metal-organic compounds
Tetrakis[(3-hydroxypropyl)dimethylammonium] tetra-μ-acetato-κ8O:O′-bis[chloridocuprate(II)](Cu—Cu) dichloride
aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bSTaRBURSTT-Cyberdiffraction Consortium at YSU, and Department of Chemistry, Youngstown State University, 1 University Plaza, Youngstown, Ohio 44555-3663, USA
*Correspondence e-mail: mazhar42pk@yahoo.com
The title compound (C5H14NO)4[Cu2(CH3COO)4Cl2]Cl2, consists of a pair of CuII ions bridged by four acetate groups, resulting in a Cu2(CH3COO)4 unit, four (3-hydroxypropyl)dimethylammonium cations (two crystallographically independent pairs) and two chloride anions. The Cu atoms at both termini are bonded to chloride anions. The latter are hydrogen bonded to one of the two pairs of crystallographically independent (3-hydroxypropyl)dimethylammonium cations. The Cu2(CH3COO)4 unit is located on a crystallographic inversion center, and the geometry around each metal center is close to octahedral. The Cl—Cu—Cu angles are nearly linear [177.48 (2)°] and the Cu—O bond lengths are in the range 1.9712 (18)–1.9809 (19) Å. The Cu⋯Cu separation between the two acetate-bridged CuII centers is 2.6793 (8) Å. The packing of the is dominated by N—H⋯Cl hydrogen bonding between the ammonium groups and the chloride anions, as well as by O—H⋯O and O—H⋯Cl hydrogen bonds. One of the 3-hydroxypropyldimethylammonium cations shows orientational disorder with an occupancy ratio of 0.812 (4): 0.188 (4).
Related literature
For the structure of binuclear copper(II) complexes, see: Ackermann et al. (2000); Shahid, Mazhar, Helliwell et al. (2008). For reports on the X-ray of cupric acetate hydrate, Cu2(CH3COO)4(H2O)2, see: Van Niekerk & Schoening (1953); de Meester et al. (1973); Nieger (2001); Ferguson & Glidewell (2003); Steed et al. (1998); Vives et al. (2003); Golzar Hossain (2007); Mahmoudkhani & Langer (1998). For the neutron-diffraction analysis of the same compound, see: Brown & Chidambaram (1973). For details concerning the geometric parameters of organo-copper complexes, see: Shahid, Mazhar, Malik et al. (2008); Shahid et al. (2009); Zhang et al. (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT and CELL NOW (Sheldrick, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S160053680900662X/su2095sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680900662X/su2095Isup2.hkl
N,N-Dimethylaminopropanol (dmapH) (0.76 g, 7.43 mmol) and acetic acid (0.45 g, 7.43 mmol) were added to a stirred suspension of Cu(CH3COO)2.H2O (0.74 g, 3.72 mmol) and anhydrous CuCl2 (0.50 g, 3.72 mmol) in 30 ml tetrahydrofuran (THF). After two hours stirring, the mixture was vacuum evaporated to dryness and the solid was redissolved in a minimum amount of THF to give green block-shaped crystals at room temperature after 10 days.
The crystal under investigation was found to be non-merohedrally twinned. The orientation matrices for the two components were identified using the program Cell Now (Sheldrick, 2005). The
was found to be a two fold rotation around the a axis. The two components were integrated using Saint implemented in Apex2, resulting in a total of 19624 reflections. 1995 reflections (1332 unique ones) involved component 1 only (mean I/sigma = 16.7), 1945 reflections (1310 unique ones) involved component 2 only (mean I/sigma = 5.6), and 15684 reflections (6317 unique ones) involved both components (mean I/sigma = 10.8). The exact twin matrix identified by the integration program was found to be 1.00091 0.00101 0.00457, 0.00080 - 1.00000 - 0.00090, -0.39803 0.00179 - 1.00091.The data were corrected for absorption using Twinabs, and the structure was solved using
with only the non-overlapping reflections of component 1. The structure was refined using the hklf 5 routine with all reflections of component 1 (including the overlapping ones) below a d-spacing threshold of 3/4, resulting in a BASF value of 0.118 (6). The Rint value given is for all reflections before the cutoff at d = 0.75 and is based on agreement between observed single and composite intensities and those calculated from refined unique intensities and twin fractions [Twinabs (Sheldrick, 2007)].One of the 3-dimethylamine-propan-1-ol ligands shows orientational disorder with an occupancy ratio of 0.812 (4) to 0.188 (4), with both moieties being approximate mirror images of each other. Atoms N1, C5 and C6, which significantely overlap with their equivalent counterparts, were constrained to have the same ADPs as their equivalent partners in the minor moiety. No restraints were applied for non-hydrogen atoms.
The hydroxyl hydrogen atom bonded to O5 did not show any visible disorder [despite being part of the disordered dimethyl(3-hydroxypropyl)ammonium group] and was freely refined with an O—H distance restraint of 0.837 (19) Å. The C—H and N—H atoms were placed in calculated positions and treated as riding atoms: N-H = 0.93 Å, C-H = 0.98 - 0.99 Å, with Uiso(H) = k × Ueq(parent atom), where k is 1.2 for C-methylene and N-ammonium, and 1.5 for C-methyl and O-hydroxyl.
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008) and CELL NOW (Sheldrick, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).(C5H14NO)4[Cu2(C2H3O2)4Cl2]Cl2 | F(000) = 972 |
Mr = 921.74 | Dx = 1.421 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2075 reflections |
a = 11.438 (3) Å | θ = 2.7–30.4° |
b = 11.266 (3) Å | µ = 1.29 mm−1 |
c = 16.876 (4) Å | T = 100 K |
β = 97.940 (5)° | Block, green |
V = 2153.8 (9) Å3 | 0.39 × 0.33 × 0.30 mm |
Z = 2 |
Bruker SMART APEX CCD diffractometer | 5259 independent reflections |
Radiation source: fine-focus sealed tube | 4776 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
ω scans | θmax = 28.3°, θmin = 1.8° |
Absorption correction: multi-scan (TWINABS; Sheldrick, 2007) | h = −15→15 |
Tmin = 0.562, Tmax = 0.679 | k = 0→15 |
19624 measured reflections | l = 0→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.094 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0511P)2 + 2.2181P] where P = (Fo2 + 2Fc2)/3 |
5259 reflections | (Δ/σ)max = 0.001 |
246 parameters | Δρmax = 1.67 e Å−3 |
1 restraint | Δρmin = −0.66 e Å−3 |
3 constraints |
(C5H14NO)4[Cu2(C2H3O2)4Cl2]Cl2 | V = 2153.8 (9) Å3 |
Mr = 921.74 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.438 (3) Å | µ = 1.29 mm−1 |
b = 11.266 (3) Å | T = 100 K |
c = 16.876 (4) Å | 0.39 × 0.33 × 0.30 mm |
β = 97.940 (5)° |
Bruker SMART APEX CCD diffractometer | 5259 independent reflections |
Absorption correction: multi-scan (TWINABS; Sheldrick, 2007) | 4776 reflections with I > 2σ(I) |
Tmin = 0.562, Tmax = 0.679 | Rint = 0.030 |
19624 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 1 restraint |
wR(F2) = 0.094 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | Δρmax = 1.67 e Å−3 |
5259 reflections | Δρmin = −0.66 e Å−3 |
246 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.7197 (2) | 0.9685 (2) | 0.54155 (15) | 0.0174 (5) | |
C2 | 0.8514 (3) | 0.9625 (4) | 0.5660 (2) | 0.0406 (9) | |
H2A | 0.8854 | 0.9046 | 0.5323 | 0.061* | |
H2B | 0.8683 | 0.9382 | 0.6221 | 0.061* | |
H2C | 0.8860 | 1.0408 | 0.5593 | 0.061* | |
C3 | 0.4643 (2) | 0.7863 (2) | 0.45644 (15) | 0.0166 (5) | |
C4 | 0.4394 (3) | 0.6600 (2) | 0.42948 (17) | 0.0239 (5) | |
H4A | 0.4418 | 0.6541 | 0.3718 | 0.036* | |
H4B | 0.3610 | 0.6366 | 0.4411 | 0.036* | |
H4C | 0.4991 | 0.6073 | 0.4580 | 0.036* | |
N1 | 0.7861 (2) | 0.7142 (2) | 0.78810 (17) | 0.0189 (6) | 0.812 (4) |
H1 | 0.8449 | 0.7666 | 0.7777 | 0.023* | 0.812 (4) |
C5 | 0.7036 (4) | 0.6247 (3) | 0.5698 (2) | 0.0245 (8) | 0.812 (4) |
H5A | 0.6312 | 0.5809 | 0.5778 | 0.029* | 0.812 (4) |
H5B | 0.6797 | 0.7055 | 0.5511 | 0.029* | 0.812 (4) |
C6 | 0.7825 (4) | 0.6345 (4) | 0.6499 (2) | 0.0252 (8) | 0.812 (4) |
H6A | 0.8115 | 0.5548 | 0.6677 | 0.030* | 0.812 (4) |
H6B | 0.8517 | 0.6849 | 0.6440 | 0.030* | 0.812 (4) |
N1B | 0.7363 (11) | 0.6648 (11) | 0.7942 (7) | 0.0189 (6) | 0.188 (4) |
H1B | 0.6773 | 0.6120 | 0.8038 | 0.023* | 0.188 (4) |
C6B | 0.7335 (17) | 0.6065 (17) | 0.6489 (11) | 0.0252 (8) | 0.188 (4) |
H6B1 | 0.6645 | 0.5527 | 0.6406 | 0.030* | 0.188 (4) |
H6B2 | 0.8028 | 0.5573 | 0.6695 | 0.030* | 0.188 (4) |
C5B | 0.7530 (17) | 0.6512 (16) | 0.5689 (11) | 0.0245 (8) | 0.188 (4) |
H5B1 | 0.6895 | 0.7086 | 0.5505 | 0.029* | 0.188 (4) |
H5B2 | 0.8286 | 0.6952 | 0.5752 | 0.029* | 0.188 (4) |
C7 | 0.7144 (3) | 0.6879 (3) | 0.71129 (18) | 0.0278 (6) | |
H7C | 0.7609 | 0.7597 | 0.7025 | 0.033* | 0.188 (4) |
H7D | 0.6304 | 0.7114 | 0.7001 | 0.033* | 0.188 (4) |
H7A | 0.6777 | 0.7626 | 0.6892 | 0.033* | 0.812 (4) |
H7B | 0.6499 | 0.6333 | 0.7206 | 0.033* | 0.812 (4) |
C8 | 0.8470 (2) | 0.6073 (2) | 0.82870 (17) | 0.0235 (5) | |
H8D | 0.8953 | 0.5912 | 0.7862 | 0.035* | 0.188 (4) |
H8E | 0.8293 | 0.5324 | 0.8541 | 0.035* | 0.188 (4) |
H8F | 0.8904 | 0.6598 | 0.8688 | 0.035* | 0.188 (4) |
H8A | 0.9118 | 0.5819 | 0.8001 | 0.035* | 0.812 (4) |
H8B | 0.7904 | 0.5422 | 0.8295 | 0.035* | 0.812 (4) |
H8C | 0.8788 | 0.6291 | 0.8838 | 0.035* | 0.812 (4) |
C9 | 0.7160 (3) | 0.7754 (3) | 0.84400 (19) | 0.0300 (6) | |
H9D | 0.6966 | 0.8432 | 0.8082 | 0.045* | 0.188 (4) |
H9E | 0.7878 | 0.7930 | 0.8809 | 0.045* | 0.188 (4) |
H9F | 0.6506 | 0.7606 | 0.8746 | 0.045* | 0.188 (4) |
H9A | 0.6952 | 0.8553 | 0.8238 | 0.045* | 0.812 (4) |
H9B | 0.7625 | 0.7810 | 0.8973 | 0.045* | 0.812 (4) |
H9C | 0.6436 | 0.7302 | 0.8474 | 0.045* | 0.812 (4) |
C10 | 0.0463 (3) | 0.6724 (3) | 0.49916 (18) | 0.0293 (6) | |
H10A | −0.0239 | 0.6212 | 0.4849 | 0.035* | |
H10B | 0.0207 | 0.7563 | 0.4940 | 0.035* | |
C11 | 0.1022 (3) | 0.6472 (3) | 0.58522 (18) | 0.0283 (6) | |
H11A | 0.0406 | 0.6491 | 0.6210 | 0.034* | |
H11B | 0.1380 | 0.5670 | 0.5883 | 0.034* | |
C12 | 0.1966 (3) | 0.7392 (3) | 0.61261 (18) | 0.0267 (6) | |
H12A | 0.2394 | 0.7589 | 0.5672 | 0.032* | |
H12B | 0.1578 | 0.8125 | 0.6281 | 0.032* | |
C13 | 0.3698 (3) | 0.6112 (3) | 0.6563 (2) | 0.0321 (7) | |
H13A | 0.4199 | 0.5798 | 0.7034 | 0.048* | |
H13B | 0.4192 | 0.6507 | 0.6212 | 0.048* | |
H13C | 0.3265 | 0.5459 | 0.6272 | 0.048* | |
C14 | 0.2309 (3) | 0.6569 (3) | 0.75181 (19) | 0.0360 (7) | |
H14A | 0.1747 | 0.7164 | 0.7658 | 0.054* | |
H14B | 0.2929 | 0.6449 | 0.7973 | 0.054* | |
H14C | 0.1895 | 0.5818 | 0.7386 | 0.054* | |
Cl1 | 0.44011 (5) | 0.92078 (5) | 0.71072 (4) | 0.01876 (13) | |
Cl2 | 0.99391 (6) | 0.88351 (7) | 0.77784 (4) | 0.03015 (16) | |
Cu1 | 0.48200 (3) | 0.97068 (2) | 0.574297 (18) | 0.01280 (8) | |
N2 | 0.2843 (2) | 0.6984 (2) | 0.68207 (14) | 0.0217 (5) | |
H2 | 0.3285 | 0.7651 | 0.6994 | 0.026* | |
O1 | 0.65475 (16) | 0.94688 (18) | 0.59419 (11) | 0.0222 (4) | |
O2 | 0.68435 (16) | 0.99580 (19) | 0.46970 (11) | 0.0226 (4) | |
O3 | 0.45992 (18) | 0.80971 (15) | 0.52892 (11) | 0.0217 (4) | |
O4 | 0.48787 (17) | 0.85928 (15) | 0.40413 (11) | 0.0215 (4) | |
O5 | 0.7561 (2) | 0.5676 (2) | 0.50998 (13) | 0.0322 (5) | |
H5 | 0.787 (4) | 0.506 (3) | 0.531 (2) | 0.048* | |
O6 | 0.13091 (19) | 0.6490 (2) | 0.44697 (13) | 0.0319 (5) | |
H6 | 0.0969 | 0.6451 | 0.3996 | 0.048* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0166 (11) | 0.0172 (11) | 0.0174 (12) | 0.0003 (9) | −0.0008 (9) | −0.0002 (9) |
C2 | 0.0172 (13) | 0.074 (3) | 0.0297 (16) | 0.0020 (15) | 0.0012 (12) | 0.0113 (17) |
C3 | 0.0147 (10) | 0.0146 (10) | 0.0202 (12) | −0.0002 (9) | 0.0012 (9) | −0.0039 (9) |
C4 | 0.0353 (15) | 0.0133 (11) | 0.0241 (13) | −0.0064 (10) | 0.0076 (12) | −0.0036 (10) |
N1 | 0.0184 (13) | 0.0156 (13) | 0.0238 (13) | −0.0010 (10) | 0.0070 (11) | −0.0008 (11) |
C5 | 0.024 (2) | 0.0215 (17) | 0.0265 (16) | 0.0052 (15) | −0.0011 (17) | −0.0015 (14) |
C6 | 0.022 (2) | 0.0281 (19) | 0.0245 (16) | 0.0078 (16) | −0.0001 (16) | −0.0018 (14) |
N1B | 0.0184 (13) | 0.0156 (13) | 0.0238 (13) | −0.0010 (10) | 0.0070 (11) | −0.0008 (11) |
C6B | 0.022 (2) | 0.0281 (19) | 0.0245 (16) | 0.0078 (16) | −0.0001 (16) | −0.0018 (14) |
C5B | 0.024 (2) | 0.0215 (17) | 0.0265 (16) | 0.0052 (15) | −0.0011 (17) | −0.0015 (14) |
C7 | 0.0301 (15) | 0.0265 (14) | 0.0254 (15) | 0.0084 (11) | −0.0015 (12) | −0.0017 (12) |
C8 | 0.0252 (13) | 0.0225 (13) | 0.0223 (13) | 0.0028 (11) | 0.0012 (11) | 0.0018 (11) |
C9 | 0.0338 (15) | 0.0266 (14) | 0.0325 (16) | 0.0026 (12) | 0.0145 (13) | −0.0064 (12) |
C10 | 0.0205 (13) | 0.0357 (15) | 0.0301 (15) | 0.0026 (11) | −0.0019 (11) | −0.0038 (13) |
C11 | 0.0247 (13) | 0.0304 (14) | 0.0296 (15) | −0.0043 (11) | 0.0031 (11) | −0.0016 (12) |
C12 | 0.0274 (14) | 0.0220 (13) | 0.0288 (15) | 0.0013 (11) | −0.0033 (12) | 0.0007 (11) |
C13 | 0.0256 (14) | 0.0264 (14) | 0.0431 (18) | 0.0033 (12) | 0.0003 (13) | 0.0048 (13) |
C14 | 0.0360 (17) | 0.0467 (19) | 0.0249 (15) | −0.0124 (15) | 0.0024 (13) | 0.0013 (14) |
Cl1 | 0.0248 (3) | 0.0182 (3) | 0.0133 (3) | −0.0063 (2) | 0.0026 (2) | −0.0005 (2) |
Cl2 | 0.0299 (3) | 0.0342 (4) | 0.0242 (3) | −0.0153 (3) | −0.0042 (3) | 0.0082 (3) |
Cu1 | 0.01441 (13) | 0.01100 (13) | 0.01291 (14) | −0.00040 (10) | 0.00160 (11) | −0.00054 (10) |
N2 | 0.0254 (11) | 0.0159 (10) | 0.0215 (11) | −0.0030 (9) | −0.0048 (9) | 0.0011 (9) |
O1 | 0.0167 (8) | 0.0294 (10) | 0.0202 (9) | 0.0011 (7) | 0.0020 (7) | 0.0052 (8) |
O2 | 0.0158 (8) | 0.0337 (10) | 0.0180 (9) | 0.0035 (8) | 0.0010 (7) | 0.0050 (8) |
O3 | 0.0331 (10) | 0.0135 (8) | 0.0189 (9) | −0.0045 (7) | 0.0054 (8) | −0.0026 (7) |
O4 | 0.0332 (10) | 0.0129 (8) | 0.0187 (9) | −0.0031 (7) | 0.0043 (8) | −0.0020 (7) |
O5 | 0.0470 (13) | 0.0255 (11) | 0.0234 (11) | 0.0082 (10) | 0.0022 (10) | −0.0015 (9) |
O6 | 0.0281 (10) | 0.0425 (13) | 0.0235 (10) | 0.0065 (10) | −0.0021 (8) | −0.0025 (9) |
C1—O1 | 1.258 (3) | C8—H8F | 0.9800 |
C1—O2 | 1.262 (3) | C8—H8A | 0.9804 |
C1—C2 | 1.506 (4) | C8—H8B | 0.9801 |
C2—H2A | 0.9800 | C8—H8C | 0.9821 |
C2—H2B | 0.9800 | C9—H9D | 0.9800 |
C2—H2C | 0.9800 | C9—H9E | 0.9800 |
C3—O3 | 1.259 (3) | C9—H9F | 0.9800 |
C3—O4 | 1.262 (3) | C9—H9A | 0.9799 |
C3—C4 | 1.509 (3) | C9—H9B | 0.9824 |
C4—H4A | 0.9800 | C9—H9C | 0.9805 |
C4—H4B | 0.9800 | C10—O6 | 1.421 (4) |
C4—H4C | 0.9800 | C10—C11 | 1.531 (4) |
N1—C7 | 1.465 (4) | C10—H10A | 0.9900 |
N1—C9 | 1.489 (4) | C10—H10B | 0.9900 |
N1—C8 | 1.508 (4) | C11—C12 | 1.522 (4) |
N1—H1 | 0.9300 | C11—H11A | 0.9900 |
C5—O5 | 1.399 (4) | C11—H11B | 0.9900 |
C5—C6 | 1.522 (6) | C12—N2 | 1.506 (4) |
C5—H5A | 0.9900 | C12—H12A | 0.9900 |
C5—H5B | 0.9900 | C12—H12B | 0.9900 |
C6—C7 | 1.505 (5) | C13—N2 | 1.493 (4) |
C6—H6A | 0.9900 | C13—H13A | 0.9800 |
C6—H6B | 0.9900 | C13—H13B | 0.9800 |
N1B—C7 | 1.412 (13) | C13—H13C | 0.9800 |
N1B—C8 | 1.469 (12) | C14—N2 | 1.475 (4) |
N1B—C9 | 1.538 (12) | C14—H14A | 0.9800 |
N1B—H1B | 0.9300 | C14—H14B | 0.9800 |
C6B—C7 | 1.435 (18) | C14—H14C | 0.9800 |
C6B—C5B | 1.49 (3) | Cl1—Cu1 | 2.4800 (9) |
C6B—H6B1 | 0.9900 | Cu1—O3 | 1.9712 (18) |
C6B—H6B2 | 0.9900 | Cu1—O4i | 1.9714 (18) |
C5B—O5 | 1.374 (18) | Cu1—O1 | 1.9762 (19) |
C5B—H5B1 | 0.9900 | Cu1—O2i | 1.9809 (19) |
C5B—H5B2 | 0.9900 | Cu1—Cu1i | 2.6793 (8) |
C7—H7C | 0.9900 | N2—H2 | 0.9300 |
C7—H7D | 0.9900 | O2—Cu1i | 1.9809 (19) |
C7—H7A | 0.9902 | O4—Cu1i | 1.9714 (18) |
C7—H7B | 0.9902 | O5—H5 | 0.837 (19) |
C8—H8D | 0.9800 | O6—H6 | 0.8400 |
C8—H8E | 0.9800 | ||
O1—C1—O2 | 125.7 (2) | H8A—C8—H8B | 109.5 |
O1—C1—C2 | 117.6 (2) | N1—C8—H8C | 108.5 |
O2—C1—C2 | 116.7 (2) | H8A—C8—H8C | 109.4 |
C1—C2—H2A | 109.5 | H8B—C8—H8C | 109.5 |
C1—C2—H2B | 109.5 | N1B—C9—H9D | 109.5 |
H2A—C2—H2B | 109.5 | N1B—C9—H9E | 109.5 |
C1—C2—H2C | 109.5 | H9D—C9—H9E | 109.5 |
H2A—C2—H2C | 109.5 | N1B—C9—H9F | 109.5 |
H2B—C2—H2C | 109.5 | H9D—C9—H9F | 109.5 |
O3—C3—O4 | 125.7 (2) | H9E—C9—H9F | 109.5 |
O3—C3—C4 | 117.3 (2) | N1—C9—H9A | 109.4 |
O4—C3—C4 | 116.9 (2) | N1—C9—H9B | 109.8 |
C3—C4—H4A | 109.5 | H9A—C9—H9B | 109.5 |
C3—C4—H4B | 109.5 | N1—C9—H9C | 109.2 |
H4A—C4—H4B | 109.5 | H9D—C9—H9C | 108.7 |
C3—C4—H4C | 109.5 | H9A—C9—H9C | 109.4 |
H4A—C4—H4C | 109.5 | H9B—C9—H9C | 109.5 |
H4B—C4—H4C | 109.5 | O6—C10—C11 | 108.8 (2) |
C7—N1—C9 | 111.7 (2) | O6—C10—H10A | 109.9 |
C7—N1—C8 | 114.1 (2) | C11—C10—H10A | 109.9 |
C9—N1—C8 | 109.8 (2) | O6—C10—H10B | 109.9 |
C7—N1—H1 | 107.0 | C11—C10—H10B | 109.9 |
C9—N1—H1 | 107.0 | H10A—C10—H10B | 108.3 |
C8—N1—H1 | 107.0 | C12—C11—C10 | 110.4 (2) |
O5—C5—C6 | 114.4 (3) | C12—C11—H11A | 109.6 |
O5—C5—H5A | 108.6 | C10—C11—H11A | 109.6 |
C6—C5—H5A | 108.6 | C12—C11—H11B | 109.6 |
O5—C5—H5B | 108.6 | C10—C11—H11B | 109.6 |
C6—C5—H5B | 108.6 | H11A—C11—H11B | 108.1 |
H5A—C5—H5B | 107.6 | N2—C12—C11 | 113.4 (2) |
C7—C6—C5 | 110.0 (3) | N2—C12—H12A | 108.9 |
C7—C6—H6A | 109.7 | C11—C12—H12A | 108.9 |
C5—C6—H6A | 109.7 | N2—C12—H12B | 108.9 |
C7—C6—H6B | 109.7 | C11—C12—H12B | 108.9 |
C5—C6—H6B | 109.7 | H12A—C12—H12B | 107.7 |
H6A—C6—H6B | 108.2 | N2—C13—H13A | 109.5 |
C7—N1B—C8 | 119.9 (8) | N2—C13—H13B | 109.5 |
C7—N1B—C9 | 111.9 (8) | H13A—C13—H13B | 109.5 |
C8—N1B—C9 | 109.2 (8) | N2—C13—H13C | 109.5 |
C7—N1B—H1B | 104.8 | H13A—C13—H13C | 109.5 |
C8—N1B—H1B | 104.8 | H13B—C13—H13C | 109.5 |
C9—N1B—H1B | 104.8 | N2—C14—H14A | 109.5 |
C7—C6B—C5B | 120.5 (15) | N2—C14—H14B | 109.5 |
C7—C6B—H6B1 | 107.2 | H14A—C14—H14B | 109.5 |
C5B—C6B—H6B1 | 107.2 | N2—C14—H14C | 109.5 |
C7—C6B—H6B2 | 107.2 | H14A—C14—H14C | 109.5 |
C5B—C6B—H6B2 | 107.2 | H14B—C14—H14C | 109.5 |
H6B1—C6B—H6B2 | 106.8 | O3—Cu1—O4i | 167.29 (7) |
O5—C5B—C6B | 116.6 (15) | O3—Cu1—O1 | 90.72 (8) |
O5—C5B—H5B1 | 108.1 | O4i—Cu1—O1 | 87.44 (8) |
C6B—C5B—H5B1 | 108.1 | O3—Cu1—O2i | 87.99 (9) |
O5—C5B—H5B2 | 108.1 | O4i—Cu1—O2i | 91.05 (9) |
C6B—C5B—H5B2 | 108.1 | O1—Cu1—O2i | 167.32 (8) |
H5B1—C5B—H5B2 | 107.3 | O3—Cu1—Cl1 | 96.96 (6) |
N1B—C7—C6B | 125.9 (9) | O4i—Cu1—Cl1 | 95.74 (6) |
N1—C7—C6 | 114.3 (3) | O1—Cu1—Cl1 | 97.38 (6) |
N1B—C7—H7C | 105.9 | O2i—Cu1—Cl1 | 95.30 (6) |
C6B—C7—H7C | 105.9 | O3—Cu1—Cu1i | 83.76 (6) |
N1B—C7—H7D | 105.9 | O4i—Cu1—Cu1i | 83.56 (6) |
C6B—C7—H7D | 105.9 | O1—Cu1—Cu1i | 85.02 (6) |
H7C—C7—H7D | 106.2 | O2i—Cu1—Cu1i | 82.30 (6) |
N1—C7—H7A | 108.5 | Cl1—Cu1—Cu1i | 177.48 (2) |
C6—C7—H7A | 108.3 | C14—N2—C13 | 112.6 (2) |
N1—C7—H7B | 108.9 | C14—N2—C12 | 114.4 (2) |
C6—C7—H7B | 109.2 | C13—N2—C12 | 111.5 (2) |
H7A—C7—H7B | 107.6 | C14—N2—H2 | 105.9 |
N1B—C8—H8D | 109.5 | C13—N2—H2 | 105.9 |
N1B—C8—H8E | 109.5 | C12—N2—H2 | 105.9 |
H8D—C8—H8E | 109.5 | C1—O1—Cu1 | 121.88 (17) |
N1B—C8—H8F | 109.5 | C1—O2—Cu1i | 124.78 (16) |
H8D—C8—H8F | 109.5 | C3—O3—Cu1 | 123.36 (16) |
H8E—C8—H8F | 109.5 | C3—O4—Cu1i | 123.53 (16) |
N1—C8—H8A | 110.0 | C5B—O5—H5 | 109 (3) |
N1—C8—H8B | 109.8 | C5—O5—H5 | 106 (3) |
H8D—C8—H8B | 108.2 | C10—O6—H6 | 109.5 |
O5—C5—C6—C7 | −175.3 (3) | C7—N1B—C9—N1 | −67.1 (9) |
C7—C6B—C5B—O5 | −172.2 (12) | C8—N1B—C9—N1 | 68.0 (9) |
C8—N1B—C7—C6B | 45.4 (17) | O6—C10—C11—C12 | 69.3 (3) |
C9—N1B—C7—C6B | 175.1 (11) | C10—C11—C12—N2 | −159.0 (2) |
C8—N1B—C7—N1 | −66.4 (10) | C11—C12—N2—C14 | −53.9 (3) |
C9—N1B—C7—N1 | 63.3 (8) | C11—C12—N2—C13 | 75.3 (3) |
C8—N1B—C7—C6 | 14.5 (14) | O2—C1—O1—Cu1 | −7.1 (4) |
C9—N1B—C7—C6 | 144.3 (5) | C2—C1—O1—Cu1 | 172.3 (2) |
C5B—C6B—C7—N1B | −155.9 (14) | O3—Cu1—O1—C1 | 86.9 (2) |
C5B—C6B—C7—N1 | −114.2 (15) | O4i—Cu1—O1—C1 | −80.6 (2) |
C5B—C6B—C7—C6 | −59.1 (19) | O2i—Cu1—O1—C1 | 2.8 (5) |
C9—N1—C7—N1B | −67.2 (9) | Cl1—Cu1—O1—C1 | −176.03 (19) |
C8—N1—C7—N1B | 57.9 (9) | Cu1i—Cu1—O1—C1 | 3.18 (19) |
C9—N1—C7—C6B | −162.1 (11) | O1—C1—O2—Cu1i | 7.4 (4) |
C8—N1—C7—C6B | −37.0 (12) | C2—C1—O2—Cu1i | −172.0 (2) |
C9—N1—C7—C6 | 175.5 (3) | O4—C3—O3—Cu1 | 3.2 (4) |
C8—N1—C7—C6 | −59.4 (4) | C4—C3—O3—Cu1 | −176.89 (18) |
C5—C6—C7—N1B | 151.0 (7) | O4i—Cu1—O3—C3 | −5.5 (5) |
C5—C6—C7—C6B | 49.7 (18) | O1—Cu1—O3—C3 | −87.0 (2) |
C5—C6—C7—N1 | −173.2 (3) | O2i—Cu1—O3—C3 | 80.3 (2) |
C7—N1B—C8—N1 | 66.6 (10) | Cl1—Cu1—O3—C3 | 175.4 (2) |
C9—N1B—C8—N1 | −64.3 (8) | Cu1i—Cu1—O3—C3 | −2.1 (2) |
C7—N1—C8—N1B | −57.1 (9) | O3—C3—O4—Cu1i | −2.1 (4) |
C9—N1—C8—N1B | 69.1 (9) | C4—C3—O4—Cu1i | 177.95 (17) |
C7—N1—C9—N1B | 62.5 (9) | C6B—C5B—O5—C5 | 54.7 (17) |
C8—N1—C9—N1B | −65.1 (9) | C6—C5—O5—C5B | −51.9 (17) |
Symmetry code: (i) −x+1, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl2 | 0.93 | 2.15 | 3.072 (3) | 169 |
N1B—H1B···Cl1ii | 0.93 | 2.53 | 3.404 (13) | 156 |
N2—H2···Cl1 | 0.93 | 2.16 | 3.074 (2) | 166 |
O5—H5···O6iii | 0.84 (2) | 1.99 (2) | 2.810 (3) | 166 (4) |
O6—H6···Cl2iv | 0.84 | 2.25 | 3.082 (2) | 173 |
Symmetry codes: (ii) −x+1, y−1/2, −z+3/2; (iii) −x+1, −y+1, −z+1; (iv) x−1, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | (C5H14NO)4[Cu2(C2H3O2)4Cl2]Cl2 |
Mr | 921.74 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 11.438 (3), 11.266 (3), 16.876 (4) |
β (°) | 97.940 (5) |
V (Å3) | 2153.8 (9) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.29 |
Crystal size (mm) | 0.39 × 0.33 × 0.30 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD diffractometer |
Absorption correction | Multi-scan (TWINABS; Sheldrick, 2007) |
Tmin, Tmax | 0.562, 0.679 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19624, 5259, 4776 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.094, 1.02 |
No. of reflections | 5259 |
No. of parameters | 246 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.67, −0.66 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008) and CELL NOW (Sheldrick, 2005), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl2 | 0.93 | 2.15 | 3.072 (3) | 169 |
N1B—H1B···Cl1i | 0.93 | 2.53 | 3.404 (13) | 156 |
N2—H2···Cl1 | 0.93 | 2.16 | 3.074 (2) | 166 |
O5—H5···O6ii | 0.837 (19) | 1.99 (2) | 2.810 (3) | 166 (4) |
O6—H6···Cl2iii | 0.84 | 2.25 | 3.082 (2) | 173 |
Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x+1, −y+1, −z+1; (iii) x−1, −y+3/2, z−1/2. |
Acknowledgements
MS is grateful to the Higher Education Commission of Pakistan and the Pakistan Science Foundation Islamabad, Pakistan for financial support via its PhD program. The X-ray diffractometer at Youngstown State University was funded by NSF Grant 0087210, Ohio Board of Regents Grant CAP-491, and by Youngstown State University.
References
Ackermann, H., Neumüller, B. & Dehnicke, K. (2000). Z. Anorg. Allg. Chem. 626, 1712-1714. Web of Science CSD CrossRef CAS Google Scholar
Brown, G. M. & Chidambaram, R. (1973). Acta Cryst. B29, 2393–2403. CSD CrossRef IUCr Journals Web of Science Google Scholar
Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ferguson, G. & Glidewell, C. (2003). Acta Cryst. E59, m710–m712. Web of Science CSD CrossRef IUCr Journals Google Scholar
Golzar Hossain, G. M. (2007). Private communication (refcode CUAQAC27). CCDC, Cambridge, England. Google Scholar
Mahmoudkhani, A. H. & Langer, V. (1998). Private communication (refcode CUAQAC01). CCDC, Cambridge, England. Google Scholar
Meester, P. de, Fletcher, S. R. & Skapski, A. C. (1973). J. Chem. Soc. Dalton Trans. pp. 2575–2578. Google Scholar
Nieger, M. (2001). Private communication (refcode CUAQAC05). CCDC, Cambridge, England. Google Scholar
Shahid, M., Mazhar, M., Helliwell, M., Akhtar, J. & Ahmad, K. (2008). Acta Cryst. E64, m1139–m1140. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shahid, M., Mazhar, M., Malik, M. A., 'O Brien, P. & Raftery, J. (2008). Polyhedron, 27, 3337–3342. Web of Science CSD CrossRef CAS Google Scholar
Shahid, M., Mazhar, M., O'Brien, P., Afzaal, M. & Raftery, J. (2009). Acta Cryst. E65, m163–m164. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2005). CELL NOW. University of Göttingen, Germany, and Bruker AXS Inc, Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2007). TWINABS. University of Göttingen, Germany, and Bruker AXS Inc, Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steed, J. W., McCool, B. J. & Junk, P. C. (1998). J. Chem. Soc. Dalton Trans. pp. 3417–3423. Web of Science CSD CrossRef Google Scholar
Van Niekerk, J. N. & Schoening, F. R. L. (1953). Nature (London), 171, 36–37. CrossRef CAS Web of Science Google Scholar
Vives, G., Mason, S. A., Prince, P. D., Junk, P. C. & Steed, J. W. (2003). Cryst. Growth Des. 3, 699–704. Web of Science CSD CrossRef CAS Google Scholar
Zhang, Y.-L., Chen, S.-W., Liu, W.-S. & Wang, D.-Q. (2004). Acta Cryst. E60, m196–m197. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In relation to our previous work on the structural chemistry of copper complexes (Shahid, Mazhar, Helliwell et al., 2008) we described here the crystal structure of the title compound. It consists of a centrosymmetric acetate bridged Cu2(CH3COO)4 moiety with chloride anions at both termini, four (dimethylammonium)propanol cations and two chloride anions.
In the title compound (Fig. 1) the two metal centers are related by a crystallographic inversion cernter; each has a coordination environment close to octahedral, with a CuO4CuCl set of ligating atoms, composed of four oxygen atoms of four bridging acetate groups, a terminal chloride atom and the second copper atom. The equatorial plane is made up of atoms O1, O2, O3 and O4 of the four bridging acetate ligands connecting both copper atoms, while the chloride ion Cl1 links to Cu1 in the axial position of the octahedron. The inversion related copper atoms are linked by a Cu—Cu bond thus completing the octahedral coordination of each copper center. The trans angles in the equatorial plane deviate slightly from the ideal value of 180°, and the Cu—O bond lengths fall in the range of 1.9712 (18)–1.9809 (19) Å. These values are in good agreement with the values reported for Cu2(CH3COO)4(H2O)2 (Van Niekerk & Schoening,1953), and in more accurate structure determinations of this compound (Meester et al., 1973; Nieger, 2001; Ferguson & Glidewell, 2003; Steed et al., 1998; Vives et al., 2003; Golzar Hossain, 2007; Mahmoudkhani & Langer, 1998) and for similar complexes (Shahid, Mazhar, Malik et al., 2008; Shahid et al., 2009; Zhang et al., 2004). They indicate a slightly distorted octahedral geometry around both copper centers in the complex. The length of the central Cu—Cu bond of 2.6793 (8) Å is significantly longer than the value reported for dinuclear copper (II) acetate monohydrate by X-ray diffraction (see above) as well as by neutron diffraction analysis (Brown & Chidambaram, 1973), but it does agree well with that of the only other structurally determined tetra-µ-acetato-k8O:O'-dicuprate(II) with two terminal chloride ligands, which was reported by Ackermann et al. (2000) as 2.687 Å.
In the crystal structure the terminal chlorides are hydrogen bonded to one of crystallography independent (dimethylammonium)propanol cations (Fig. 2 and Table 1). The other crystallographically indepenent dimethyl(3-hydroxypropyl) ammonium ion is disordered over two positions, with both moieties being approximate mirror images of each other (see refinement section for details). This disorder results in a significantlty different hydrogen bonding environment for the two moieties. The dominant orientation exhibits an N—H···Cl hydrogen bond of ca 2.15 Å between H1 and Cl2. The less prevalent moiety shows a much weaker bond with an N1B—H1B···Cl1i bond distance of 2.53 Å (symmetry operator (i): -x + 1, y - 1/2, -z + 3/2). The packing of the crystal structure is dominated by hydrogen bonding between the ammonium N—H units and the chloride (Cl2) anions, as well as O—H···O and O—H···Cl hydrogen bonds (Fig. 3 and Table 1).