen, Germany, and Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2007). TWINABS. University of Göttingen, Germany, and Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteed, J. W., McCool, B. J. & Junk, P. C. (1998). J. Chem. Soc. Dalton Trans. pp. 3417–3423.  Web of Science CSD CrossRef Google Scholar
First citationVan Niekerk, J. N. & Schoening, F. R. L. (1953). Nature (London), 171, 36–37.  CrossRef CAS Web of Science Google Scholar
First citationVives, G., Mason, S. A., Prince, P. D., Junk, P. C. & Steed, J. W. (2003). Cryst. Growth Des. 3, 699–704.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, Y.-L., Chen, S.-W., Liu, W.-S. & Wang, D.-Q. (2004). Acta Cryst. E60, m196–m197.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m345-m346
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds