organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,6-Di­methyl­phen­yl)succinamic acid

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany, and cFaculty of Integrated Arts and Sciences, Tokushima University, Minamijosanjima-cho, Tokushima 770-8502, Japan
*Correspondence e-mail: gowdabt@yahoo.com

(Received 31 January 2009; accepted 2 February 2009; online 6 February 2009)

In the amide segment of the title compound, C12H15NO3 {systematic name: 3-[(2,6-dimethyl­phen­yl)amino­carbon­yl]propionic acid}, the N—H and C=O bonds are anti to each other. The mol­ecules are packed into a two-dimensional array via N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For related structures, see: Gowda et al. (2007[Gowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 91-100.], 2008[Gowda, B. T., Foro, S. & Fuess, H. (2008). Acta Cryst. E64, o828.], 2009[Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o399.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15NO3

  • Mr = 221.25

  • Monoclinic, P 21 /n

  • a = 7.9633 (8) Å

  • b = 19.889 (2) Å

  • c = 7.9822 (8) Å

  • β = 111.16 (1)°

  • V = 1179.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 299 (2) K

  • 0.50 × 0.48 × 0.40 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]) Tmin = 0.958, Tmax = 0.966

  • 6777 measured reflections

  • 2391 independent reflections

  • 1826 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.135

  • S = 1.05

  • 2391 reflections

  • 154 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.859 (18) 2.059 (19) 2.9120 (16) 171.8 (17)
O2—H2O⋯O3ii 0.88 (3) 1.79 (3) 2.6686 (18) 178 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x-1, -y+1, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2004[Oxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The amide moiety is an important constituent of many biologically significant compounds. Thus, structural studies of amides are of interest. As a part of an on-going investigation studying the effect of ring and side-chain substitutions on the structures of this class of compounds (Gowda et al., 2007, 2008; 2009), we have determined the crystal structure of N-(2,6-dimethylphenyl)-succinamic acid, (I), with systematic name: 3-[(2,6-dimethylphenyl)-aminocarbonyl]propionic acid, Fig. 1. The N-H and C=O bonds in the amide segment of the structure are anti to each other. The C1-N1-C7-C8, N1-C7-C8-C9, C7-C8-C9-C10 and C8-C9-C10-O2 torsion angles in the side chain are -176.2 (1)°, -145.4 (2)°, -175.5 (1)° and -161.1 (2)°, respectively, and compare to the corresponding values in the structure of i>N-(2-chlorophenyl)-succinamic acid, i.e. 177.5 (2)°, 173.2 (2)°, 178.9 (2)° and 167.7 (2)°, respectively (Gowda et al., 2009).

The presence of N-H···O, between the amide groups, and O-H···O, between the carboxylic acid residues, hydrogen bonding pack molecules into a 2D array (Table 1, Fig.2).

Related literature top

For related structures, see: Gowda et al. (2007, 2008, 2009).

Experimental top

A solution of succinic anhydride (0.025 mole) in toluene (25 ml) was treated dropwise with a solution of 2,6-dimethylaniline (0.025 mole) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about 1 h and set aside for an additional hour at room temperature to allow completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove unreacted 2,6-dimethylaniline. The resultant solid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. The product was recrystallized to constant melting point from ethanol. The purity of the compound was checked by elemental analysis and characterized by its infrared and NMR spectra. The single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The O-bound and N-bound H atoms were located in difference map and their positions refined [O—H = 0.88 (3) Å and N—H = 0.859 (18) Å]. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.97 Å, and with Uiso = 1.2-1.5Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labeling scheme and displacement ellipsoids at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
3-[(2,6-dimethylphenyl)aminocarbonyl]propionic acid top
Crystal data top
C12H15NO3F(000) = 472
Mr = 221.25Dx = 1.246 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3013 reflections
a = 7.9633 (8) Åθ = 2.7–28.0°
b = 19.889 (2) ŵ = 0.09 mm1
c = 7.9822 (8) ÅT = 299 K
β = 111.16 (1)°Prism, colourless
V = 1179.0 (2) Å30.50 × 0.48 × 0.40 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2391 independent reflections
Radiation source: fine-focus sealed tube1826 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 99
Tmin = 0.958, Tmax = 0.966k = 2424
6777 measured reflectionsl = 89
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0691P)2 + 0.3248P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.03
2391 reflectionsΔρmax = 0.19 e Å3
154 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (4)
Crystal data top
C12H15NO3V = 1179.0 (2) Å3
Mr = 221.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.9633 (8) ŵ = 0.09 mm1
b = 19.889 (2) ÅT = 299 K
c = 7.9822 (8) Å0.50 × 0.48 × 0.40 mm
β = 111.16 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2391 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
1826 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.966Rint = 0.017
6777 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.19 e Å3
2391 reflectionsΔρmin = 0.17 e Å3
154 parameters
Special details top

Experimental. CrysAlis RED, Oxford Diffraction Ltd., 2007 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.12966 (19)0.18528 (8)0.03678 (19)0.0379 (4)
C20.0916 (2)0.11993 (8)0.0772 (2)0.0480 (4)
C30.2273 (3)0.07205 (10)0.1098 (3)0.0688 (6)
H30.20620.02820.13760.083*
C40.3924 (3)0.08854 (14)0.1016 (3)0.0799 (8)
H40.48160.05590.12410.096*
C50.4251 (3)0.15276 (13)0.0604 (3)0.0693 (6)
H50.53690.16320.05520.083*
C60.2949 (2)0.20310 (10)0.0260 (2)0.0483 (4)
C70.00487 (18)0.28812 (7)0.11169 (19)0.0353 (3)
C80.1610 (2)0.33204 (8)0.0593 (2)0.0434 (4)
H8A0.22930.32640.06790.052*
H8B0.23630.31740.12450.052*
C90.1168 (2)0.40548 (8)0.0976 (2)0.0467 (4)
H9A0.04090.41090.22290.056*
H9B0.04990.42120.02500.056*
C100.2830 (2)0.44735 (8)0.0582 (2)0.0473 (4)
C110.0877 (3)0.10257 (10)0.0884 (3)0.0637 (5)
H11A0.18030.10740.02800.076*
H11B0.11200.13230.17170.076*
H11C0.08540.05700.12870.076*
C120.3334 (3)0.27264 (12)0.0218 (3)0.0662 (6)
H12A0.37330.30010.08430.079*
H12B0.22580.29160.10770.079*
H12C0.42560.27090.07270.079*
N10.00837 (16)0.23498 (6)0.00415 (17)0.0368 (3)
H1N0.111 (2)0.2276 (9)0.079 (2)0.044*
O10.13819 (13)0.30009 (6)0.24524 (15)0.0469 (3)
O20.25948 (19)0.51129 (6)0.0379 (2)0.0750 (5)
H2O0.363 (4)0.5325 (13)0.012 (3)0.090*
O30.42763 (16)0.42371 (6)0.0464 (2)0.0714 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0333 (7)0.0407 (8)0.0329 (7)0.0075 (6)0.0038 (6)0.0065 (6)
C20.0541 (10)0.0393 (9)0.0399 (9)0.0074 (7)0.0042 (7)0.0068 (7)
C30.0865 (16)0.0462 (11)0.0573 (12)0.0256 (10)0.0061 (10)0.0063 (8)
C40.0731 (15)0.0875 (17)0.0666 (13)0.0504 (13)0.0101 (11)0.0078 (12)
C50.0444 (10)0.0996 (18)0.0593 (12)0.0256 (11)0.0134 (9)0.0131 (11)
C60.0358 (8)0.0675 (11)0.0385 (8)0.0078 (7)0.0096 (7)0.0073 (8)
C70.0270 (7)0.0371 (8)0.0365 (8)0.0034 (6)0.0052 (6)0.0009 (6)
C80.0307 (7)0.0399 (8)0.0491 (9)0.0082 (6)0.0018 (6)0.0039 (7)
C90.0341 (8)0.0415 (9)0.0577 (10)0.0060 (6)0.0084 (7)0.0013 (7)
C100.0385 (9)0.0376 (8)0.0576 (10)0.0057 (7)0.0075 (7)0.0053 (7)
C110.0671 (12)0.0449 (10)0.0697 (13)0.0105 (9)0.0132 (10)0.0004 (9)
C120.0486 (10)0.0862 (15)0.0702 (13)0.0092 (10)0.0291 (10)0.0006 (11)
N10.0258 (6)0.0367 (7)0.0384 (7)0.0032 (5)0.0001 (5)0.0047 (5)
O10.0325 (6)0.0498 (7)0.0436 (6)0.0089 (5)0.0042 (5)0.0094 (5)
O20.0473 (8)0.0376 (7)0.1347 (15)0.0076 (6)0.0263 (8)0.0008 (8)
O30.0415 (7)0.0434 (7)0.1276 (13)0.0085 (5)0.0284 (8)0.0044 (7)
Geometric parameters (Å, º) top
C1—C61.395 (2)C8—H8A0.9700
C1—C21.398 (2)C8—H8B0.9700
C1—N11.4306 (18)C9—C101.498 (2)
C2—C31.393 (2)C9—H9A0.9700
C2—C111.503 (3)C9—H9B0.9700
C3—C41.379 (3)C10—O31.216 (2)
C3—H30.9300C10—O21.304 (2)
C4—C51.367 (4)C11—H11A0.9600
C4—H40.9300C11—H11B0.9600
C5—C61.395 (3)C11—H11C0.9600
C5—H50.9300C12—H12A0.9600
C6—C121.495 (3)C12—H12B0.9600
C7—O11.2260 (17)C12—H12C0.9600
C7—N11.3415 (19)N1—H1N0.859 (18)
C7—C81.5115 (19)O2—H2O0.88 (3)
C8—C91.508 (2)
C6—C1—C2122.55 (15)H8A—C8—H8B107.8
C6—C1—N1119.54 (15)C10—C9—C8111.83 (13)
C2—C1—N1117.91 (14)C10—C9—H9A109.3
C3—C2—C1117.43 (18)C8—C9—H9A109.3
C3—C2—C11121.43 (18)C10—C9—H9B109.3
C1—C2—C11121.12 (15)C8—C9—H9B109.3
C4—C3—C2121.1 (2)H9A—C9—H9B107.9
C4—C3—H3119.4O3—C10—O2122.82 (15)
C2—C3—H3119.4O3—C10—C9122.82 (15)
C5—C4—C3120.05 (18)O2—C10—C9114.37 (15)
C5—C4—H4120.0C2—C11—H11A109.5
C3—C4—H4120.0C2—C11—H11B109.5
C4—C5—C6121.7 (2)H11A—C11—H11B109.5
C4—C5—H5119.1C2—C11—H11C109.5
C6—C5—H5119.1H11A—C11—H11C109.5
C1—C6—C5117.12 (19)H11B—C11—H11C109.5
C1—C6—C12122.35 (15)C6—C12—H12A109.5
C5—C6—C12120.53 (18)C6—C12—H12B109.5
O1—C7—N1123.55 (13)H12A—C12—H12B109.5
O1—C7—C8121.63 (13)C6—C12—H12C109.5
N1—C7—C8114.79 (12)H12A—C12—H12C109.5
C9—C8—C7112.76 (12)H12B—C12—H12C109.5
C9—C8—H8A109.0C7—N1—C1123.37 (12)
C7—C8—H8A109.0C7—N1—H1N117.7 (12)
C9—C8—H8B109.0C1—N1—H1N118.3 (12)
C7—C8—H8B109.0C10—O2—H2O109.4 (16)
C6—C1—C2—C30.9 (2)C4—C5—C6—C10.5 (3)
N1—C1—C2—C3179.61 (14)C4—C5—C6—C12178.95 (19)
C6—C1—C2—C11179.75 (15)O1—C7—C8—C936.3 (2)
N1—C1—C2—C110.8 (2)N1—C7—C8—C9145.43 (15)
C1—C2—C3—C40.3 (3)C7—C8—C9—C10175.54 (14)
C11—C2—C3—C4179.12 (18)C8—C9—C10—O319.1 (3)
C2—C3—C4—C50.2 (3)C8—C9—C10—O2161.05 (17)
C3—C4—C5—C60.1 (3)O1—C7—N1—C12.0 (2)
C2—C1—C6—C51.0 (2)C8—C7—N1—C1176.22 (14)
N1—C1—C6—C5179.54 (14)C6—C1—N1—C766.5 (2)
C2—C1—C6—C12178.40 (16)C2—C1—N1—C7114.05 (17)
N1—C1—C6—C121.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.859 (18)2.059 (19)2.9120 (16)171.8 (17)
O2—H2O···O3ii0.88 (3)1.79 (3)2.6686 (18)178 (3)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H15NO3
Mr221.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)299
a, b, c (Å)7.9633 (8), 19.889 (2), 7.9822 (8)
β (°) 111.16 (1)
V3)1179.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.48 × 0.40
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.958, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
6777, 2391, 1826
Rint0.017
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.135, 1.05
No. of reflections2391
No. of parameters154
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: CrysAlis CCD (Oxford Diffraction, 2004), CrysAlis RED (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.859 (18)2.059 (19)2.9120 (16)171.8 (17)
O2—H2O···O3ii0.88 (3)1.79 (3)2.6686 (18)178 (3)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x1, y+1, z.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions to his research fellowship.

References

First citationGowda, B. T., Foro, S. & Fuess, H. (2008). Acta Cryst. E64, o828.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o399.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 91–100.  CAS Google Scholar
First citationOxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationOxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds