metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-N,N′-Bis(1-ferrocen­yleth­yl)pyridine-2,6-dicarboxamide

aDepartment of Applied Chemistry, College of Engineering, Kyungpook National University, Daegu 702-701, South Korea, and bCentral Instrument Facility, Gyeongsang National University, Jinju, South Korea
*Correspondence e-mail: tjkim@knu.ac.kr

(Received 23 January 2009; accepted 5 February 2009; online 11 February 2009)

The title compound, [Fe2(C5H5)2(C21H21N3O2)], a potential novel N,N′,N′′-tridentate ligand with (non-crystallographic) C2 axial symmetry, adopts a U-shaped molecular conformation.

Related literature

For the applications of ferrocenes, see: Feng et al. (2008[Feng, Z., Yu, S. & Shang, Y. (2008). Appl. Org. Chem. 22, 577-582.]). For the use of 1,2-disubstituted planar-chiral ferrocenes in asymmetric catalysis, see: Richards & Locke (1998[Richards, C. J. & Locke, A. J. (1998). Tetrahedron Asymmetry, 9, 2377-2407.]); Kagan & Riant (1997[Kagan, H. B. & Riant, O. (1997). In Advances in Asymmetric Synthesis, edited by A. Hassner, Vol. 2, p 189. Greenwich, CT: JAI Press Inc.]). For the use of chiral C2-symmetric bis­ferro­cenyl­amino­phosphine ligands in asymmetric catalysis, see: Cho et al. (1999[Cho, D.-J., Jeon, S.-J., Kim, H.-S., Cho, C. S., Shim, S. C. & Kim, T.-J. (1999). Tetrahedron Asymmetry, 10, 3833-3848.]); Song et al. (1999[Song, J.-H., Cho, D.-J., Jeon, S.-J., Kim, Y.-H. & Kim, T.-J. (1999). Inorg. Chem. 38, 893-896.]). α-Diimine ligands are known to stablize organometallic complexes (van Koten & Vrieze, 1982[Koten, G. van & Vrieze, K. (1982). Adv. Organomet. Chem. 21, 151-239.]) and have been widely employed in a number of catalytic reactions, see: Fache et al. (2000[Fache, F., Schulz, E., Tommasino, M. L. & Lemaire, M. (2000). Chem. Rev. 100, 2159-2231.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe2(C5H5)2(C21H21N3O2)]

  • Mr = 589.29

  • Monoclinic, P 21 /n

  • a = 13.1787 (8) Å

  • b = 10.2961 (6) Å

  • c = 19.8474 (12) Å

  • β = 103.620 (1)°

  • V = 2617.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.14 mm−1

  • T = 298 (2) K

  • 0.41 × 0.19 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.734, Tmax = 0.842

  • 14428 measured reflections

  • 5126 independent reflections

  • 3874 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.098

  • wR(F2) = 0.199

  • S = 1.20

  • 5126 reflections

  • 343 parameters

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.61 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: WinGX Publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Ferrocene derivatives have come a long way as a tool in chemistry, with applications in electrochemistry, materials science, synthesis and catalysis (Feng et al., 2008). The resurgence of interest in 1,2-disubstituted planar-chiral ferrocenes has resulted in numerous interesting compounds which are finding widespread application in asymmetric catalysis (Richards & Locke, 1998; Kagan & Riant, 1997). Our past success in the use of chiral C2-symmetric bisferrocenyl aminophosphine ligands in asymmetric catalysis (Song et al., 1999; Cho et al., 1999) has prompted us to examine related bisferrocenyl analogues, such as the title complex (I), as potential sources of chiral ligand. The α-diimine ligands are now well known to stablize organometallic complexes (van Koten & Vrieze, 1982) and have thus been widely employed in a number of catalytic reactions (Fache et al., 2000). Herein, an example of a completely new class of C2-symmetric bisferrocenyl amides, (I), that was formed via the reaction of 2,6-bis(chlorocarbonyl)pyridine with two equivalents of ferrocenyl ethylamine, is described.

The structure of (I), Fig. 1, shows the conformation of the nearly parallel Cp rings [the dihedral angle between their planes are 2.32 (1) and 1.04 (1)° for Fe1 and Fe2, respectively] is almost eclipsed in one ferrocene unit, whereas staggered by 5(2)° in the other. The two amide groups are nearly coplanar with the pyridine ring. The dihedral angles between the plane of the substituted Cp rings and central pyridyl ring are 86.6 (2) and 42.2 (2)°, respectively.

Related literature top

For the applications of ferrocenes, see: Feng et al. (2008). For the use of 1,2-disubstituted planar-chiral ferrocenes in asymmetric catalysis, see: Richards & Locke (1998); Kagan & Riant (1997). For the use of chiral C2-symmetric bisferrocenylaminophosphine ligands in asymmetric catalysis, see: Cho et al. (1999); Song et al. (1999). α-Diimine ligands are known to stablize organometallic complexes (van Koten & Vrieze, 1982) and have been widely employed in a number of catalytic reactions, see: Fache et al. (2000).

Experimental top

To a mixture of 2,6-bis(chlorocarbonyl)pyridine (244.0 mg, 1.21 mmol) and triethylamine (1.0 ml) in CH2Cl2 (10.0 ml) was added a solution of ferrocenyl ethylamine (0.43 g, 2.42 mmol) in CH2Cl2 (20.0 ml). The mixture was stirred at room temperature for 8 h after which it was washed with 5% HCl (3 x 20 ml) and 5% NaHCO3 (4 x 30 ml). The product was separated by extraction with CH2Cl2, dried over magnesium sulfate, and the solvent removed. The remaining oily residue was eluted on a silica gel column with a mixture of CH2Cl2 and MeOH (95:5). The first orange band was collected, and the solvent evaporated to give an orange solid (750 mg, 65.2% yield). Single crystals were grown by slow diffusion of hexane into a CH2Cl2 solution of (I).

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.98 Å and N—H = 0.86 Å), and refined as riding with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: WinGX Publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom numbering scheme and 30% probability thermal ellipsoids. Hydrogen atoms are omitted for clarity.
rac-N,N'-Bis(1-ferrocenylethyl)pyridine-2,6-dicarboxamide top
Crystal data top
[Fe(C5H5)2(C21H21N3O2)]F(000) = 1224
Mr = 589.29Dx = 1.495 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4471 reflections
a = 13.1787 (8) Åθ = 2.2–26.1°
b = 10.2961 (6) ŵ = 1.14 mm1
c = 19.8474 (12) ÅT = 298 K
β = 103.620 (1)°Rectangular, yellow
V = 2617.3 (3) Å30.41 × 0.19 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
5126 independent reflections
Radiation source: fine-focus sealed tube3874 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Blessing, 1995; Sheldrick, 2004)
h = 1616
Tmin = 0.734, Tmax = 0.842k = 1212
14428 measured reflectionsl = 2417
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.098Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.199H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.0634P)2 + 8.1673P]
where P = (Fo2 + 2Fc2)/3
5126 reflections(Δ/σ)max < 0.001
343 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Fe(C5H5)2(C21H21N3O2)]V = 2617.3 (3) Å3
Mr = 589.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.1787 (8) ŵ = 1.14 mm1
b = 10.2961 (6) ÅT = 298 K
c = 19.8474 (12) Å0.41 × 0.19 × 0.15 mm
β = 103.620 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5126 independent reflections
Absorption correction: multi-scan
(SADABS; Blessing, 1995; Sheldrick, 2004)
3874 reflections with I > 2σ(I)
Tmin = 0.734, Tmax = 0.842Rint = 0.046
14428 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0980 restraints
wR(F2) = 0.199H-atom parameters constrained
S = 1.20Δρmax = 0.75 e Å3
5126 reflectionsΔρmin = 0.61 e Å3
343 parameters
Special details top

Experimental. Ratio of minimum to maximum apparent transmission: 0.734422

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.17053 (7)0.10963 (9)0.11043 (5)0.0413 (3)
Fe20.53645 (7)0.29594 (9)0.10434 (5)0.0417 (3)
O10.4466 (5)0.1233 (6)0.3804 (3)0.0812 (18)
O20.8132 (4)0.3087 (6)0.3000 (3)0.0715 (16)
N10.4599 (4)0.0710 (6)0.2728 (3)0.0547 (16)
H1A0.49460.02500.24980.066*
N20.6319 (4)0.0688 (5)0.3218 (3)0.0387 (12)
N30.7391 (4)0.1436 (6)0.2299 (3)0.0457 (14)
H3A0.70670.07100.22900.055*
C10.0384 (6)0.1732 (8)0.1360 (4)0.056 (2)
H1B0.00600.13460.17090.068*
C20.1144 (6)0.2705 (7)0.1476 (4)0.059 (2)
H2B0.14440.31160.19240.071*
C30.1396 (7)0.3010 (8)0.0850 (5)0.071 (2)
H3B0.18980.36670.07770.085*
C40.0788 (8)0.2198 (10)0.0346 (4)0.079 (3)
H4A0.07990.21830.01460.095*
C50.0169 (6)0.1404 (9)0.0659 (4)0.067 (2)
H5A0.03340.07520.04270.081*
C60.2467 (6)0.0314 (8)0.0700 (5)0.068 (2)
H6A0.23410.05240.02050.081*
C70.1942 (6)0.0863 (7)0.1152 (5)0.071 (3)
H7A0.14040.15390.10440.085*
C80.2348 (5)0.0303 (6)0.1797 (4)0.0555 (19)
H8A0.21200.05080.22200.067*
C90.3101 (5)0.0660 (6)0.1748 (3)0.0392 (15)
C100.3179 (6)0.0628 (8)0.1041 (4)0.060 (2)
H10A0.36440.11580.08350.072*
C110.3724 (5)0.1462 (7)0.2333 (4)0.0527 (18)
H11A0.32690.16810.26420.063*
C120.4101 (7)0.2730 (8)0.2075 (5)0.085 (3)
H12A0.44910.32180.24630.102*
H12B0.35100.32300.18360.102*
H12C0.45390.25400.17640.102*
C130.4903 (6)0.0677 (7)0.3409 (4)0.0503 (17)
C140.5841 (5)0.0196 (6)0.3682 (3)0.0412 (15)
C150.6128 (6)0.0516 (7)0.4376 (3)0.0530 (19)
H15A0.57870.01410.46880.064*
C160.6914 (6)0.1384 (8)0.4601 (4)0.059 (2)
H16A0.71090.16160.50670.071*
C170.7422 (6)0.1919 (8)0.4129 (4)0.058 (2)
H17A0.79590.25190.42670.069*
C180.7098 (5)0.1523 (7)0.3437 (3)0.0436 (16)
C190.7603 (5)0.2092 (8)0.2893 (4)0.0521 (18)
C200.7665 (5)0.1850 (7)0.1659 (4)0.0509 (18)
H20A0.79840.27140.17350.061*
C210.8435 (6)0.0937 (9)0.1456 (5)0.077 (3)
H21A0.90510.08800.18260.092*
H21B0.81260.00920.13650.092*
H21C0.86200.12580.10460.092*
C220.6698 (5)0.1939 (7)0.1077 (3)0.0482 (16)
C230.6523 (6)0.2865 (8)0.0528 (4)0.061 (2)
H23A0.69940.35760.04760.074*
C240.5548 (7)0.2590 (9)0.0074 (4)0.070 (2)
H24A0.52260.30760.03470.083*
C250.5118 (6)0.1519 (7)0.0333 (3)0.058 (2)
H25A0.44430.11180.01240.069*
C260.5825 (6)0.1105 (6)0.0944 (3)0.0482 (17)
H26A0.57190.03710.12340.058*
C270.5281 (6)0.4809 (7)0.1373 (4)0.063 (2)
H27A0.56840.55490.12660.076*
C280.5586 (7)0.3973 (8)0.1932 (4)0.071 (2)
H28A0.62410.40250.22890.086*
C290.4804 (7)0.3058 (8)0.1908 (4)0.069 (2)
H29A0.48170.23530.22420.082*
C300.3991 (6)0.3315 (8)0.1328 (4)0.063 (2)
H30A0.33410.28200.11820.076*
C310.4292 (6)0.4399 (7)0.0982 (4)0.066 (2)
H31A0.38850.48020.05560.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0445 (5)0.0423 (6)0.0367 (5)0.0193 (4)0.0090 (4)0.0047 (4)
Fe20.0507 (6)0.0323 (5)0.0366 (5)0.0104 (4)0.0004 (4)0.0010 (4)
O10.101 (5)0.083 (4)0.065 (4)0.017 (4)0.031 (3)0.022 (3)
O20.065 (4)0.073 (4)0.074 (4)0.015 (3)0.011 (3)0.018 (3)
N10.043 (3)0.075 (4)0.044 (3)0.014 (3)0.006 (3)0.008 (3)
N20.036 (3)0.040 (3)0.036 (3)0.013 (2)0.000 (2)0.003 (2)
N30.040 (3)0.054 (4)0.038 (3)0.006 (3)0.001 (2)0.001 (3)
C10.051 (4)0.064 (5)0.057 (5)0.022 (4)0.017 (4)0.014 (4)
C20.066 (5)0.044 (5)0.062 (5)0.030 (4)0.004 (4)0.008 (4)
C30.077 (6)0.051 (5)0.083 (6)0.038 (4)0.016 (5)0.030 (5)
C40.096 (7)0.095 (7)0.045 (5)0.060 (6)0.015 (5)0.028 (5)
C50.050 (5)0.076 (6)0.064 (5)0.033 (4)0.010 (4)0.020 (4)
C60.058 (5)0.061 (5)0.077 (6)0.030 (4)0.003 (4)0.017 (5)
C70.056 (5)0.030 (4)0.113 (8)0.005 (3)0.005 (5)0.005 (4)
C80.050 (4)0.035 (4)0.073 (5)0.003 (3)0.003 (4)0.021 (4)
C90.033 (3)0.038 (3)0.045 (4)0.012 (3)0.005 (3)0.009 (3)
C100.041 (4)0.060 (5)0.086 (6)0.024 (4)0.027 (4)0.007 (4)
C110.041 (4)0.056 (5)0.061 (5)0.008 (3)0.012 (3)0.000 (4)
C120.069 (6)0.058 (6)0.121 (8)0.014 (5)0.006 (5)0.006 (5)
C130.052 (4)0.050 (4)0.047 (4)0.017 (3)0.007 (3)0.007 (3)
C140.041 (4)0.047 (4)0.031 (3)0.021 (3)0.001 (3)0.005 (3)
C150.059 (5)0.066 (5)0.030 (4)0.029 (4)0.002 (3)0.009 (3)
C160.061 (5)0.071 (5)0.034 (4)0.028 (4)0.012 (3)0.013 (4)
C170.039 (4)0.071 (5)0.053 (4)0.019 (4)0.008 (3)0.015 (4)
C180.031 (3)0.057 (4)0.037 (4)0.013 (3)0.003 (3)0.009 (3)
C190.031 (4)0.062 (5)0.055 (4)0.006 (3)0.005 (3)0.010 (4)
C200.050 (4)0.054 (4)0.050 (4)0.012 (3)0.013 (3)0.004 (3)
C210.057 (5)0.104 (7)0.077 (6)0.011 (5)0.030 (4)0.015 (5)
C220.055 (4)0.049 (4)0.045 (4)0.001 (3)0.019 (3)0.007 (3)
C230.066 (5)0.069 (5)0.050 (4)0.005 (4)0.016 (4)0.014 (4)
C240.100 (7)0.082 (6)0.026 (4)0.003 (5)0.016 (4)0.010 (4)
C250.077 (5)0.058 (5)0.030 (4)0.006 (4)0.005 (3)0.021 (3)
C260.067 (5)0.037 (4)0.041 (4)0.003 (3)0.015 (3)0.006 (3)
C270.068 (5)0.039 (4)0.074 (5)0.007 (4)0.003 (4)0.013 (4)
C280.077 (6)0.057 (5)0.066 (5)0.001 (5)0.013 (4)0.034 (4)
C290.102 (7)0.064 (5)0.045 (4)0.022 (5)0.028 (5)0.003 (4)
C300.060 (5)0.053 (5)0.076 (6)0.004 (4)0.014 (4)0.007 (4)
C310.059 (5)0.044 (4)0.080 (6)0.006 (4)0.013 (4)0.005 (4)
Geometric parameters (Å, º) top
Fe1—C12.033 (7)C8—C91.422 (9)
Fe1—C22.023 (7)C8—H8A0.9800
Fe1—C32.051 (7)C9—C101.430 (10)
Fe1—C42.040 (7)C9—C111.501 (9)
Fe1—C52.034 (7)C10—H10A0.9800
Fe1—C62.035 (7)C11—C121.528 (11)
Fe1—C72.040 (7)C11—H11A0.9800
Fe1—C82.033 (6)C12—H12A0.9600
Fe1—C92.027 (6)C12—H12B0.9600
Fe1—C102.033 (7)C12—H12C0.9600
Fe2—C282.011 (7)C13—C141.521 (10)
Fe2—C252.019 (6)C14—C151.378 (9)
Fe2—C292.024 (7)C15—C161.362 (11)
Fe2—C272.025 (7)C15—H15A0.9300
Fe2—C262.027 (7)C16—C171.388 (11)
Fe2—C232.031 (8)C16—H16A0.9300
Fe2—C242.031 (7)C17—C181.399 (9)
Fe2—C312.031 (8)C17—H17A0.9300
Fe2—C222.035 (7)C18—C191.513 (10)
Fe2—C302.052 (8)C20—C211.507 (10)
O1—C131.220 (8)C20—C221.508 (10)
O2—C191.230 (8)C20—H20A0.9800
N1—C131.317 (8)C21—H21A0.9600
N1—C111.456 (9)C21—H21B0.9600
N1—H1A0.8600C21—H21C0.9600
N2—C181.332 (8)C22—C261.410 (9)
N2—C141.332 (8)C22—C231.425 (9)
N3—C191.329 (8)C23—C241.413 (11)
N3—C201.463 (8)C23—H23A0.9800
N3—H3A0.8600C24—C251.392 (11)
C1—C51.393 (10)C24—H24A0.9800
C1—C21.397 (11)C25—C261.410 (9)
C1—H1B0.9800C25—H25A0.9800
C2—C31.397 (11)C26—H26A0.9800
C2—H2B0.9800C27—C281.387 (11)
C3—C41.402 (13)C27—C311.416 (10)
C3—H3B0.9800C27—H27A0.9800
C4—C51.400 (12)C28—C291.389 (12)
C4—H4A0.9800C28—H28A0.9800
C5—H5A0.9800C29—C301.400 (11)
C6—C71.377 (12)C29—H29A0.9800
C6—C101.408 (11)C30—C311.416 (11)
C6—H6A0.9800C30—H30A0.9800
C7—C81.391 (11)C31—H31A0.9800
C7—H7A0.9800
C2—Fe1—C9107.9 (3)C10—C6—H6A124.8
C2—Fe1—C140.3 (3)Fe1—C6—H6A124.8
C9—Fe1—C1128.2 (3)C6—C7—C8106.6 (7)
C2—Fe1—C8117.6 (3)C6—C7—Fe170.0 (4)
C9—Fe1—C841.0 (3)C8—C7—Fe169.8 (4)
C1—Fe1—C8107.7 (3)C6—C7—H7A126.7
C2—Fe1—C10130.8 (3)C8—C7—H7A126.7
C9—Fe1—C1041.2 (3)Fe1—C7—H7A126.7
C1—Fe1—C10168.0 (3)C7—C8—C9110.5 (7)
C8—Fe1—C1067.8 (3)C7—C8—Fe170.3 (4)
C2—Fe1—C567.6 (3)C9—C8—Fe169.3 (4)
C9—Fe1—C5166.1 (3)C7—C8—H8A124.7
C1—Fe1—C540.1 (3)C9—C8—H8A124.7
C8—Fe1—C5128.2 (4)Fe1—C8—H8A124.7
C10—Fe1—C5151.4 (3)C8—C9—C10105.3 (6)
C2—Fe1—C6170.1 (4)C8—C9—C11126.4 (6)
C9—Fe1—C668.4 (3)C10—C9—C11128.2 (6)
C1—Fe1—C6149.2 (4)C8—C9—Fe169.7 (4)
C8—Fe1—C666.1 (4)C10—C9—Fe169.6 (4)
C10—Fe1—C640.5 (3)C11—C9—Fe1128.0 (4)
C5—Fe1—C6118.2 (3)C6—C10—C9107.1 (7)
C2—Fe1—C467.0 (3)C6—C10—Fe169.8 (4)
C9—Fe1—C4151.7 (4)C9—C10—Fe169.2 (4)
C1—Fe1—C467.1 (3)C6—C10—H10A126.4
C8—Fe1—C4166.8 (4)C9—C10—H10A126.4
C10—Fe1—C4119.7 (4)Fe1—C10—H10A126.4
C5—Fe1—C440.2 (4)N1—C11—C9110.1 (6)
C6—Fe1—C4111.6 (4)N1—C11—C12110.9 (6)
C2—Fe1—C7149.0 (4)C9—C11—C12111.9 (6)
C9—Fe1—C769.2 (3)N1—C11—H11A107.9
C1—Fe1—C7115.9 (4)C9—C11—H11A107.9
C8—Fe1—C739.9 (3)C12—C11—H11A107.9
C10—Fe1—C768.3 (3)C11—C12—H12A109.5
C5—Fe1—C7107.5 (3)C11—C12—H12B109.5
C6—Fe1—C739.5 (3)H12A—C12—H12B109.5
C4—Fe1—C7129.9 (4)C11—C12—H12C109.5
C2—Fe1—C340.1 (3)H12A—C12—H12C109.5
C9—Fe1—C3117.8 (3)H12B—C12—H12C109.5
C1—Fe1—C367.7 (3)O1—C13—N1124.9 (7)
C8—Fe1—C3150.9 (4)O1—C13—C14121.1 (7)
C10—Fe1—C3110.5 (4)N1—C13—C14114.0 (6)
C5—Fe1—C367.9 (4)N2—C14—C15122.4 (7)
C6—Fe1—C3132.6 (4)N2—C14—C13117.1 (6)
C4—Fe1—C340.1 (4)C15—C14—C13120.4 (7)
C7—Fe1—C3168.8 (4)C16—C15—C14119.5 (7)
C28—Fe2—C25163.7 (4)C16—C15—H15A120.2
C28—Fe2—C2940.3 (3)C14—C15—H15A120.2
C25—Fe2—C29126.7 (4)C15—C16—C17119.3 (7)
C28—Fe2—C2740.2 (3)C15—C16—H16A120.3
C25—Fe2—C27154.7 (3)C17—C16—H16A120.3
C29—Fe2—C2767.7 (4)C16—C17—C18117.6 (7)
C28—Fe2—C26126.1 (3)C16—C17—H17A121.2
C25—Fe2—C2640.8 (3)C18—C17—H17A121.2
C29—Fe2—C26107.9 (3)N2—C18—C17122.8 (7)
C27—Fe2—C26163.2 (3)N2—C18—C19116.9 (5)
C28—Fe2—C23119.7 (4)C17—C18—C19120.3 (7)
C25—Fe2—C2368.2 (3)O2—C19—N3124.7 (7)
C29—Fe2—C23153.8 (3)O2—C19—C18121.6 (7)
C27—Fe2—C23108.2 (3)N3—C19—C18113.7 (6)
C26—Fe2—C2368.2 (3)N3—C20—C21111.7 (6)
C28—Fe2—C24154.6 (4)N3—C20—C22110.3 (5)
C25—Fe2—C2440.2 (3)C21—C20—C22109.5 (6)
C29—Fe2—C24164.0 (4)N3—C20—H20A108.4
C27—Fe2—C24120.7 (4)C21—C20—H20A108.4
C26—Fe2—C2468.1 (3)C22—C20—H20A108.4
C23—Fe2—C2440.7 (3)C20—C21—H21A109.5
C28—Fe2—C3168.3 (3)C20—C21—H21B109.5
C25—Fe2—C31119.9 (3)H21A—C21—H21B109.5
C29—Fe2—C3168.1 (4)C20—C21—H21C109.5
C27—Fe2—C3140.9 (3)H21A—C21—H21C109.5
C26—Fe2—C31154.3 (3)H21B—C21—H21C109.5
C23—Fe2—C31126.8 (3)C26—C22—C23106.7 (6)
C24—Fe2—C31108.4 (4)C26—C22—C20127.7 (6)
C28—Fe2—C22107.1 (3)C23—C22—C20125.6 (6)
C25—Fe2—C2268.8 (3)C26—C22—Fe269.4 (4)
C29—Fe2—C22118.9 (3)C23—C22—Fe269.3 (4)
C27—Fe2—C22125.9 (3)C20—C22—Fe2128.6 (5)
C26—Fe2—C2240.6 (3)C24—C23—C22108.2 (7)
C23—Fe2—C2241.0 (3)C24—C23—Fe269.7 (4)
C24—Fe2—C2268.9 (3)C22—C23—Fe269.7 (4)
C31—Fe2—C22164.1 (3)C24—C23—H23A125.9
C28—Fe2—C3067.7 (3)C22—C23—H23A125.9
C25—Fe2—C30108.4 (3)Fe2—C23—H23A125.9
C29—Fe2—C3040.2 (3)C25—C24—C23108.2 (7)
C27—Fe2—C3068.0 (3)C25—C24—Fe269.4 (4)
C26—Fe2—C30119.9 (3)C23—C24—Fe269.6 (4)
C23—Fe2—C30164.6 (3)C25—C24—H24A125.9
C24—Fe2—C30127.2 (4)C23—C24—H24A125.9
C31—Fe2—C3040.6 (3)Fe2—C24—H24A125.9
C22—Fe2—C30153.4 (3)C24—C25—C26108.3 (7)
C13—N1—C11125.3 (6)C24—C25—Fe270.4 (4)
C13—N1—H1A117.3C26—C25—Fe269.9 (4)
C11—N1—H1A117.3C24—C25—H25A125.9
C18—N2—C14118.3 (6)C26—C25—H25A125.9
C19—N3—C20125.4 (6)Fe2—C25—H25A125.9
C19—N3—H3A117.3C25—C26—C22108.7 (6)
C20—N3—H3A117.3C25—C26—Fe269.3 (4)
C5—C1—C2108.0 (8)C22—C26—Fe270.0 (4)
C5—C1—Fe170.0 (4)C25—C26—H26A125.6
C2—C1—Fe169.5 (4)C22—C26—H26A125.6
C5—C1—H1B126.0Fe2—C26—H26A125.6
C2—C1—H1B126.0C28—C27—C31108.0 (7)
Fe1—C1—H1B126.0C28—C27—Fe269.3 (4)
C1—C2—C3109.0 (8)C31—C27—Fe269.8 (4)
C1—C2—Fe170.2 (4)C28—C27—H27A126.0
C3—C2—Fe171.0 (4)C31—C27—H27A126.0
C1—C2—H2B125.5Fe2—C27—H27A126.0
C3—C2—H2B125.5C27—C28—C29108.7 (7)
Fe1—C2—H2B125.5C27—C28—Fe270.5 (4)
C2—C3—C4106.6 (8)C29—C28—Fe270.4 (4)
C2—C3—Fe168.9 (4)C27—C28—H28A125.7
C4—C3—Fe169.5 (5)C29—C28—H28A125.7
C2—C3—H3B126.7Fe2—C28—H28A125.7
C4—C3—H3B126.7C28—C29—C30108.6 (8)
Fe1—C3—H3B126.7C28—C29—Fe269.3 (5)
C5—C4—C3109.0 (8)C30—C29—Fe271.0 (5)
C5—C4—Fe169.7 (4)C28—C29—H29A125.7
C3—C4—Fe170.4 (4)C30—C29—H29A125.7
C5—C4—H4A125.5Fe2—C29—H29A125.7
C3—C4—H4A125.5C29—C30—C31107.5 (7)
Fe1—C4—H4A125.5C29—C30—Fe268.8 (5)
C1—C5—C4107.4 (8)C31—C30—Fe268.9 (5)
C1—C5—Fe169.9 (4)C29—C30—H30A126.2
C4—C5—Fe170.1 (5)C31—C30—H30A126.2
C1—C5—H5A126.3Fe2—C30—H30A126.2
C4—C5—H5A126.3C30—C31—C27107.2 (7)
Fe1—C5—H5A126.3C30—C31—Fe270.5 (4)
C7—C6—C10110.4 (8)C27—C31—Fe269.3 (4)
C7—C6—Fe170.5 (5)C30—C31—H31A126.4
C10—C6—Fe169.7 (4)C27—C31—H31A126.4
C7—C6—H6A124.8Fe2—C31—H31A126.4

Experimental details

Crystal data
Chemical formula[Fe(C5H5)2(C21H21N3O2)]
Mr589.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)13.1787 (8), 10.2961 (6), 19.8474 (12)
β (°) 103.620 (1)
V3)2617.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.14
Crystal size (mm)0.41 × 0.19 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Blessing, 1995; Sheldrick, 2004)
Tmin, Tmax0.734, 0.842
No. of measured, independent and
observed [I > 2σ(I)] reflections
14428, 5126, 3874
Rint0.046
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.098, 0.199, 1.20
No. of reflections5126
No. of parameters343
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.61

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976), WinGX Publication routines (Farrugia, 1999).

 

Acknowledgements

The work was supported by MKE through the Regional Technology Innovation Program (grant No. RTI 04–01–01). We thank Professor Lee Shimsung of Gyeongsang National University for providing instrumental facilities.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCho, D.-J., Jeon, S.-J., Kim, H.-S., Cho, C. S., Shim, S. C. & Kim, T.-J. (1999). Tetrahedron Asymmetry, 10, 3833–3848.  Web of Science CrossRef CAS Google Scholar
First citationFache, F., Schulz, E., Tommasino, M. L. & Lemaire, M. (2000). Chem. Rev. 100, 2159–2231.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFeng, Z., Yu, S. & Shang, Y. (2008). Appl. Org. Chem. 22, 577–582.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKagan, H. B. & Riant, O. (1997). In Advances in Asymmetric Synthesis, edited by A. Hassner, Vol. 2, p 189. Greenwich, CT: JAI Press Inc.  Google Scholar
First citationKoten, G. van & Vrieze, K. (1982). Adv. Organomet. Chem. 21, 151–239.  CrossRef Google Scholar
First citationRichards, C. J. & Locke, A. J. (1998). Tetrahedron Asymmetry, 9, 2377–2407.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, J.-H., Cho, D.-J., Jeon, S.-J., Kim, Y.-H. & Kim, T.-J. (1999). Inorg. Chem. 38, 893–896.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds