organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Neoaustin: a meroterpene produced by Penicillium sp.

aDepartment of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, and bPhysics Department, Universidade Estadual Paulista, "Júlio de Mesquita Filho", UNESP, 17033-360 Bauru, SP, Brazil
*Correspondence e-mail: julio@power.ufscar.br

(Received 15 February 2009; accepted 23 February 2009; online 25 February 2009)

The title meroterpene neoaustin {systematic name: (1′S,2′R,3S,7′R,9′S,11′S,12′R)-11′-hydr­oxy-2,2,2′,9′,12′-penta­methyl-6′,15′-dimethyl­ene-2,6-dihydro-13′-oxaspiro­[pyran-3,5′-tetra­cyclo­[7.5.1.01,11.02,7]penta­deca­ne]-6,10′,14′-trione}, C25H30O6, comprises five rings, three six-membered and two five-membered. The absolute configuration was established based on [αD] = +166.91° (c 1.21, CH2Cl2). In the crystal, the mol­ecules are connected into a supra­molecular helical chain via O—H⋯O hydrogen bonds reinforced by C—H⋯O contacts.

Related literature

For related literature, see: dos Santos & Rodrigues-Fo (2002[Santos, R. M. G. dos & Rodrigues-Fo, E. (2002). Phytochemistry, 61, 907-912.], 2003[Santos, R. M. G. dos & Rodrigues-Fo, E. (2003). J. Braz. Chem. Soc. 14, 722-727.]); Maganhi et al. 2009[Maganhi, S. H., Fill, T. P., Rodrigues-Fo, E., Caracelli, I. & Zukerman-Schpector, J. (2009). Acta Cryst. E65, o221.]. For ring conformation analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Iulek & Zukerman-Schpector (1997[Iulek, J. & Zukerman-Schpector, J. (1997). Qui. Nova, 20, 433-434.]).

[Scheme 1]

Experimental

Crystal data
  • C25H30O6

  • Mr = 426.49

  • Orthorhombic, P 21 21 21

  • a = 11.2152 (4) Å

  • b = 13.2870 (5) Å

  • c = 14.3914 (7) Å

  • V = 2144.55 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 290 K

  • 0.49 × 0.39 × 0.21 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: none

  • 18157 measured reflections

  • 2622 independent reflections

  • 2453 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.106

  • S = 1.07

  • 2622 reflections

  • 286 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1O4⋯O2i 0.82 2.06 2.852 (3) 162
C5—H5⋯O3ii 0.93 2.63 3.386 (3) 139
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2].

Data collection: APEX2, COSMO and BIS (Bruker, 2006[Bruker (2006). APEX2, COSMO, BIS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, COSMO, BIS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Endophytic fungi live in very intimate association with plant tissue and can produce compounds similar and sometimes identical to those produced by the host plant. Thus, fungi have been a rich source of important biologically active secondary metabolites, such as meroterpenoids, a class of complex metabolites derived from a mixed terpenoid-polyketide biosynthetic pathway. During an on-going study of substances produced by endophytic fungi, the title compound (I) was isolated and its structure postulated based on APCIMS (Atmospheric Pressure Chemical Ionization Mass Spectrometry) and a variety of NMR studies (dos Santos and Rodrigues-Fo, 2003). As suitable crystals were subsequently obtained, a crystal structure determination of (I) was undertaken, Fig. 1. The three six-membered rings are in different distorted conformations. Referring to the labels in Scheme 1, ring A is in a highly distorted half-boat conformation, ring B in a slightly distorted chair, and ring C is in a chair distorted towards a half-chair conformation. The five membered rings, D and E, are in a highly distorted envelope and a distorted twist conformation, respectively. The ring-puckering parameters (Cremer & Pople, 1975; Iulek & Zukerman-Schpector, 1997) in the order for A, B, C, D and E (when applicable) are: q2 = 0.434 (2), 0.044 (2), 0.161 (2), 0.562 (2), 0.284 (2) Å, q3 = 0.241 (2), 0.552 (2), -0.650 (2) Å, Q = 0.496 (2), 0.554 (2), 0.669 (2)°, ϕ2 =-73.0 (3), -36 (3), 146.7 (7), -154.3 (3), 25.1 (5)°, and θ2 = 60.9 (3), 4.5 (2), 166.1 (2)°. The absolute configuration was established based on the [αD] = +166.914.97° (c 1.21, CH2Cl2) and the results reported in dos Santos and Rodrigues-Fo (2003). The molecules are linked via O-H···O hydrogen bonds, Fig. 2. which extend into a supramolecular helical chain which is reinforced via C-H···O contacts (Table 1).

Related literature top

For related literature, see: dos Santos & Rodrigues-Fo (2002, 2003); Maganhi et al. 2009. For structural analysis, see: Cremer & Pople (1975); Iulek & Zukerman-Schpector (1997).

Experimental top

Compound (I), Neoaustin, was produced during cultivation of the fungus Penicillum sp over sterilized rice, and isolated from the methanol extract of the culture. Suitable crystals were obtained, by slow evaporation, from a mixture of dichloromethane, methanol and water.

Refinement top

The H atoms were refined in the riding-model approximation with C—H = 0.93 - 0.98 Å and (0.82 Å for O—H), and with Uiso(H) = 1.5Ueq(methyl-C) or 1.2Ueq(remaining-C and O). In the absence of significant anomalous scattering effects, 1008 Friedel pairs were averaged in the final refinement.

Computing details top

Data collection: APEX2, COSMO and BIS (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing atom labelling scheme and displacement ellipsoids at the 30% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. Detail of the hydrogen bonding in (I). Hydrogen bonds are shown as hollow dashed bonds. See Table 1 for symmetry operations.
(1'S,2'R,3S,7'R,9'S,11'S, 12'R)-11'-hydroxy-2,2,2',9',12'-pentamethyl-6',15'-dimethylene-2,6- dihydro-13'-oxaspiro[pyran-3,5'-tetracyclo[7.5.1.01,11.02,7]pentadecane]- 6,10',14'-trione top
Crystal data top
C25H30O6F(000) = 912
Mr = 426.49Dx = 1.321 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 33851 reflections
a = 11.2152 (4) Åθ = 1.0–27.4°
b = 13.2870 (5) ŵ = 0.09 mm1
c = 14.3914 (7) ÅT = 290 K
V = 2144.55 (15) Å3Prism, colorless
Z = 40.49 × 0.39 × 0.21 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2453 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 27.0°, θmin = 3.2°
ϕ and ω scansh = 1414
18157 measured reflectionsk = 1516
2622 independent reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0607P)2 + 0.3107P]
where P = (Fo2 + 2Fc2)/3
2622 reflections(Δ/σ)max < 0.001
286 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C25H30O6V = 2144.55 (15) Å3
Mr = 426.49Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.2152 (4) ŵ = 0.09 mm1
b = 13.2870 (5) ÅT = 290 K
c = 14.3914 (7) Å0.49 × 0.39 × 0.21 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2453 reflections with I > 2σ(I)
18157 measured reflectionsRint = 0.048
2622 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.07Δρmax = 0.17 e Å3
2622 reflectionsΔρmin = 0.13 e Å3
286 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1'0.32891 (19)0.90837 (15)0.67021 (13)0.0371 (4)
C2'0.45203 (19)0.93770 (16)0.71346 (13)0.0380 (4)
C20.74745 (19)0.93484 (17)0.92112 (15)0.0425 (5)
C3'0.5381 (2)0.84818 (18)0.71741 (15)0.0462 (5)
H3'A0.56130.83010.65460.055*
H3'B0.49730.79090.74440.055*
C4'0.6507 (2)0.8705 (2)0.77441 (16)0.0485 (5)
H4'A0.69800.92010.74150.058*
H4'B0.69770.80940.77880.058*
C40.5674 (2)0.82925 (17)0.93270 (16)0.0436 (5)
H40.51620.78340.90460.052*
C50.5873 (2)0.82231 (18)1.02291 (17)0.0493 (5)
H50.55320.76981.05640.059*
C5'0.62593 (18)0.90991 (16)0.87378 (14)0.0378 (4)
C60.66206 (19)0.89585 (17)1.07096 (15)0.0431 (5)
C6'0.53593 (18)0.99769 (15)0.86945 (13)0.0361 (4)
C7'0.42380 (18)0.97177 (15)0.81504 (13)0.0346 (4)
H7'0.38960.91270.84590.041*
C8'0.32623 (19)1.05317 (15)0.81811 (14)0.0375 (4)
H8'A0.35861.11560.79400.045*
H8'B0.30351.06470.88230.045*
C9'0.21293 (19)1.02470 (16)0.76119 (14)0.0385 (4)
C10'0.18022 (19)0.91858 (16)0.79257 (14)0.0405 (4)
C11'0.24352 (19)0.84332 (16)0.72965 (14)0.0402 (5)
C12'0.1604 (2)0.79507 (18)0.65534 (17)0.0523 (6)
H12'0.14810.72460.67310.063*
C14'0.3301 (2)0.85332 (18)0.57786 (15)0.0493 (5)
C15'0.2536 (2)1.00412 (16)0.66311 (14)0.0385 (4)
C160.8344 (2)0.8465 (2)0.9222 (2)0.0571 (6)
H16A0.79580.78850.94820.086*
H16B0.90270.86360.95930.086*
H16C0.85960.83190.85990.086*
C170.8129 (2)1.0257 (2)0.8822 (2)0.0573 (6)
H17A0.87381.04630.92500.086*
H17B0.75751.07990.87320.086*
H17C0.84871.00830.82380.086*
C180.5105 (2)1.0233 (2)0.65818 (16)0.0507 (5)
H18A0.51921.00330.59440.076*
H18B0.58751.03790.68400.076*
H18C0.46131.08230.66150.076*
C190.5471 (2)1.08493 (18)0.91461 (17)0.0516 (5)
H19A0.48541.13170.91330.062*
H19B0.61661.09900.94740.062*
C200.1151 (2)1.10233 (19)0.77492 (17)0.0498 (5)
H20A0.04731.08470.73750.075*
H20B0.14391.16740.75670.075*
H20C0.09221.10390.83920.075*
C210.0390 (3)0.8406 (2)0.6378 (2)0.0641 (7)
H21A0.00150.80260.59060.096*
H21B0.04810.90900.61760.096*
H21C0.00690.83910.69410.096*
C220.2290 (3)1.05608 (19)0.58737 (17)0.0557 (6)
H22A0.18111.11310.59100.067*
H22B0.25961.03570.53030.067*
O10.72595 (13)0.95988 (11)1.02022 (10)0.0418 (3)
O20.66745 (17)0.90141 (15)1.15505 (11)0.0577 (4)
O30.11959 (17)0.89618 (14)0.85870 (12)0.0583 (5)
O40.30164 (16)0.76719 (12)0.78090 (12)0.0516 (4)
H1O40.25200.72810.80190.062*
O50.23077 (19)0.79543 (15)0.57041 (12)0.0613 (5)
O60.4016 (2)0.85761 (16)0.51643 (11)0.0659 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1'0.0436 (10)0.0378 (9)0.0299 (8)0.0005 (9)0.0004 (9)0.0024 (7)
C2'0.0402 (10)0.0421 (10)0.0317 (9)0.0003 (9)0.0038 (8)0.0007 (8)
C20.0336 (10)0.0503 (12)0.0435 (11)0.0003 (9)0.0020 (9)0.0028 (9)
C3'0.0464 (12)0.0499 (12)0.0422 (11)0.0090 (10)0.0022 (10)0.0110 (9)
C4'0.0429 (11)0.0544 (12)0.0482 (12)0.0104 (10)0.0038 (10)0.0104 (10)
C40.0383 (10)0.0390 (10)0.0535 (12)0.0006 (9)0.0035 (10)0.0038 (9)
C50.0471 (12)0.0477 (12)0.0531 (12)0.0053 (10)0.0009 (11)0.0148 (10)
C5'0.0334 (9)0.0408 (10)0.0393 (10)0.0018 (8)0.0004 (8)0.0023 (8)
C60.0386 (10)0.0461 (11)0.0445 (11)0.0052 (9)0.0007 (9)0.0082 (9)
C6'0.0365 (9)0.0385 (10)0.0332 (9)0.0030 (8)0.0015 (8)0.0028 (7)
C7'0.0360 (9)0.0357 (9)0.0320 (9)0.0027 (8)0.0024 (7)0.0013 (7)
C8'0.0384 (10)0.0386 (10)0.0356 (9)0.0036 (9)0.0000 (8)0.0013 (7)
C9'0.0373 (10)0.0412 (10)0.0369 (9)0.0012 (8)0.0006 (8)0.0029 (8)
C10'0.0387 (10)0.0460 (11)0.0368 (10)0.0025 (9)0.0023 (9)0.0045 (9)
C11'0.0440 (11)0.0361 (10)0.0405 (10)0.0009 (9)0.0015 (9)0.0073 (8)
C12'0.0624 (14)0.0418 (11)0.0526 (12)0.0092 (11)0.0059 (12)0.0023 (10)
C14'0.0629 (14)0.0479 (12)0.0372 (10)0.0058 (11)0.0052 (11)0.0036 (9)
C15'0.0431 (10)0.0366 (10)0.0358 (9)0.0009 (8)0.0033 (9)0.0025 (8)
C160.0382 (11)0.0655 (15)0.0676 (15)0.0106 (11)0.0022 (12)0.0038 (13)
C170.0458 (12)0.0654 (15)0.0607 (14)0.0140 (12)0.0047 (12)0.0108 (12)
C180.0514 (12)0.0591 (13)0.0416 (11)0.0083 (11)0.0096 (11)0.0053 (10)
C190.0544 (13)0.0462 (12)0.0543 (12)0.0071 (11)0.0140 (11)0.0064 (10)
C200.0426 (11)0.0535 (13)0.0533 (12)0.0095 (11)0.0022 (11)0.0008 (10)
C210.0595 (15)0.0670 (16)0.0657 (16)0.0123 (14)0.0194 (13)0.0019 (13)
C220.0767 (17)0.0485 (12)0.0418 (11)0.0053 (12)0.0051 (12)0.0092 (10)
O10.0388 (7)0.0459 (8)0.0405 (7)0.0034 (7)0.0043 (6)0.0034 (6)
O20.0596 (10)0.0723 (11)0.0413 (8)0.0051 (10)0.0001 (8)0.0080 (8)
O30.0566 (10)0.0651 (11)0.0531 (9)0.0069 (9)0.0156 (9)0.0095 (8)
O40.0579 (9)0.0399 (8)0.0569 (9)0.0017 (7)0.0022 (8)0.0156 (7)
O50.0738 (12)0.0619 (10)0.0482 (9)0.0079 (10)0.0056 (9)0.0151 (8)
O60.0809 (13)0.0804 (13)0.0363 (8)0.0021 (11)0.0085 (9)0.0096 (8)
Geometric parameters (Å, º) top
C1'—C14'1.517 (3)C9'—C201.519 (3)
C1'—C15'1.530 (3)C9'—C10'1.525 (3)
C1'—C11'1.548 (3)C10'—O31.207 (3)
C1'—C2'1.564 (3)C10'—C11'1.524 (3)
C2'—C3'1.533 (3)C11'—O41.411 (3)
C2'—C181.535 (3)C11'—C12'1.557 (3)
C2'—C7'1.563 (3)C12'—O51.455 (3)
C2—O11.484 (3)C12'—C211.511 (4)
C2—C171.520 (3)C12'—H12'0.9800
C2—C161.526 (3)C14'—O61.195 (3)
C2—C5'1.559 (3)C14'—O51.358 (3)
C3'—C4'1.534 (3)C15'—C221.319 (3)
C3'—H3'A0.9700C16—H16A0.9600
C3'—H3'B0.9700C16—H16B0.9600
C4'—C5'1.548 (3)C16—H16C0.9600
C4'—H4'A0.9700C17—H17A0.9600
C4'—H4'B0.9700C17—H17B0.9600
C4—C51.321 (3)C17—H17C0.9600
C4—C5'1.516 (3)C18—H18A0.9600
C4—H40.9300C18—H18B0.9600
C5—C61.461 (3)C18—H18C0.9600
C5—H50.9300C19—H19A0.9300
C5'—C6'1.544 (3)C19—H19B0.9300
C6—O21.214 (3)C20—H20A0.9600
C6—O11.331 (3)C20—H20B0.9600
C6'—C191.335 (3)C20—H20C0.9600
C6'—C7'1.521 (3)C21—H21A0.9600
C7'—C8'1.539 (3)C21—H21B0.9600
C7'—H7'0.9800C21—H21C0.9600
C8'—C9'1.558 (3)C22—H22A0.9300
C8'—H8'A0.9700C22—H22B0.9300
C8'—H8'B0.9700O4—H1O40.8200
C9'—C15'1.508 (3)
C14'—C1'—C15'110.33 (17)C15'—C9'—C8'106.81 (17)
C14'—C1'—C11'102.75 (18)C20—C9'—C8'110.84 (17)
C15'—C1'—C11'99.19 (16)C10'—C9'—C8'105.36 (16)
C14'—C1'—C2'117.43 (19)O3—C10'—C11'124.7 (2)
C15'—C1'—C2'107.85 (16)O3—C10'—C9'126.7 (2)
C11'—C1'—C2'117.74 (16)C11'—C10'—C9'108.57 (16)
C3'—C2'—C18108.96 (18)O4—C11'—C10'112.01 (17)
C3'—C2'—C7'108.52 (16)O4—C11'—C1'113.78 (18)
C18—C2'—C7'110.90 (17)C10'—C11'—C1'104.48 (16)
C3'—C2'—C1'112.18 (17)O4—C11'—C12'109.90 (18)
C18—C2'—C1'110.82 (17)C10'—C11'—C12'113.54 (18)
C7'—C2'—C1'105.40 (16)C1'—C11'—C12'102.76 (17)
O1—C2—C17104.74 (19)O5—C12'—C21110.3 (2)
O1—C2—C16105.43 (18)O5—C12'—C11'104.53 (18)
C17—C2—C16107.8 (2)C21—C12'—C11'119.3 (2)
O1—C2—C5'108.99 (16)O5—C12'—H12'107.4
C17—C2—C5'115.45 (19)C21—C12'—H12'107.4
C16—C2—C5'113.58 (19)C11'—C12'—H12'107.4
C2'—C3'—C4'112.83 (18)O6—C14'—O5121.3 (2)
C2'—C3'—H3'A109.0O6—C14'—C1'129.2 (2)
C4'—C3'—H3'A109.0O5—C14'—C1'109.5 (2)
C2'—C3'—H3'B109.0C22—C15'—C9'127.9 (2)
C4'—C3'—H3'B109.0C22—C15'—C1'127.3 (2)
H3'A—C3'—H3'B107.8C9'—C15'—C1'104.78 (16)
C3'—C4'—C5'114.33 (18)C2—C16—H16A109.5
C3'—C4'—H4'A108.7C2—C16—H16B109.5
C5'—C4'—H4'A108.7H16A—C16—H16B109.5
C3'—C4'—H4'B108.7C2—C16—H16C109.5
C5'—C4'—H4'B108.7H16A—C16—H16C109.5
H4'A—C4'—H4'B107.6H16B—C16—H16C109.5
C5—C4—C5'121.8 (2)C2—C17—H17A109.5
C5—C4—H4119.1C2—C17—H17B109.5
C5'—C4—H4119.1H17A—C17—H17B109.5
C4—C5—C6121.0 (2)C2—C17—H17C109.5
C4—C5—H5119.5H17A—C17—H17C109.5
C6—C5—H5119.5H17B—C17—H17C109.5
C4—C5'—C6'105.89 (16)C2'—C18—H18A109.5
C4—C5'—C4'110.80 (19)C2'—C18—H18B109.5
C6'—C5'—C4'109.60 (16)H18A—C18—H18B109.5
C4—C5'—C2106.50 (17)C2'—C18—H18C109.5
C6'—C5'—C2115.38 (18)H18A—C18—H18C109.5
C4'—C5'—C2108.59 (17)H18B—C18—H18C109.5
O2—C6—O1118.8 (2)C6'—C19—H19A120.0
O2—C6—C5122.7 (2)C6'—C19—H19B120.0
O1—C6—C5118.5 (2)H19A—C19—H19B120.0
C19—C6'—C7'121.66 (19)C9'—C20—H20A109.5
C19—C6'—C5'125.1 (2)C9'—C20—H20B109.5
C7'—C6'—C5'112.97 (16)H20A—C20—H20B109.5
C6'—C7'—C8'114.45 (16)C9'—C20—H20C109.5
C6'—C7'—C2'112.31 (16)H20A—C20—H20C109.5
C8'—C7'—C2'111.99 (15)H20B—C20—H20C109.5
C6'—C7'—H7'105.8C12'—C21—H21A109.5
C8'—C7'—H7'105.8C12'—C21—H21B109.5
C2'—C7'—H7'105.8H21A—C21—H21B109.5
C7'—C8'—C9'113.20 (16)C12'—C21—H21C109.5
C7'—C8'—H8'A108.9H21A—C21—H21C109.5
C9'—C8'—H8'A108.9H21B—C21—H21C109.5
C7'—C8'—H8'B108.9C15'—C22—H22A120.0
C9'—C8'—H8'B108.9C15'—C22—H22B120.0
H8'A—C8'—H8'B107.8H22A—C22—H22B120.0
C15'—C9'—C20117.60 (18)C6—O1—C2118.14 (18)
C15'—C9'—C10'100.50 (17)C11'—O4—H1O4109.5
C20—C9'—C10'114.55 (18)C14'—O5—C12'112.37 (17)
C14'—C1'—C2'—C3'50.6 (2)C20—C9'—C10'—O336.0 (3)
C15'—C1'—C2'—C3'175.97 (16)C8'—C9'—C10'—O386.1 (3)
C11'—C1'—C2'—C3'73.0 (2)C15'—C9'—C10'—C11'20.4 (2)
C14'—C1'—C2'—C1871.4 (2)C20—C9'—C10'—C11'147.45 (18)
C15'—C1'—C2'—C1853.9 (2)C8'—C9'—C10'—C11'90.46 (18)
C11'—C1'—C2'—C18164.97 (19)O3—C10'—C11'—O444.7 (3)
C14'—C1'—C2'—C7'168.55 (17)C9'—C10'—C11'—O4131.88 (18)
C15'—C1'—C2'—C7'66.12 (19)O3—C10'—C11'—C1'168.3 (2)
C11'—C1'—C2'—C7'44.9 (2)C9'—C10'—C11'—C1'8.3 (2)
C18—C2'—C3'—C4'66.8 (2)O3—C10'—C11'—C12'80.5 (3)
C7'—C2'—C3'—C4'54.1 (2)C9'—C10'—C11'—C12'102.9 (2)
C1'—C2'—C3'—C4'170.11 (17)C14'—C1'—C11'—O491.2 (2)
C2'—C3'—C4'—C5'53.4 (3)C15'—C1'—C11'—O4155.36 (17)
C5'—C4—C5—C63.3 (4)C2'—C1'—C11'—O439.5 (3)
C5—C4—C5'—C6'94.1 (3)C14'—C1'—C11'—C10'146.31 (17)
C5—C4—C5'—C4'147.1 (2)C15'—C1'—C11'—C10'32.90 (19)
C5—C4—C5'—C229.2 (3)C2'—C1'—C11'—C10'83.0 (2)
C3'—C4'—C5'—C466.5 (2)C14'—C1'—C11'—C12'27.5 (2)
C3'—C4'—C5'—C6'50.0 (3)C15'—C1'—C11'—C12'85.88 (19)
C3'—C4'—C5'—C2176.87 (19)C2'—C1'—C11'—C12'158.27 (17)
O1—C2—C5'—C453.3 (2)O4—C11'—C12'—O596.7 (2)
C17—C2—C5'—C4170.8 (2)C10'—C11'—C12'—O5137.02 (18)
C16—C2—C5'—C463.9 (2)C1'—C11'—C12'—O524.8 (2)
O1—C2—C5'—C6'63.9 (2)O4—C11'—C12'—C21139.5 (2)
C17—C2—C5'—C6'53.6 (3)C10'—C11'—C12'—C2113.2 (3)
C16—C2—C5'—C6'178.92 (18)C1'—C11'—C12'—C2199.0 (2)
O1—C2—C5'—C4'172.67 (17)C15'—C1'—C14'—O694.9 (3)
C17—C2—C5'—C4'69.8 (3)C11'—C1'—C14'—O6160.1 (3)
C16—C2—C5'—C4'55.5 (2)C2'—C1'—C14'—O629.2 (4)
C4—C5—C6—O2168.2 (2)C15'—C1'—C14'—O583.3 (2)
C4—C5—C6—O111.2 (3)C11'—C1'—C14'—O521.7 (2)
C4—C5'—C6'—C19106.6 (2)C2'—C1'—C14'—O5152.63 (18)
C4'—C5'—C6'—C19133.8 (2)C20—C9'—C15'—C2211.9 (4)
C2—C5'—C6'—C1910.9 (3)C10'—C9'—C15'—C22136.9 (3)
C4—C5'—C6'—C7'67.6 (2)C8'—C9'—C15'—C22113.4 (3)
C4'—C5'—C6'—C7'51.9 (2)C20—C9'—C15'—C1'167.42 (19)
C2—C5'—C6'—C7'174.84 (16)C10'—C9'—C15'—C1'42.4 (2)
C19—C6'—C7'—C8'0.8 (3)C8'—C9'—C15'—C1'67.3 (2)
C5'—C6'—C7'—C8'173.68 (16)C14'—C1'—C15'—C2224.3 (3)
C19—C6'—C7'—C2'128.4 (2)C11'—C1'—C15'—C22131.7 (3)
C5'—C6'—C7'—C2'57.2 (2)C2'—C1'—C15'—C22105.1 (3)
C3'—C2'—C7'—C6'56.4 (2)C14'—C1'—C15'—C9'154.94 (19)
C18—C2'—C7'—C6'63.2 (2)C11'—C1'—C15'—C9'47.58 (19)
C1'—C2'—C7'—C6'176.80 (16)C2'—C1'—C15'—C9'75.61 (19)
C3'—C2'—C7'—C8'173.15 (17)O2—C6—O1—C2162.3 (2)
C18—C2'—C7'—C8'67.2 (2)C5—C6—O1—C218.3 (3)
C1'—C2'—C7'—C8'52.8 (2)C17—C2—O1—C6175.49 (19)
C6'—C7'—C8'—C9'179.61 (16)C16—C2—O1—C670.9 (2)
C2'—C7'—C8'—C9'50.3 (2)C5'—C2—O1—C651.4 (2)
C7'—C8'—C9'—C15'56.7 (2)O6—C14'—O5—C12'175.7 (2)
C7'—C8'—C9'—C20174.05 (17)C1'—C14'—O5—C12'6.0 (3)
C7'—C8'—C9'—C10'49.6 (2)C21—C12'—O5—C14'117.0 (2)
C15'—C9'—C10'—O3163.1 (2)C11'—C12'—O5—C14'12.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1O4···O2i0.822.062.852 (3)162
C5—H5···O3ii0.932.633.386 (3)139
Symmetry codes: (i) x1/2, y+3/2, z+2; (ii) x+1/2, y+3/2, z+2.

Experimental details

Crystal data
Chemical formulaC25H30O6
Mr426.49
Crystal system, space groupOrthorhombic, P212121
Temperature (K)290
a, b, c (Å)11.2152 (4), 13.2870 (5), 14.3914 (7)
V3)2144.55 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.49 × 0.39 × 0.21
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18157, 2622, 2453
Rint0.048
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.106, 1.07
No. of reflections2622
No. of parameters286
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.13

Computer programs: APEX2, COSMO and BIS (Bruker, 2006), SAINT (Bruker, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1O4···O2i0.822.062.852 (3)162
C5—H5···O3ii0.932.633.386 (3)139
Symmetry codes: (i) x1/2, y+3/2, z+2; (ii) x+1/2, y+3/2, z+2.
 

Acknowledgements

We thank FAPESP, CNPq and CAPES for financial support. Publication costs were met by FAPESP (Proc. 2008/02531–5). Professor R. A. Burrow of the Federal University of Santa Maria is gratefully acknowledged for helping with the collection of the intensity data.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). APEX2, COSMO, BIS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationIulek, J. & Zukerman-Schpector, J. (1997). Qui. Nova, 20, 433–434.  CrossRef CAS Google Scholar
First citationMaganhi, S. H., Fill, T. P., Rodrigues-Fo, E., Caracelli, I. & Zukerman-Schpector, J. (2009). Acta Cryst. E65, o221.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSantos, R. M. G. dos & Rodrigues-Fo, E. (2002). Phytochemistry, 61, 907–912.  PubMed Google Scholar
First citationSantos, R. M. G. dos & Rodrigues-Fo, E. (2003). J. Braz. Chem. Soc. 14, 722–727.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds