organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Di­chloro­naphthalene-2,3-diol

aSchool of Chemistry, University of New South Wales, Sydney, Australia 2052
*Correspondence e-mail: m.scudder@unsw.edu.au

(Received 2 February 2009; accepted 5 February 2009; online 28 February 2009)

The achiral planar (maximum deviation 0.014 Å) title compound, C10H6Cl2O2, crystallizes in the chiral space group P212121 in an arrangement incorporating conventional O—H⋯O hydrogen bonding leading to a supra­molecular chain.

Related literature

For related structures, see: Ahn et al. (1995[Ahn, P. D., Bishop, R., Craig, D. C. & Scudder, M. L. (1995). J. Incl. Phenom. Mol. Rec. Chem. 20, 267-276.], 1996[Ahn, P. D., Bishop, R., Craig, D. C. & Scudder, M. L. (1996). J. Incl. Phenom. Mol. Rec. Chem. 23, 313-327.]). For the synthesis, see: Zincke & Fries (1904[Zincke, T. & Fries, K. (1904). Annalen, 334, 342-366.]); Ahn et al. (1995[Ahn, P. D., Bishop, R., Craig, D. C. & Scudder, M. L. (1995). J. Incl. Phenom. Mol. Rec. Chem. 20, 267-276.]). For related literature, see: Coppens & Hamilton (1970[Coppens, P. & Hamilton, W. C. (1970). Acta Cryst. A26, 71-83.]).

[Scheme 1]

Experimental

Crystal data
  • C10H6Cl2O2

  • Mr = 229.1

  • Orthorhombic, P 21 21 21

  • a = 5.0037 (4) Å

  • b = 11.589 (1) Å

  • c = 15.546 (2) Å

  • V = 901.5 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 6.24 mm−1

  • T = 294 K

  • 0.32 × 0.09 × 0.09 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: analytical (de Meulenaer & Tompa, 1965[Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014-1018.]) Tmin = 0.32, Tmax = 0.65

  • 1022 measured reflections

  • 1022 independent reflections

  • 958 reflections with I > 2σ(I)

  • 1 standard reflections frequency: 30 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.034

  • S = 1.38

  • 1022 reflections

  • 129 parameters

  • H-atom parameters not refined

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), no Friedel pairs

  • Flack parameter: 0.02 (1)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O1i 1.00 2.00 2.977 (3) 165
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CAD-4 Manual (Schagen et al., 1989[Schagen, J. D., Straver, L., van Meurs, F. & Williams, G. (1989). CAD-4 Manual. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Manual; data reduction: local program; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: RAELS (Rae, 2000[Rae, A. D. (2000). RAELS. Australian National University, Canberra.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: local programs.

Supporting information


Comment top

1,4-Dichloronaphthalene-2,3-diol forms a 2:1 inclusion compound with dioxane, the structure of which (in space group P21/c) has been reported earlier (Ahn et al., 1995). However, crystallization from benzene, chloroform, diethyl ether, ethanol or methanol yields solvent-free material. The crystal structures of the isomeric 1,5-dichloronaphthalene-2,6-diol, and its 1:1 inclusion compound with dioxane, have also been described (Ahn et al., 1996); Fig. 1. The solvent-free title compound, (I), is planar and crystallizes such that each molecule takes part in only two hydrogen bonds (one as donor and one as acceptor), Table 1, with the same O1-hydroxy group being involved in both. This hydrogen bonding links molecules into a supramolecular chain in the a direction, with adjacent molecules along the chain being orthogonal. The O2—HO2 hydroxy group which does not take part in hydrogen bonding is directed towards an aromatic ring on another molecule to form an O2—HO2···π interaction with the shortest O2-H1O2···C3 and O2-H1O2···C4 distances of 2.50 and 2.58 Å, respectively. The molecules pack in a herringbone arrangement such that they are all perpendicular to the ab plane, maximizing opportunities for offset face-face and edge-face aromatic interactions. The former have an interplanar separation of ca 3.3 Å while for the latter, the C—H···C distances range up from 3.03 Å. Additionally, there are intermolecular Cl1···Cl2 interactions of 3.488 (2) Å and C—H···Cl interactions of 2.92, 3.04 and 3.09 Å and O—H···Cl of 3.05 Å.

Interestingly, this achiral molecule crystallizes in the chiral space group P212121. The 21 axis along a accommodates the hydrogen bonding linkage while that along b generates the chain of molecules linked by Cl1···Cl2 interactions. The 21 axis in the c direction leads to chains of almost coplanar molecules linked by pairs of C4—H4···Cl1 and C5—H5···Cl1 motifs.

Related literature top

For related structures, see: Ahn et al. (1995, 1996). For the synthesis, see: Zincke & Fries (1904); Ahn et al. (1995). For related literature, see: Coppens & Hamilton (1970).

Experimental top

1,4-Dichloronaphthalene-2,3-diol was prepared as described (Zincke & Fries, 1904; Ahn et al., 1995) and X-ray quality solvent-free crystals were obtained from chloroform solution.

Refinement top

Hydrogen atoms attached to C were included at calculated positions (C—H = 1.0 Å). The hydroxy hydrogen atoms were located on a difference map, and were then fixed at a position along the OH vector with O—H = 1.0 Å. All hydrogen atoms were refined with isotropic thermal parameters equivalent to those of the atom to which they were bonded.

Computing details top

Data collection: CAD-4 Manual (Schagen et al., 1989); cell refinement: CAD-4 Manual (Schagen et al., 1989); data reduction: local program; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: RAELS (Rae, 2000); molecular graphics: ORTEPII (Farrugia, 1997); software used to prepare material for publication: local programs.

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labeling scheme and displacement ellipsoids at the 50% probability level.
1,4-Dichloronaphthalene-2,3-diol top
Crystal data top
C10H6Cl2O2F(000) = 464.0
Mr = 229.1Dx = 1.69 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2abCell parameters from 10 reflections
a = 5.0037 (4) Åθ = 25–30°
b = 11.589 (1) ŵ = 6.24 mm1
c = 15.546 (2) ÅT = 294 K
V = 901.5 (2) Å3Prism, colourless
Z = 40.32 × 0.09 × 0.09 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0
ω–2θ scansθmax = 70°
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
h = 06
Tmin = 0.32, Tmax = 0.65k = 014
1022 measured reflectionsl = 018
1022 independent reflections1 standard reflections every 30 min
958 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F w = 1/[σ2(F) + 0.0004F2]
R[F2 > 2σ(F2)] = 0.022(Δ/σ)max = 0.007
wR(F2) = 0.034Δρmax = 0.18 e Å3
S = 1.38Δρmin = 0.17 e Å3
1022 reflectionsExtinction correction: (Coppens & Hamilton, 1970)
129 parametersExtinction coefficient: 1.3 (1)
0 restraintsAbsolute structure: Flack (1983), 0 Friedel pairs
H-atom parameters not refinedAbsolute structure parameter: 0.02 (1)
Crystal data top
C10H6Cl2O2V = 901.5 (2) Å3
Mr = 229.1Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 5.0037 (4) ŵ = 6.24 mm1
b = 11.589 (1) ÅT = 294 K
c = 15.546 (2) Å0.32 × 0.09 × 0.09 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
958 reflections with I > 2σ(I)
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
Rint = 0
Tmin = 0.32, Tmax = 0.651 standard reflections every 30 min
1022 measured reflections intensity decay: none
1022 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022H-atom parameters not refined
wR(F2) = 0.034Δρmax = 0.18 e Å3
S = 1.38Δρmin = 0.17 e Å3
1022 reflectionsAbsolute structure: Flack (1983), 0 Friedel pairs
129 parametersAbsolute structure parameter: 0.02 (1)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.40159 (14)0.04588 (5)0.59724 (4)0.0414 (2)
Cl21.16627 (13)0.32908 (5)0.83291 (4)0.0412 (2)
O10.8036 (4)0.21135 (16)0.54315 (9)0.0402 (4)
O21.1352 (4)0.3308 (2)0.6420 (1)0.0424 (5)
C10.6113 (5)0.1220 (2)0.6655 (2)0.0290 (5)
C20.5913 (5)0.1058 (2)0.7565 (1)0.0293 (5)
C30.4048 (6)0.0300 (2)0.7943 (2)0.0344 (5)
C40.3944 (6)0.0166 (2)0.8827 (2)0.0408 (6)
C50.5719 (7)0.0785 (2)0.9350 (2)0.0435 (6)
C60.7518 (6)0.1537 (2)0.9010 (1)0.0376 (6)
C70.7679 (5)0.1700 (2)0.8102 (1)0.0300 (5)
C80.9496 (5)0.2466 (2)0.7716 (2)0.0308 (5)
C90.9652 (5)0.2599 (2)0.6839 (2)0.0306 (5)
C100.7904 (5)0.1964 (2)0.6298 (1)0.0303 (5)
H1O10.97260.24780.52210.040
H1O21.27040.36990.67930.042
H30.27900.01450.75690.034
H40.26090.03690.90910.041
H50.56600.06710.99870.043
H60.87370.19790.94000.038
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0418 (4)0.0482 (3)0.0341 (3)0.0060 (3)0.0095 (3)0.0051 (2)
Cl20.0416 (4)0.0436 (3)0.0385 (3)0.0083 (3)0.0052 (3)0.0080 (2)
O10.043 (1)0.055 (1)0.0226 (7)0.0045 (9)0.0010 (8)0.0052 (7)
O20.042 (1)0.0457 (9)0.0392 (9)0.010 (1)0.0020 (8)0.0043 (7)
C10.027 (1)0.032 (1)0.027 (1)0.001 (1)0.004 (1)0.0023 (8)
C20.031 (1)0.030 (1)0.027 (1)0.003 (1)0.001 (1)0.0005 (8)
C30.033 (1)0.035 (1)0.036 (1)0.000 (1)0.002 (1)0.0010 (9)
C40.042 (2)0.043 (1)0.038 (1)0.003 (1)0.008 (1)0.004 (1)
C50.051 (2)0.051 (1)0.028 (1)0.000 (1)0.006 (1)0.003 (1)
C60.044 (1)0.044 (1)0.025 (1)0.001 (1)0.003 (1)0.002 (1)
C70.032 (1)0.032 (1)0.026 (1)0.004 (1)0.000 (1)0.0005 (9)
C80.031 (1)0.032 (1)0.030 (1)0.002 (1)0.004 (1)0.0046 (9)
C90.028 (1)0.031 (1)0.032 (1)0.001 (1)0.002 (1)0.0032 (9)
C100.032 (1)0.035 (1)0.0238 (9)0.006 (1)0.002 (1)0.0002 (9)
Geometric parameters (Å, º) top
Cl1—C11.734 (2)C6—C71.427 (3)
Cl2—C81.731 (2)C7—C81.405 (3)
O1—C101.361 (2)C8—C91.374 (3)
O2—C91.350 (3)C9—C101.419 (3)
C1—C21.431 (3)O1—H1O11.000
C1—C101.361 (3)O2—H1O21.000
C2—C31.410 (3)C3—H31.000
C2—C71.426 (3)C4—H41.000
C3—C41.385 (3)C5—H51.000
C4—C51.401 (4)C6—H61.000
C5—C61.360 (4)
Cl1—C1—C2119.7 (2)O2—C9—C8125.7 (2)
Cl1—C1—C10118.1 (2)O2—C9—C10114.7 (2)
C2—C1—C10122.2 (2)C8—C9—C10119.6 (2)
C1—C2—C3122.7 (2)O1—C10—C1121.1 (2)
C1—C2—C7117.8 (2)O1—C10—C9119.4 (2)
C3—C2—C7119.5 (2)C1—C10—C9119.6 (2)
C2—C3—C4120.5 (2)C10—O1—H1O1114.8
C3—C4—C5119.7 (3)C9—O2—H1O2115.0
C4—C5—C6121.5 (2)C4—C3—H3119.7
C5—C6—C7120.4 (2)C2—C3—H3119.7
C2—C7—C6118.4 (2)C3—C4—H4120.2
C2—C7—C8118.8 (2)C5—C4—H4120.2
C6—C7—C8122.9 (2)C4—C5—H5119.3
Cl2—C8—C7121.2 (2)C6—C5—H5119.3
Cl2—C8—C9116.7 (2)C5—C6—H6119.7
C7—C8—C9122.1 (2)C7—C6—H6119.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O1i1.002.002.977 (3)165
Symmetry code: (i) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC10H6Cl2O2
Mr229.1
Crystal system, space groupOrthorhombic, P212121
Temperature (K)294
a, b, c (Å)5.0037 (4), 11.589 (1), 15.546 (2)
V3)901.5 (2)
Z4
Radiation typeCu Kα
µ (mm1)6.24
Crystal size (mm)0.32 × 0.09 × 0.09
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionAnalytical
(de Meulenaer & Tompa, 1965)
Tmin, Tmax0.32, 0.65
No. of measured, independent and
observed [I > 2σ(I)] reflections
1022, 1022, 958
Rint0
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.034, 1.38
No. of reflections1022
No. of parameters129
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.18, 0.17
Absolute structureFlack (1983), 0 Friedel pairs
Absolute structure parameter0.02 (1)

Computer programs: CAD-4 Manual (Schagen et al., 1989), SIR92 (Altomare et al., 1994), RAELS (Rae, 2000), ORTEPII (Farrugia, 1997), local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O1i1.002.002.977 (3)165
Symmetry code: (i) x+1/2, y+1/2, z+1.
 

Acknowledgements

This research was supported by the Australian Research Council.

References

First citationAhn, P. D., Bishop, R., Craig, D. C. & Scudder, M. L. (1995). J. Incl. Phenom. Mol. Rec. Chem. 20, 267–276.  CrossRef Google Scholar
First citationAhn, P. D., Bishop, R., Craig, D. C. & Scudder, M. L. (1996). J. Incl. Phenom. Mol. Rec. Chem. 23, 313–327.  CSD CrossRef Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCoppens, P. & Hamilton, W. C. (1970). Acta Cryst. A26, 71–83.  CrossRef IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMeulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014–1018.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRae, A. D. (2000). RAELS. Australian National University, Canberra.  Google Scholar
First citationSchagen, J. D., Straver, L., van Meurs, F. & Williams, G. (1989). CAD-4 Manual. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationZincke, T. & Fries, K. (1904). Annalen, 334, 342–366.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds