organic compounds
1,4-Dichloronaphthalene-2,3-diol
aSchool of Chemistry, University of New South Wales, Sydney, Australia 2052
*Correspondence e-mail: m.scudder@unsw.edu.au
The achiral planar (maximum deviation 0.014 Å) title compound, C10H6Cl2O2, crystallizes in the P212121 in an arrangement incorporating conventional O—H⋯O hydrogen bonding leading to a supramolecular chain.
Related literature
For related structures, see: Ahn et al. (1995, 1996). For the synthesis, see: Zincke & Fries (1904); Ahn et al. (1995). For related literature, see: Coppens & Hamilton (1970).
Experimental
Crystal data
|
Data collection: CAD-4 Manual (Schagen et al., 1989); cell CAD-4 Manual; data reduction: local program; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: RAELS (Rae, 2000); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: local programs.
Supporting information
10.1107/S1600536809004310/tk2370sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809004310/tk2370Isup2.hkl
1,4-Dichloronaphthalene-2,3-diol was prepared as described (Zincke & Fries, 1904; Ahn et al., 1995) and X-ray quality solvent-free crystals were obtained from chloroform solution.
Hydrogen atoms attached to C were included at calculated positions (C—H = 1.0 Å). The hydroxy hydrogen atoms were located on a difference map, and were then fixed at a position along the OH vector with O—H = 1.0 Å. All hydrogen atoms were refined with isotropic thermal parameters equivalent to those of the atom to which they were bonded.
Data collection: CAD-4 Manual (Schagen et al., 1989); cell
CAD-4 Manual (Schagen et al., 1989); data reduction: local program; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: RAELS (Rae, 2000); molecular graphics: ORTEPII (Farrugia, 1997); software used to prepare material for publication: local programs.Fig. 1. Molecular structure of (I), showing the atom labeling scheme and displacement ellipsoids at the 50% probability level. |
C10H6Cl2O2 | F(000) = 464.0 |
Mr = 229.1 | Dx = 1.69 Mg m−3 |
Orthorhombic, P212121 | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 10 reflections |
a = 5.0037 (4) Å | θ = 25–30° |
b = 11.589 (1) Å | µ = 6.24 mm−1 |
c = 15.546 (2) Å | T = 294 K |
V = 901.5 (2) Å3 | Prism, colourless |
Z = 4 | 0.32 × 0.09 × 0.09 mm |
Enraf–Nonius CAD-4 diffractometer | Rint = 0 |
ω–2θ scans | θmax = 70° |
Absorption correction: analytical (de Meulenaer & Tompa, 1965) | h = 0→6 |
Tmin = 0.32, Tmax = 0.65 | k = 0→14 |
1022 measured reflections | l = 0→18 |
1022 independent reflections | 1 standard reflections every 30 min |
958 reflections with I > 2σ(I) | intensity decay: none |
Refinement on F | w = 1/[σ2(F) + 0.0004F2] |
R[F2 > 2σ(F2)] = 0.022 | (Δ/σ)max = 0.007 |
wR(F2) = 0.034 | Δρmax = 0.18 e Å−3 |
S = 1.38 | Δρmin = −0.17 e Å−3 |
1022 reflections | Extinction correction: (Coppens & Hamilton, 1970) |
129 parameters | Extinction coefficient: 1.3 (1) |
0 restraints | Absolute structure: Flack (1983), 0 Friedel pairs |
H-atom parameters not refined | Absolute structure parameter: 0.02 (1) |
C10H6Cl2O2 | V = 901.5 (2) Å3 |
Mr = 229.1 | Z = 4 |
Orthorhombic, P212121 | Cu Kα radiation |
a = 5.0037 (4) Å | µ = 6.24 mm−1 |
b = 11.589 (1) Å | T = 294 K |
c = 15.546 (2) Å | 0.32 × 0.09 × 0.09 mm |
Enraf–Nonius CAD-4 diffractometer | 958 reflections with I > 2σ(I) |
Absorption correction: analytical (de Meulenaer & Tompa, 1965) | Rint = 0 |
Tmin = 0.32, Tmax = 0.65 | 1 standard reflections every 30 min |
1022 measured reflections | intensity decay: none |
1022 independent reflections |
R[F2 > 2σ(F2)] = 0.022 | H-atom parameters not refined |
wR(F2) = 0.034 | Δρmax = 0.18 e Å−3 |
S = 1.38 | Δρmin = −0.17 e Å−3 |
1022 reflections | Absolute structure: Flack (1983), 0 Friedel pairs |
129 parameters | Absolute structure parameter: 0.02 (1) |
0 restraints |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.40159 (14) | 0.04588 (5) | 0.59724 (4) | 0.0414 (2) | |
Cl2 | 1.16627 (13) | 0.32908 (5) | 0.83291 (4) | 0.0412 (2) | |
O1 | 0.8036 (4) | 0.21135 (16) | 0.54315 (9) | 0.0402 (4) | |
O2 | 1.1352 (4) | 0.3308 (2) | 0.6420 (1) | 0.0424 (5) | |
C1 | 0.6113 (5) | 0.1220 (2) | 0.6655 (2) | 0.0290 (5) | |
C2 | 0.5913 (5) | 0.1058 (2) | 0.7565 (1) | 0.0293 (5) | |
C3 | 0.4048 (6) | 0.0300 (2) | 0.7943 (2) | 0.0344 (5) | |
C4 | 0.3944 (6) | 0.0166 (2) | 0.8827 (2) | 0.0408 (6) | |
C5 | 0.5719 (7) | 0.0785 (2) | 0.9350 (2) | 0.0435 (6) | |
C6 | 0.7518 (6) | 0.1537 (2) | 0.9010 (1) | 0.0376 (6) | |
C7 | 0.7679 (5) | 0.1700 (2) | 0.8102 (1) | 0.0300 (5) | |
C8 | 0.9496 (5) | 0.2466 (2) | 0.7716 (2) | 0.0308 (5) | |
C9 | 0.9652 (5) | 0.2599 (2) | 0.6839 (2) | 0.0306 (5) | |
C10 | 0.7904 (5) | 0.1964 (2) | 0.6298 (1) | 0.0303 (5) | |
H1O1 | 0.9726 | 0.2478 | 0.5221 | 0.040 | |
H1O2 | 1.2704 | 0.3699 | 0.6793 | 0.042 | |
H3 | 0.2790 | −0.0145 | 0.7569 | 0.034 | |
H4 | 0.2609 | −0.0369 | 0.9091 | 0.041 | |
H5 | 0.5660 | 0.0671 | 0.9987 | 0.043 | |
H6 | 0.8737 | 0.1979 | 0.9400 | 0.038 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0418 (4) | 0.0482 (3) | 0.0341 (3) | −0.0060 (3) | −0.0095 (3) | −0.0051 (2) |
Cl2 | 0.0416 (4) | 0.0436 (3) | 0.0385 (3) | −0.0083 (3) | −0.0052 (3) | −0.0080 (2) |
O1 | 0.043 (1) | 0.055 (1) | 0.0226 (7) | −0.0045 (9) | −0.0010 (8) | 0.0052 (7) |
O2 | 0.042 (1) | 0.0457 (9) | 0.0392 (9) | −0.010 (1) | 0.0020 (8) | 0.0043 (7) |
C1 | 0.027 (1) | 0.032 (1) | 0.027 (1) | 0.001 (1) | −0.004 (1) | −0.0023 (8) |
C2 | 0.031 (1) | 0.030 (1) | 0.027 (1) | 0.003 (1) | −0.001 (1) | −0.0005 (8) |
C3 | 0.033 (1) | 0.035 (1) | 0.036 (1) | 0.000 (1) | 0.002 (1) | 0.0010 (9) |
C4 | 0.042 (2) | 0.043 (1) | 0.038 (1) | −0.003 (1) | 0.008 (1) | 0.004 (1) |
C5 | 0.051 (2) | 0.051 (1) | 0.028 (1) | 0.000 (1) | 0.006 (1) | 0.003 (1) |
C6 | 0.044 (1) | 0.044 (1) | 0.025 (1) | 0.001 (1) | −0.003 (1) | −0.002 (1) |
C7 | 0.032 (1) | 0.032 (1) | 0.026 (1) | 0.004 (1) | 0.000 (1) | −0.0005 (9) |
C8 | 0.031 (1) | 0.032 (1) | 0.030 (1) | 0.002 (1) | −0.004 (1) | −0.0046 (9) |
C9 | 0.028 (1) | 0.031 (1) | 0.032 (1) | 0.001 (1) | 0.002 (1) | 0.0032 (9) |
C10 | 0.032 (1) | 0.035 (1) | 0.0238 (9) | 0.006 (1) | −0.002 (1) | 0.0002 (9) |
Cl1—C1 | 1.734 (2) | C6—C7 | 1.427 (3) |
Cl2—C8 | 1.731 (2) | C7—C8 | 1.405 (3) |
O1—C10 | 1.361 (2) | C8—C9 | 1.374 (3) |
O2—C9 | 1.350 (3) | C9—C10 | 1.419 (3) |
C1—C2 | 1.431 (3) | O1—H1O1 | 1.000 |
C1—C10 | 1.361 (3) | O2—H1O2 | 1.000 |
C2—C3 | 1.410 (3) | C3—H3 | 1.000 |
C2—C7 | 1.426 (3) | C4—H4 | 1.000 |
C3—C4 | 1.385 (3) | C5—H5 | 1.000 |
C4—C5 | 1.401 (4) | C6—H6 | 1.000 |
C5—C6 | 1.360 (4) | ||
Cl1—C1—C2 | 119.7 (2) | O2—C9—C8 | 125.7 (2) |
Cl1—C1—C10 | 118.1 (2) | O2—C9—C10 | 114.7 (2) |
C2—C1—C10 | 122.2 (2) | C8—C9—C10 | 119.6 (2) |
C1—C2—C3 | 122.7 (2) | O1—C10—C1 | 121.1 (2) |
C1—C2—C7 | 117.8 (2) | O1—C10—C9 | 119.4 (2) |
C3—C2—C7 | 119.5 (2) | C1—C10—C9 | 119.6 (2) |
C2—C3—C4 | 120.5 (2) | C10—O1—H1O1 | 114.8 |
C3—C4—C5 | 119.7 (3) | C9—O2—H1O2 | 115.0 |
C4—C5—C6 | 121.5 (2) | C4—C3—H3 | 119.7 |
C5—C6—C7 | 120.4 (2) | C2—C3—H3 | 119.7 |
C2—C7—C6 | 118.4 (2) | C3—C4—H4 | 120.2 |
C2—C7—C8 | 118.8 (2) | C5—C4—H4 | 120.2 |
C6—C7—C8 | 122.9 (2) | C4—C5—H5 | 119.3 |
Cl2—C8—C7 | 121.2 (2) | C6—C5—H5 | 119.3 |
Cl2—C8—C9 | 116.7 (2) | C5—C6—H6 | 119.7 |
C7—C8—C9 | 122.1 (2) | C7—C6—H6 | 119.9 |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O1···O1i | 1.00 | 2.00 | 2.977 (3) | 165 |
Symmetry code: (i) x+1/2, −y+1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C10H6Cl2O2 |
Mr | 229.1 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 294 |
a, b, c (Å) | 5.0037 (4), 11.589 (1), 15.546 (2) |
V (Å3) | 901.5 (2) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 6.24 |
Crystal size (mm) | 0.32 × 0.09 × 0.09 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | Analytical (de Meulenaer & Tompa, 1965) |
Tmin, Tmax | 0.32, 0.65 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1022, 1022, 958 |
Rint | 0 |
(sin θ/λ)max (Å−1) | 0.609 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.022, 0.034, 1.38 |
No. of reflections | 1022 |
No. of parameters | 129 |
H-atom treatment | H-atom parameters not refined |
Δρmax, Δρmin (e Å−3) | 0.18, −0.17 |
Absolute structure | Flack (1983), 0 Friedel pairs |
Absolute structure parameter | 0.02 (1) |
Computer programs: CAD-4 Manual (Schagen et al., 1989), SIR92 (Altomare et al., 1994), RAELS (Rae, 2000), ORTEPII (Farrugia, 1997), local programs.
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O1···O1i | 1.00 | 2.00 | 2.977 (3) | 165 |
Symmetry code: (i) x+1/2, −y+1/2, −z+1. |
Acknowledgements
This research was supported by the Australian Research Council.
References
Ahn, P. D., Bishop, R., Craig, D. C. & Scudder, M. L. (1995). J. Incl. Phenom. Mol. Rec. Chem. 20, 267–276. CrossRef Google Scholar
Ahn, P. D., Bishop, R., Craig, D. C. & Scudder, M. L. (1996). J. Incl. Phenom. Mol. Rec. Chem. 23, 313–327. CSD CrossRef Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Coppens, P. & Hamilton, W. C. (1970). Acta Cryst. A26, 71–83. CrossRef IUCr Journals Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014–1018. CrossRef IUCr Journals Web of Science Google Scholar
Rae, A. D. (2000). RAELS. Australian National University, Canberra. Google Scholar
Schagen, J. D., Straver, L., van Meurs, F. & Williams, G. (1989). CAD-4 Manual. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Zincke, T. & Fries, K. (1904). Annalen, 334, 342–366. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1,4-Dichloronaphthalene-2,3-diol forms a 2:1 inclusion compound with dioxane, the structure of which (in space group P21/c) has been reported earlier (Ahn et al., 1995). However, crystallization from benzene, chloroform, diethyl ether, ethanol or methanol yields solvent-free material. The crystal structures of the isomeric 1,5-dichloronaphthalene-2,6-diol, and its 1:1 inclusion compound with dioxane, have also been described (Ahn et al., 1996); Fig. 1. The solvent-free title compound, (I), is planar and crystallizes such that each molecule takes part in only two hydrogen bonds (one as donor and one as acceptor), Table 1, with the same O1-hydroxy group being involved in both. This hydrogen bonding links molecules into a supramolecular chain in the a direction, with adjacent molecules along the chain being orthogonal. The O2—HO2 hydroxy group which does not take part in hydrogen bonding is directed towards an aromatic ring on another molecule to form an O2—HO2···π interaction with the shortest O2-H1O2···C3 and O2-H1O2···C4 distances of 2.50 and 2.58 Å, respectively. The molecules pack in a herringbone arrangement such that they are all perpendicular to the ab plane, maximizing opportunities for offset face-face and edge-face aromatic interactions. The former have an interplanar separation of ca 3.3 Å while for the latter, the C—H···C distances range up from 3.03 Å. Additionally, there are intermolecular Cl1···Cl2 interactions of 3.488 (2) Å and C—H···Cl interactions of 2.92, 3.04 and 3.09 Å and O—H···Cl of 3.05 Å.
Interestingly, this achiral molecule crystallizes in the chiral space group P212121. The 21 axis along a accommodates the hydrogen bonding linkage while that along b generates the chain of molecules linked by Cl1···Cl2 interactions. The 21 axis in the c direction leads to chains of almost coplanar molecules linked by pairs of C4—H4···Cl1 and C5—H5···Cl1 motifs.