metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4-bromo-2-(cyclo­pentyl­imino­meth­yl)phenolato]copper(II)

aDepartment of Chemistry, Jiaying University, Meizhou Guangdong 514015, People's Republic of China
*Correspondence e-mail: banghong_cai@163.com

(Received 20 February 2009; accepted 23 February 2009; online 28 February 2009)

The title compound, [Cu(C12H13BrNO)2], was prepared by the reaction of 5-bromo­salicylaldehyde, cyclo­pentyl­amine and copper(II) acetate in an ethanol solution. The CuII atom lies on an inversion center and is four-coordinated in a square-planar geometry by two N and two O atoms from two 4-bromo-2-(cyclo­pentyl­imino­meth­yl)phenolate Schiff base ligands.

Related literature

For background on Schiff base complexes, see: Costes et al. (2002[Costes, J.-P., Clemente-Juan, J. M., Dahan, F., Dumestre, F. & Tuchagues, J.-P. (2002). Inorg. Chem. 41, 2886-2891.]); Erxleben (2001[Erxleben, A. (2001). Inorg. Chem. 40, 208-213.]); Lacroix et al. (1996[Lacroix, P. G., Di Bella, S. & Ledoux, I. (1996). Chem. Mater. 8, 541-545.]); Odoko et al. (2006[Odoko, M., Tsuchida, N. & Okabe, N. (2006). Acta Cryst. E62, m710-m711.]); Ali et al. (2006[Ali, H. M., Puvaneswary, S. & Ng, S. W. (2006). Acta Cryst. E62, m2737-m2738.]). For related copper(II) complexes, see: Wang et al. (2007[Wang, L., Dong, J.-F., Li, L.-Z., Li, L.-W. & Wang, D.-Q. (2007). Acta Cryst. E63, m1059-m1060.]); Datta et al. (2008[Datta, A., Huang, J.-H. & Lee, H. M. (2008). Acta Cryst. E64, m1497.]); Yusnita et al. (2008[Yusnita, J., Ali, H. M., Puvaneswary, S., Robinson, W. T. & Ng, S. W. (2008). Acta Cryst. E64, m1039.]); Wang & Zheng (2007[Wang, L.-G. & Zheng, Y.-F. (2007). Acta Cryst. E63, m390-m391.]). For a related zinc(II) complex, see: Cai (2009[Cai, B.-H. (2009). Acta Cryst. E65, m142.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C12H13BrNO)2]

  • Mr = 597.83

  • Monoclinic, P 21 /c

  • a = 9.190 (2) Å

  • b = 10.960 (2) Å

  • c = 12.166 (2) Å

  • β = 109.73 (3)°

  • V = 1153.5 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.44 mm−1

  • T = 298 K

  • 0.27 × 0.23 × 0.23 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.381, Tmax = 0.429 (expected range = 0.320–0.361)

  • 9709 measured reflections

  • 2636 independent reflections

  • 2003 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.098

  • S = 1.02

  • 2636 reflections

  • 142 parameters

  • H-atom parameters constrained

  • Δρmax = 0.93 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases are interesting ligands which form a large number of complexes with metal atoms (Costes et al., 2002; Erxleben, 2001; Lacroix et al., 1996; Odoko et al., 2006; Ali et al., 2006). The author has recently reported on the crystal structure of a zinc(II) complex with the Schiff base (2-morpholin-4-ylethyl)-(1-pyridin-2-ylmethylidene)amine (Cai, 2009). As a continuous of our work in this area, we report here on the crystal structure of the title copper(II) complex (Fig. 1), derived from the Schiff base 4-bromo-2-(cyclopentyliminomethyl)phenol.

In the centrosymmetric title complex the CuII atom, is located on an inversion center, and is four-coordinate in a square planar geometry with two nitrogen and two oxygen atoms from two Schiff base ligands. All the coordinate bond lengths are typical and comparable with those in similar copper(II) complexes (Wang et al., 2007; Datta et al., 2008; Yusnita et al., 2008; Wang & Zheng, 2007).

Related literature top

For background on Schiff base complexes, see: Costes et al. (2002); Erxleben (2001); Lacroix et al. (1996); Odoko et al. (2006); Ali et al. (2006). For related copper(II) complexes, see: Wang et al. (2007); Datta et al. (2008); Yusnita et al. (2008); Wang & Zheng (2007). For a related zinc(II) complex, see: Cai (2009).

Experimental top

5-Bromosalicylaldehyde (0.2 mmol, 40.3 mg), cyclopentylamine (0.2 mmol, 17.0 mg), and copper(II) acetate monohydrate (0.1 mmol, 20.0 mg) were mixed in 20 ml of ethanol. The mixture was stirred for 2 h at rt, giving a blue solution. Single-crystals were formed by gradual evaporation of the solution in air after several days.

Refinement top

H atoms were placed in calculated positions and treated as riding: C–H = 0.93–0.98 Å, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids [unlabelled atoms are related to the labelled atoms by the symmetry operation -x, 2-y, -z].
Bis[4-bromo-2-(cyclopentyliminomethyl)phenolato]copper(II) top
Crystal data top
[Cu(C12H13BrNO)2]F(000) = 598
Mr = 597.83Dx = 1.721 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.190 (2) ÅCell parameters from 2505 reflections
b = 10.960 (2) Åθ = 2.3–25.0°
c = 12.166 (2) ŵ = 4.44 mm1
β = 109.73 (3)°T = 298 K
V = 1153.5 (4) Å3Block, blue
Z = 20.27 × 0.23 × 0.23 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2636 independent reflections
Radiation source: fine-focus sealed tube2003 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.381, Tmax = 0.429k = 1414
9709 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0427P)2 + 0.9221P]
where P = (Fo2 + 2Fc2)/3
2636 reflections(Δ/σ)max = 0.001
142 parametersΔρmax = 0.93 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Cu(C12H13BrNO)2]V = 1153.5 (4) Å3
Mr = 597.83Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.190 (2) ŵ = 4.44 mm1
b = 10.960 (2) ÅT = 298 K
c = 12.166 (2) Å0.27 × 0.23 × 0.23 mm
β = 109.73 (3)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2636 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2003 reflections with I > 2σ(I)
Tmin = 0.381, Tmax = 0.429Rint = 0.035
9709 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.02Δρmax = 0.93 e Å3
2636 reflectionsΔρmin = 0.42 e Å3
142 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00001.00000.00000.03400 (16)
Br10.34783 (5)0.60773 (4)0.33661 (4)0.06123 (17)
O10.0883 (3)1.00623 (19)0.1197 (2)0.0446 (6)
N10.0534 (3)0.8203 (2)0.0328 (2)0.0341 (6)
C10.1071 (4)0.7941 (3)0.1548 (3)0.0344 (7)
C20.1456 (4)0.9175 (3)0.1630 (3)0.0348 (7)
C30.2475 (4)0.9435 (3)0.2236 (3)0.0435 (8)
H30.27531.02420.22940.052*
C40.3073 (4)0.8541 (3)0.2744 (3)0.0465 (9)
H40.37520.87410.31360.056*
C50.2659 (4)0.7337 (3)0.2671 (3)0.0422 (8)
C60.1676 (4)0.7034 (3)0.2090 (3)0.0391 (7)
H60.14040.62220.20520.047*
C70.0063 (4)0.7551 (3)0.0935 (3)0.0374 (7)
H70.01840.67260.09870.045*
C80.1560 (4)0.7602 (3)0.0219 (3)0.0386 (7)
H80.12650.79150.10190.046*
C90.3252 (4)0.7923 (4)0.0374 (4)0.0603 (11)
H9A0.34670.87400.01630.072*
H9B0.35360.78740.12160.072*
C100.4115 (5)0.6976 (5)0.0078 (6)0.0901 (18)
H10A0.45430.73460.06260.108*
H10B0.49550.66320.05630.108*
C110.2977 (5)0.6002 (4)0.0671 (4)0.0642 (12)
H11A0.34120.51990.04290.077*
H11B0.26960.60650.15120.077*
C120.1586 (5)0.6206 (3)0.0307 (4)0.0507 (9)
H12A0.17130.58240.04380.061*
H12B0.06510.59000.08890.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0412 (3)0.0242 (3)0.0424 (3)0.0024 (2)0.0218 (3)0.0028 (2)
Br10.0702 (3)0.0547 (3)0.0720 (3)0.0114 (2)0.0414 (2)0.0125 (2)
O10.0659 (16)0.0251 (11)0.0570 (15)0.0009 (11)0.0395 (13)0.0012 (10)
N10.0374 (14)0.0263 (13)0.0425 (15)0.0034 (11)0.0185 (12)0.0018 (11)
C10.0377 (17)0.0294 (16)0.0387 (17)0.0018 (13)0.0163 (14)0.0037 (13)
C20.0401 (18)0.0290 (15)0.0373 (17)0.0023 (13)0.0159 (14)0.0031 (13)
C30.056 (2)0.0336 (17)0.050 (2)0.0058 (16)0.0300 (18)0.0006 (16)
C40.050 (2)0.049 (2)0.049 (2)0.0019 (17)0.0287 (18)0.0009 (17)
C50.0443 (19)0.0424 (19)0.0442 (19)0.0079 (15)0.0205 (16)0.0070 (15)
C60.0461 (19)0.0289 (16)0.0441 (19)0.0008 (14)0.0175 (15)0.0036 (14)
C70.0406 (17)0.0270 (16)0.0470 (19)0.0064 (13)0.0177 (15)0.0040 (14)
C80.0421 (18)0.0292 (16)0.0489 (19)0.0060 (14)0.0212 (16)0.0012 (14)
C90.043 (2)0.056 (2)0.085 (3)0.0012 (19)0.026 (2)0.024 (2)
C100.051 (3)0.082 (3)0.147 (5)0.006 (2)0.046 (3)0.051 (4)
C110.066 (3)0.049 (2)0.085 (3)0.012 (2)0.036 (2)0.010 (2)
C120.059 (2)0.0349 (19)0.064 (2)0.0030 (17)0.028 (2)0.0058 (17)
Geometric parameters (Å, º) top
Cu1—O1i1.892 (2)C6—H60.9300
Cu1—O11.892 (2)C7—H70.9300
Cu1—N12.036 (2)C8—C91.518 (5)
Cu1—N1i2.036 (2)C8—C121.534 (4)
Br1—C51.902 (3)C8—H80.9800
O1—C21.299 (4)C9—C101.518 (5)
N1—C71.278 (4)C9—H9A0.9700
N1—C81.480 (4)C9—H9B0.9700
C1—C61.407 (4)C10—C111.498 (6)
C1—C21.411 (4)C10—H10A0.9700
C1—C71.436 (4)C10—H10B0.9700
C2—C31.403 (4)C11—C121.504 (6)
C3—C41.369 (5)C11—H11A0.9700
C3—H30.9300C11—H11B0.9700
C4—C51.385 (5)C12—H12A0.9700
C4—H40.9300C12—H12B0.9700
C5—C61.362 (5)
O1i—Cu1—O1180.0N1—C8—C9112.9 (3)
O1i—Cu1—N188.74 (10)N1—C8—C12120.2 (3)
O1—Cu1—N191.26 (10)C9—C8—C12103.1 (3)
O1i—Cu1—N1i91.26 (10)N1—C8—H8106.6
O1—Cu1—N1i88.74 (10)C9—C8—H8106.6
N1—Cu1—N1i180.0C12—C8—H8106.6
C2—O1—Cu1128.5 (2)C10—C9—C8104.2 (3)
C7—N1—C8118.3 (3)C10—C9—H9A110.9
C7—N1—Cu1122.1 (2)C8—C9—H9A110.9
C8—N1—Cu1119.42 (19)C10—C9—H9B110.9
C6—C1—C2119.7 (3)C8—C9—H9B110.9
C6—C1—C7117.4 (3)H9A—C9—H9B108.9
C2—C1—C7122.9 (3)C11—C10—C9107.3 (3)
O1—C2—C3119.7 (3)C11—C10—H10A110.3
O1—C2—C1122.9 (3)C9—C10—H10A110.3
C3—C2—C1117.3 (3)C11—C10—H10B110.3
C4—C3—C2122.3 (3)C9—C10—H10B110.3
C4—C3—H3118.9H10A—C10—H10B108.5
C2—C3—H3118.9C10—C11—C12106.1 (3)
C3—C4—C5119.5 (3)C10—C11—H11A110.5
C3—C4—H4120.3C12—C11—H11A110.5
C5—C4—H4120.3C10—C11—H11B110.5
C6—C5—C4120.7 (3)C12—C11—H11B110.5
C6—C5—Br1119.0 (3)H11A—C11—H11B108.7
C4—C5—Br1120.3 (3)C11—C12—C8101.8 (3)
C5—C6—C1120.5 (3)C11—C12—H12A111.4
C5—C6—H6119.7C8—C12—H12A111.4
C1—C6—H6119.7C11—C12—H12B111.4
N1—C7—C1127.8 (3)C8—C12—H12B111.4
N1—C7—H7116.1H12A—C12—H12B109.3
C1—C7—H7116.1
Symmetry code: (i) x, y+2, z.

Experimental details

Crystal data
Chemical formula[Cu(C12H13BrNO)2]
Mr597.83
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.190 (2), 10.960 (2), 12.166 (2)
β (°) 109.73 (3)
V3)1153.5 (4)
Z2
Radiation typeMo Kα
µ (mm1)4.44
Crystal size (mm)0.27 × 0.23 × 0.23
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.381, 0.429
No. of measured, independent and
observed [I > 2σ(I)] reflections
9709, 2636, 2003
Rint0.035
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.098, 1.02
No. of reflections2636
No. of parameters142
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.93, 0.42

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The author acknowledges financial support from Jiaying University.

References

First citationAli, H. M., Puvaneswary, S. & Ng, S. W. (2006). Acta Cryst. E62, m2737–m2738.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, B.-H. (2009). Acta Cryst. E65, m142.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCostes, J.-P., Clemente-Juan, J. M., Dahan, F., Dumestre, F. & Tuchagues, J.-P. (2002). Inorg. Chem. 41, 2886–2891.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDatta, A., Huang, J.-H. & Lee, H. M. (2008). Acta Cryst. E64, m1497.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationErxleben, A. (2001). Inorg. Chem. 40, 208–213.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLacroix, P. G., Di Bella, S. & Ledoux, I. (1996). Chem. Mater. 8, 541–545.  CrossRef CAS Web of Science Google Scholar
First citationOdoko, M., Tsuchida, N. & Okabe, N. (2006). Acta Cryst. E62, m710–m711.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L., Dong, J.-F., Li, L.-Z., Li, L.-W. & Wang, D.-Q. (2007). Acta Cryst. E63, m1059–m1060.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, L.-G. & Zheng, Y.-F. (2007). Acta Cryst. E63, m390–m391.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYusnita, J., Ali, H. M., Puvaneswary, S., Robinson, W. T. & Ng, S. W. (2008). Acta Cryst. E64, m1039.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds