metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-2-methyl­quinolin-8-olato)-κ3N,O:O;κ3O:N,O-bis­­[(methanol-κO)(nitrato-κ2O,O′)lead(II)]

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 27 January 2009; accepted 29 January 2009; online 11 February 2009)

The mol­ecule of the title compound, [Pb2(C10H8NO)2(NO3)2(CH3OH)2], lies about a centre of inversion. The Pb atom is chelated by nitrate and substituted quinolin-8-olate anions. The O atom of the quinolin-8-olate also bridges, to confer a six-coordinate status on the metal centre. When a longer Pb⋯O inter­action is considered, the geometry approximates a Ψ-cube in which one of the sites is occupied by a stereochemically active lone pair.

Related literature

The 8-hydroxy­quinolinate group engages in μ3-bridging in dinitratohexa­(quinolin-8-olato)tetra­lead(II); see: Zhang et al. (2008[Zhang, W.-Z., Wei, D.-Z., Che, X.-F., Gao, E.-J., Wang, K.-H., Yin, H.-X. & Gu, X.-G. (2008). Chin. J. Struct. Chem. 27, 287-292.]). It also exhibits this feature in the chain compound, bis­(methanol)dinitratodi(quinolin-8-olato)dilead(II); see Shahverdizadeh et al. (2008[Shahverdizadeh, G. H., Soudi, A. A., Morsali, A. & Retailleau, P. (2008). Inorg. Chim. Acta, 361, 1875-1884.]). Both reports comment on lone-pair stereochemistry in this class of lead(II) compounds.

[Scheme 1]

Experimental

Crystal data
  • [Pb2(C10H8NO)2(NO3)2(CH4O)2]

  • Mr = 918.83

  • Triclinic, [P \overline 1]

  • a = 8.2579 (1) Å

  • b = 8.8052 (1) Å

  • c = 9.6765 (1) Å

  • α = 103.976 (1)°

  • β = 98.262 (1)°

  • γ = 108.190 (1)°

  • V = 630.07 (1) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 13.41 mm−1

  • T = 100 (2) K

  • 0.20 × 0.15 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.175, Tmax = 0.554 (expected range = 0.162–0.512)

  • 5958 measured reflections

  • 2872 independent reflections

  • 2754 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.058

  • S = 1.08

  • 2872 reflections

  • 174 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.41 e Å−3

  • Δρmin = −2.12 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

The 8-hydroxyquinolinate group engages in µ3-bridging in dinitratohexa(quinolin-8-olato)tetralead(II); see: Zhang et al. (2008). It also exhibits this feature in the chain compound, bis(methanol)dinitratodi(quinolin-8-olato)dilead(II); see Shahverdizadeh et al. (2008). Both reports comment on lone-pair stereochemistry in this class of lead(II) compounds.

Experimental top

Lead nitrate (0.33 g, 1 mmol) and 2-methyl-8-hydroxyquinoline (0.32 g, 2 mmol) were loaded into a convection tube; the tube was filled with dry methanol and kept at 333 K. Crystals were collected from the side arm after 3 d.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.93 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C). The methanol H atom was located in a difference Fourier map, and was refined with a distance restraint of O—H 0.84 (1) Å; its temperature factor was freely refined.

The crystal diffracted strongly owing to the extremely heavy metal atom; however, its presence introduced severe absorption problems that could not be corrected analytically as the crystal did not have regular faces. Although a sphere of reflections was measured, multi-scan treatment only marginally improved the quality. The final difference Fourier map had large peaks/deep holes near the Pb atom.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of Pb2(NO3)2(CH4O)2(C10H8NO)2; ellipsoids are drawn at the 70% probability level and H atoms of arbitrary radius. The unlabelled atoms are related by 1-x, 2-y, 1-z.
[Figure 2] Fig. 2. Detail of the environment of the Pb atom. Symmetry codes: (i) 1 - x, 2 - y, 1 - z; (ii) 1 - x, 1 - y, 1 - z.
Bis(µ-2-methylquinolin-8-olato)- κ3N,O:O;κ3O:N,O- bis[(methanol-κO)(nitrato-κ2O,O')lead(II)] top
Crystal data top
[Pb2(C10H8NO)2(NO3)2(CH4O)2]Z = 1
Mr = 918.83F(000) = 428
Triclinic, P1Dx = 2.422 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2579 (1) ÅCell parameters from 5067 reflections
b = 8.8052 (1) Åθ = 2.2–28.3°
c = 9.6765 (1) ŵ = 13.41 mm1
α = 103.976 (1)°T = 100 K
β = 98.262 (1)°Block, yellow
γ = 108.190 (1)°0.20 × 0.15 × 0.05 mm
V = 630.07 (1) Å3
Data collection top
Bruker SMART APEX
diffractometer
2872 independent reflections
Radiation source: fine-focus sealed tube2754 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.175, Tmax = 0.554k = 1111
5958 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0341P)2 + 1.3909P]
where P = (Fo2 + 2Fc2)/3
2872 reflections(Δ/σ)max = 0.001
174 parametersΔρmax = 1.41 e Å3
1 restraintΔρmin = 2.12 e Å3
Crystal data top
[Pb2(C10H8NO)2(NO3)2(CH4O)2]γ = 108.190 (1)°
Mr = 918.83V = 630.07 (1) Å3
Triclinic, P1Z = 1
a = 8.2579 (1) ÅMo Kα radiation
b = 8.8052 (1) ŵ = 13.41 mm1
c = 9.6765 (1) ÅT = 100 K
α = 103.976 (1)°0.20 × 0.15 × 0.05 mm
β = 98.262 (1)°
Data collection top
Bruker SMART APEX
diffractometer
2872 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2754 reflections with I > 2σ(I)
Tmin = 0.175, Tmax = 0.554Rint = 0.019
5958 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0211 restraint
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 1.41 e Å3
2872 reflectionsΔρmin = 2.12 e Å3
174 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.403585 (18)0.747859 (17)0.434423 (15)0.01020 (6)
O10.5672 (4)0.9839 (4)0.3886 (3)0.0139 (6)
O20.7047 (5)0.7066 (4)0.4111 (4)0.0202 (7)
O30.6609 (5)0.6459 (5)0.6104 (4)0.0263 (8)
O40.8652 (5)0.5918 (5)0.5137 (4)0.0261 (8)
O50.0903 (4)0.7403 (4)0.3446 (4)0.0175 (6)
H50.006 (6)0.691 (7)0.376 (7)0.028 (17)*
N10.3858 (5)0.7002 (4)0.1665 (4)0.0114 (7)
N20.7441 (5)0.6484 (5)0.5124 (4)0.0146 (7)
C10.6165 (6)0.9696 (5)0.2615 (5)0.0123 (8)
C20.7547 (6)1.0900 (6)0.2411 (5)0.0169 (9)
H20.82191.18850.32030.020*
C30.7985 (6)1.0691 (6)0.1028 (5)0.0205 (9)
H30.89631.15290.09130.025*
C40.7024 (6)0.9308 (6)0.0140 (5)0.0199 (9)
H40.73150.92030.10650.024*
C50.5592 (6)0.8028 (5)0.0032 (5)0.0141 (8)
C60.5180 (5)0.8209 (5)0.1415 (4)0.0115 (8)
C70.4520 (6)0.6577 (6)0.1116 (5)0.0167 (9)
H70.47310.64170.20700.020*
C80.3161 (6)0.5389 (6)0.0852 (5)0.0165 (9)
H80.24190.44140.16260.020*
C90.2879 (5)0.5628 (5)0.0573 (5)0.0121 (8)
C100.1480 (5)0.4306 (4)0.0890 (5)0.0160 (9)
H10A0.20070.36460.13580.024*
H10B0.06320.35670.00280.024*
H10C0.08790.48340.15490.024*
C110.0687 (6)0.8890 (4)0.3246 (5)0.0257 (11)
H11A0.09280.97170.42050.039*
H11B0.05200.86160.27120.039*
H11C0.15040.93580.26840.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.01050 (9)0.00980 (9)0.01087 (9)0.00331 (6)0.00258 (6)0.00458 (6)
O10.0147 (15)0.0116 (13)0.0134 (14)0.0013 (12)0.0045 (12)0.0043 (11)
O20.0235 (18)0.0268 (17)0.0212 (16)0.0148 (14)0.0101 (14)0.0161 (14)
O30.0270 (19)0.046 (2)0.0163 (16)0.0181 (17)0.0125 (14)0.0177 (16)
O40.0162 (17)0.0333 (19)0.039 (2)0.0136 (15)0.0108 (15)0.0205 (17)
O50.0129 (16)0.0205 (16)0.0227 (16)0.0073 (13)0.0072 (13)0.0098 (13)
N10.0117 (17)0.0121 (16)0.0120 (16)0.0041 (14)0.0028 (13)0.0067 (13)
N20.0126 (18)0.0164 (17)0.0159 (17)0.0051 (14)0.0036 (14)0.0068 (14)
C10.014 (2)0.0129 (18)0.0128 (19)0.0072 (16)0.0030 (16)0.0055 (16)
C20.017 (2)0.015 (2)0.017 (2)0.0048 (17)0.0033 (17)0.0049 (17)
C30.018 (2)0.019 (2)0.027 (2)0.0039 (18)0.0113 (19)0.0115 (19)
C40.021 (2)0.022 (2)0.022 (2)0.0080 (19)0.0124 (19)0.0110 (19)
C50.015 (2)0.017 (2)0.0138 (19)0.0064 (17)0.0063 (16)0.0096 (17)
C60.0095 (19)0.0148 (19)0.0134 (19)0.0071 (16)0.0022 (15)0.0067 (16)
C70.018 (2)0.021 (2)0.014 (2)0.0101 (18)0.0053 (17)0.0049 (17)
C80.014 (2)0.017 (2)0.017 (2)0.0061 (17)0.0020 (16)0.0030 (17)
C90.0088 (19)0.0137 (19)0.0140 (19)0.0047 (16)0.0011 (15)0.0045 (16)
C100.011 (2)0.0125 (19)0.020 (2)0.0014 (16)0.0022 (16)0.0038 (16)
C110.022 (3)0.024 (2)0.036 (3)0.010 (2)0.008 (2)0.014 (2)
Geometric parameters (Å, º) top
Pb1—O12.281 (3)C2—C31.421 (6)
Pb1—O1i2.478 (3)C2—H20.9500
Pb1—N12.499 (3)C3—C41.365 (7)
Pb1—O52.583 (3)C3—H30.9500
Pb1—O22.655 (3)C4—C51.418 (6)
Pb1—O33.019 (4)C4—H40.9500
Pb1—O3ii3.248 (4)C5—C71.406 (6)
Pb1—O4ii3.320 (4)C5—C61.412 (6)
O1—C11.341 (5)C7—C81.378 (6)
O1—Pb1i2.478 (3)C7—H70.9500
O2—N21.259 (5)C8—C91.408 (6)
O3—N21.248 (5)C8—H80.9500
O4—N21.248 (5)C9—C101.490 (5)
O5—C111.430 (5)C10—H10A0.9800
O5—H50.838 (10)C10—H10B0.9800
N1—C91.326 (5)C10—H10C0.9800
N1—C61.362 (5)C11—H11A0.9800
C1—C21.369 (6)C11—H11B0.9800
C1—C61.433 (6)C11—H11C0.9800
O1—Pb1—O1i64.88 (12)O4—N2—O2119.8 (4)
O1—Pb1—N168.38 (11)O1—C1—C2123.2 (4)
O1i—Pb1—N1124.94 (11)O1—C1—C6117.8 (4)
O1—Pb1—O5100.85 (11)C2—C1—C6119.0 (4)
O1i—Pb1—O582.53 (10)C1—C2—C3120.6 (4)
N1—Pb1—O579.21 (11)C1—C2—H2119.7
O1—Pb1—O275.46 (11)C3—C2—H2119.7
O1i—Pb1—O2114.95 (11)C4—C3—C2121.2 (4)
N1—Pb1—O278.25 (11)C4—C3—H3119.4
O5—Pb1—O2156.87 (11)C2—C3—H3119.4
O1—Pb1—O3105.98 (11)C3—C4—C5119.8 (4)
O1i—Pb1—O3100.58 (10)C3—C4—H4120.1
N1—Pb1—O3119.16 (10)C5—C4—H4120.1
O5—Pb1—O3151.65 (10)C7—C5—C6117.2 (4)
O2—Pb1—O344.42 (9)C7—C5—C4123.5 (4)
O1—Pb1—O3ii144.45 (10)C6—C5—C4119.3 (4)
O1i—Pb1—O3ii144.84 (9)N1—C6—C5122.2 (4)
N1—Pb1—O3ii89.96 (10)N1—C6—C1117.7 (4)
O5—Pb1—O3ii102.30 (10)C5—C6—C1120.2 (4)
O2—Pb1—O3ii72.63 (10)C8—C7—C5119.8 (4)
O3—Pb1—O3ii59.42 (12)C8—C7—H7120.1
O1—Pb1—O4ii175.03 (10)C5—C7—H7120.1
O1i—Pb1—O4ii114.40 (10)C7—C8—C9119.6 (4)
N1—Pb1—O4ii109.62 (11)C7—C8—H8120.2
O5—Pb1—O4ii74.21 (9)C9—C8—H8120.2
O2—Pb1—O4ii108.83 (9)N1—C9—C8121.5 (4)
O3—Pb1—O4ii78.99 (10)N1—C9—C10118.5 (4)
O3ii—Pb1—O4ii38.47 (9)C8—C9—C10120.0 (4)
C1—O1—Pb1119.2 (2)C9—C10—H10A109.5
C1—O1—Pb1i124.9 (2)C9—C10—H10B109.5
Pb1—O1—Pb1i115.12 (12)H10A—C10—H10B109.5
N2—O2—Pb1106.1 (2)C9—C10—H10C109.5
N2—O3—Pb188.6 (2)H10A—C10—H10C109.5
C11—O5—Pb1118.7 (2)H10B—C10—H10C109.5
C11—O5—H5108 (4)O5—C11—H11A109.5
Pb1—O5—H5122 (4)O5—C11—H11B109.5
C9—N1—C6119.7 (4)H11A—C11—H11B109.5
C9—N1—Pb1127.4 (3)O5—C11—H11C109.5
C6—N1—Pb1111.6 (3)H11A—C11—H11C109.5
O3—N2—O4120.2 (4)H11B—C11—H11C109.5
O3—N2—O2119.9 (4)
O1i—Pb1—O1—C1170.3 (4)O1—Pb1—N1—C617.3 (3)
N1—Pb1—O1—C120.3 (3)O1i—Pb1—N1—C650.8 (3)
O5—Pb1—O1—C193.9 (3)O5—Pb1—N1—C6123.7 (3)
O2—Pb1—O1—C162.6 (3)O2—Pb1—N1—C661.5 (3)
O3—Pb1—O1—C195.3 (3)O3—Pb1—N1—C679.4 (3)
O3ii—Pb1—O1—C136.0 (4)O3ii—Pb1—N1—C6133.8 (3)
O4ii—Pb1—O1—C187.4 (12)O4ii—Pb1—N1—C6167.5 (3)
O1i—Pb1—O1—Pb1i0.0Pb1—O3—N2—O4170.3 (4)
N1—Pb1—O1—Pb1i150.03 (17)Pb1—O3—N2—O29.0 (4)
O5—Pb1—O1—Pb1i76.34 (14)Pb1—O2—N2—O310.7 (5)
O2—Pb1—O1—Pb1i127.07 (15)Pb1—O2—N2—O4168.6 (3)
O3—Pb1—O1—Pb1i94.40 (14)Pb1—O1—C1—C2159.2 (3)
O3ii—Pb1—O1—Pb1i153.76 (12)Pb1i—O1—C1—C231.5 (6)
O4ii—Pb1—O1—Pb1i82.9 (12)Pb1—O1—C1—C621.2 (5)
O1—Pb1—O2—N2137.6 (3)Pb1i—O1—C1—C6148.1 (3)
O1i—Pb1—O2—N284.7 (3)O1—C1—C2—C3178.8 (4)
N1—Pb1—O2—N2152.0 (3)C6—C1—C2—C30.8 (7)
O5—Pb1—O2—N2138.9 (3)C1—C2—C3—C41.4 (7)
O3—Pb1—O2—N25.4 (2)C2—C3—C4—C51.8 (7)
O3ii—Pb1—O2—N258.3 (3)C3—C4—C5—C7179.0 (5)
O4ii—Pb1—O2—N245.1 (3)C3—C4—C5—C60.1 (7)
O1—Pb1—O3—N253.6 (3)C9—N1—C6—C52.1 (6)
O1i—Pb1—O3—N2120.3 (3)Pb1—N1—C6—C5166.0 (3)
N1—Pb1—O3—N220.2 (3)C9—N1—C6—C1178.0 (4)
O5—Pb1—O3—N2145.9 (3)Pb1—N1—C6—C113.9 (4)
O2—Pb1—O3—N25.3 (2)C7—C5—C6—N13.2 (6)
O3ii—Pb1—O3—N290.9 (3)C4—C5—C6—N1177.8 (4)
O4ii—Pb1—O3—N2126.7 (3)C7—C5—C6—C1176.9 (4)
O1—Pb1—O5—C1116.8 (3)C4—C5—C6—C12.0 (6)
O1i—Pb1—O5—C1145.7 (3)O1—C1—C6—N13.0 (6)
N1—Pb1—O5—C1182.1 (3)C2—C1—C6—N1177.4 (4)
O2—Pb1—O5—C1195.2 (4)O1—C1—C6—C5177.1 (4)
O3—Pb1—O5—C11144.2 (3)C2—C1—C6—C52.5 (6)
O3ii—Pb1—O5—C11169.7 (3)C6—C5—C7—C81.5 (6)
O4ii—Pb1—O5—C11163.8 (3)C4—C5—C7—C8179.6 (4)
O1—Pb1—N1—C9175.7 (4)C5—C7—C8—C91.0 (7)
O1i—Pb1—N1—C9142.2 (3)C6—N1—C9—C80.7 (6)
O5—Pb1—N1—C969.4 (3)Pb1—N1—C9—C8166.7 (3)
O2—Pb1—N1—C9105.4 (4)C6—N1—C9—C10178.1 (4)
O3—Pb1—N1—C987.5 (4)Pb1—N1—C9—C1012.1 (5)
O3ii—Pb1—N1—C933.2 (4)C7—C8—C9—N12.3 (7)
O4ii—Pb1—N1—C90.6 (4)C7—C8—C9—C10176.5 (4)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O4iii0.84 (1)2.06 (2)2.869 (5)161 (6)
Symmetry code: (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Pb2(C10H8NO)2(NO3)2(CH4O)2]
Mr918.83
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.2579 (1), 8.8052 (1), 9.6765 (1)
α, β, γ (°)103.976 (1), 98.262 (1), 108.190 (1)
V3)630.07 (1)
Z1
Radiation typeMo Kα
µ (mm1)13.41
Crystal size (mm)0.20 × 0.15 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.175, 0.554
No. of measured, independent and
observed [I > 2σ(I)] reflections
5958, 2872, 2754
Rint0.019
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.058, 1.08
No. of reflections2872
No. of parameters174
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.41, 2.12

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

 

Acknowledgements

The authors thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationShahverdizadeh, G. H., Soudi, A. A., Morsali, A. & Retailleau, P. (2008). Inorg. Chim. Acta, 361, 1875–1884.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationZhang, W.-Z., Wei, D.-Z., Che, X.-F., Gao, E.-J., Wang, K.-H., Yin, H.-X. & Gu, X.-G. (2008). Chin. J. Struct. Chem. 27, 287–292.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds