organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Carb­oxy­pyridinium hydrogen chloranilate

aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

(Received 20 February 2009; accepted 21 February 2009; online 28 February 2009)

In the crystal structure of the title salt, C6H6NO2+·C6HCl2O4, the pyridine ring and the mean plane of the hydrogen chloranilate anion form a dihedral angle of 77.40 (8)°. The ionic components are held together by N—H⋯O and O—H⋯O hydrogen bonds, forming a supra­molecular ladder. C—H⋯O inter­actions are also present.

Related literature

For the structures of related carboxy­pyridinium hydrogen chloranilates, see: Gotoh et al. (2006[Gotoh, K., Tabuchi, Y., Akashi, H. & Ishida, H. (2006). Acta Cryst. E62, o4420-o4421.]); Tabuchi et al. (2005[Tabuchi, Y., Takahashi, A., Gotoh, K., Akashi, H. & Ishida, H. (2005). Acta Cryst. E61, o4215-o4217.]); Ishida (2009[Ishida, H. (2009). Private communication (deposition numbers CCDC 720198 and CCDC 720199). CCDC, Cambridge, England.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6NO2+·C6HCl2O4

  • Mr = 332.10

  • Monoclinic, P 21 /c

  • a = 9.4166 (8) Å

  • b = 19.6900 (16) Å

  • c = 6.7089 (6) Å

  • β = 99.043 (3)°

  • V = 1228.45 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 103 K

  • 0.30 × 0.30 × 0.23 mm

Data collection
  • Rigaku R-AXIS RAPID-II diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.847, Tmax = 0.880

  • 9710 measured reflections

  • 3433 independent reflections

  • 2228 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.144

  • S = 1.10

  • 3433 reflections

  • 202 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.92 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.92 (4) 2.11 (3) 2.932 (2) 147 (3)
O2—H2⋯O5i 0.79 (3) 2.05 (3) 2.746 (2) 148 (3)
O6—H6⋯O4ii 0.90 (3) 1.63 (3) 2.528 (2) 177.1 (15)
C8—H8⋯O4iii 0.95 2.50 3.338 (3) 147
C9—H9⋯O3iv 0.95 2.33 3.227 (3) 156
C11—H11⋯O1v 0.95 2.46 3.374 (3) 162
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y, z+1; (iii) -x+1, -y+1, -z+1; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x, -y+1, -z.

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004[Rigaku/MSC (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title salt, (I), was prepared in order to extend our study on D—H···A hydrogen bonding (D = N, O or C; A = N, O or Cl) in chloranilic acid – substituted-pyridine systems (Gotoh et al., 2006; Tabuchi et al., 2005).

Compound (I) comprises 2-carboxypyridinium cations and hydrogen chloranilate anions in the ratio 1:1. Ions directly connected by an N—H···O hydrogen bond, Fig. 1, form a dihedral angle between their respective mean planes of 77.40 (8)°. In the cation, the carboxy O5/O6/C12 plane forms a dihedral angle of 11.44 (6)° with the pyridine ring, which is similar to those of 2.74 (6) and 10.01 (3)° observed in 3-carboxypyridinium hydrogen chloranilate and 4-carboxypyridinium hydrogen chloranilate monohydrate, respectively (Ishida, 2009). The ions are further connected by O—H···O hydrogen bonds (Table 1) to afford a supramolecular ladder running along the c axis (Fig. 2). The ladders are linked by weaker N—H···O hydrogen bonds and C—H···O contacts to form a 3-D network (Table 1).

Related literature top

For the structures of related carboxypyridinium hydrogen chloranilates, see: Gotoh et al. (2006); Tabuchi et al. (2005); Ishida (2009).

Experimental top

Crystals were obtained by slow evaporation from a methanol solution (ca 30 ml) containing a 1:1 molar ratio of chloranilic acid (0.302 g) and picolinic acid (0.179 g).

Refinement top

The H atoms attached to O and N were located from a difference Fourier map and refined isotropically to O—H = 0.79 (3) & 0.90 (3) Å and N—H = 0.92 (4) Å. The remaining H atoms were included in the riding approximation with C—H = 0.95 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO (Rigaku/MSC, 2004); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular components of (I) showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Intra- and inter-molecular N—H···O hydrogen bonds are indicated by dashed lines.
[Figure 2] Fig. 2. A partial packing diagram, viewed approximately along the a axis, showing the hydrogen-bonded supramolecular ladder. Dashed lines show N—H···O and O—H···O hydrogen bonds (symmetry codes as given in Table 1).
2-Carboxypyridinium hydrogen chloranilate top
Crystal data top
C6H6NO2+·C6HCl2O4F(000) = 672.00
Mr = 332.10Dx = 1.795 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 7392 reflections
a = 9.4166 (8) Åθ = 3.0–30.0°
b = 19.6900 (16) ŵ = 0.56 mm1
c = 6.7089 (6) ÅT = 103 K
β = 99.043 (3)°Platelet, dark purple
V = 1228.45 (18) Å30.30 × 0.30 × 0.23 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID-II
diffractometer
2228 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.047
ω scansθmax = 30.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1313
Tmin = 0.847, Tmax = 0.880k = 2727
9710 measured reflectionsl = 89
3433 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0659P)2 + 0.8975P]
where P = (Fo2 + 2Fc2)/3
3433 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.92 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C6H6NO2+·C6HCl2O4V = 1228.45 (18) Å3
Mr = 332.10Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4166 (8) ŵ = 0.56 mm1
b = 19.6900 (16) ÅT = 103 K
c = 6.7089 (6) Å0.30 × 0.30 × 0.23 mm
β = 99.043 (3)°
Data collection top
Rigaku R-AXIS RAPID-II
diffractometer
3433 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2228 reflections with I > 2σ(I)
Tmin = 0.847, Tmax = 0.880Rint = 0.047
9710 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.47 e Å3
3433 reflectionsΔρmin = 0.92 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.17894 (6)0.28996 (3)0.27912 (9)0.02060 (16)
Cl20.46528 (6)0.29140 (3)0.10812 (9)0.02077 (16)
O10.00723 (19)0.40867 (8)0.2367 (3)0.0218 (4)
O20.01147 (19)0.17042 (9)0.2397 (3)0.0184 (3)
O30.27117 (18)0.17271 (8)0.1488 (3)0.0196 (4)
O40.27772 (19)0.41277 (8)0.1577 (3)0.0209 (4)
O50.12383 (18)0.45615 (9)0.6917 (3)0.0215 (4)
O60.3466 (2)0.47658 (10)0.8601 (3)0.0265 (4)
N10.1860 (2)0.52690 (11)0.3720 (3)0.0199 (4)
C10.0667 (2)0.35416 (11)0.2174 (3)0.0164 (4)
C20.0036 (2)0.28950 (11)0.2347 (3)0.0160 (4)
C30.0678 (2)0.23079 (11)0.2188 (3)0.0154 (4)
C40.2206 (2)0.22965 (11)0.1715 (3)0.0155 (4)
C50.2899 (2)0.29272 (11)0.1544 (4)0.0170 (4)
C60.2232 (2)0.35480 (12)0.1732 (3)0.0165 (4)
C70.2794 (3)0.52837 (12)0.5464 (4)0.0198 (5)
C80.3984 (3)0.56970 (13)0.5626 (4)0.0229 (5)
H80.46560.57080.68400.027*
C90.4194 (3)0.60996 (13)0.3987 (4)0.0262 (5)
H90.50100.63880.40770.031*
C100.3206 (3)0.60759 (13)0.2230 (4)0.0268 (5)
H100.33320.63520.11090.032*
C110.2035 (3)0.56488 (13)0.2118 (4)0.0239 (5)
H110.13570.56240.09130.029*
C120.2418 (3)0.48289 (12)0.7090 (4)0.0195 (5)
H10.109 (5)0.498 (2)0.363 (6)0.053 (11)*
H20.071 (4)0.1437 (17)0.227 (5)0.032 (9)*
H60.319 (4)0.4534 (18)0.964 (6)0.043 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0146 (3)0.0253 (3)0.0233 (3)0.0013 (2)0.0076 (2)0.0006 (2)
Cl20.0151 (3)0.0258 (3)0.0230 (3)0.0018 (2)0.0080 (2)0.0011 (2)
O10.0207 (8)0.0196 (8)0.0256 (9)0.0020 (7)0.0051 (7)0.0022 (7)
O20.0163 (8)0.0164 (7)0.0238 (9)0.0013 (7)0.0074 (7)0.0008 (7)
O30.0176 (8)0.0201 (8)0.0220 (8)0.0016 (7)0.0063 (7)0.0008 (7)
O40.0232 (9)0.0200 (8)0.0210 (9)0.0027 (7)0.0083 (7)0.0019 (6)
O50.0177 (8)0.0212 (8)0.0274 (9)0.0017 (7)0.0094 (7)0.0018 (7)
O60.0221 (9)0.0336 (10)0.0235 (9)0.0063 (8)0.0024 (7)0.0050 (8)
N10.0145 (9)0.0229 (10)0.0229 (10)0.0018 (8)0.0050 (8)0.0000 (8)
C10.0182 (10)0.0180 (10)0.0130 (10)0.0007 (9)0.0020 (8)0.0001 (8)
C20.0130 (10)0.0197 (10)0.0152 (10)0.0009 (8)0.0023 (8)0.0019 (8)
C30.0154 (10)0.0183 (10)0.0132 (10)0.0002 (8)0.0048 (8)0.0005 (8)
C40.0149 (10)0.0193 (10)0.0132 (10)0.0009 (8)0.0048 (8)0.0003 (8)
C50.0132 (10)0.0207 (10)0.0176 (10)0.0013 (9)0.0041 (8)0.0006 (9)
C60.0165 (10)0.0204 (10)0.0133 (10)0.0014 (9)0.0039 (8)0.0011 (8)
C70.0179 (11)0.0184 (11)0.0241 (12)0.0001 (9)0.0067 (9)0.0006 (9)
C80.0188 (11)0.0236 (12)0.0272 (13)0.0000 (10)0.0066 (10)0.0018 (10)
C90.0223 (12)0.0231 (12)0.0355 (14)0.0031 (10)0.0118 (11)0.0023 (11)
C100.0292 (13)0.0248 (12)0.0291 (13)0.0006 (11)0.0129 (11)0.0049 (10)
C110.0229 (12)0.0270 (12)0.0221 (12)0.0049 (10)0.0051 (10)0.0028 (10)
C120.0210 (11)0.0193 (10)0.0197 (11)0.0002 (9)0.0076 (9)0.0021 (9)
Geometric parameters (Å, º) top
Cl1—C21.723 (2)C1—C61.548 (3)
Cl2—C51.727 (2)C2—C31.350 (3)
O1—C11.227 (3)C3—C41.521 (3)
O2—C31.318 (3)C4—C51.416 (3)
O2—H20.79 (3)C5—C61.389 (3)
O3—C41.237 (3)C7—C81.375 (3)
O4—C61.263 (3)C7—C121.497 (3)
O5—C121.218 (3)C8—C91.394 (4)
O6—C121.305 (3)C8—H80.9500
O6—H60.90 (4)C9—C101.383 (4)
N1—C111.340 (3)C9—H90.9500
N1—C71.349 (3)C10—C111.379 (4)
N1—H10.92 (4)C10—H100.9500
C1—C21.448 (3)C11—H110.9500
C3—O2—H2107 (3)O4—C6—C1115.8 (2)
C12—O6—H6112 (2)C5—C6—C1117.90 (19)
C11—N1—C7122.5 (2)N1—C7—C8119.6 (2)
C11—N1—H1119 (2)N1—C7—C12115.0 (2)
C7—N1—H1118 (2)C8—C7—C12125.4 (2)
O1—C1—C2122.6 (2)C7—C8—C9119.3 (2)
O1—C1—C6118.5 (2)C7—C8—H8120.4
C2—C1—C6118.91 (19)C9—C8—H8120.4
C3—C2—C1120.4 (2)C10—C9—C8119.5 (2)
C3—C2—Cl1121.40 (18)C10—C9—H9120.2
C1—C2—Cl1118.15 (17)C8—C9—H9120.2
O2—C3—C2123.3 (2)C11—C10—C9119.5 (2)
O2—C3—C4114.75 (19)C11—C10—H10120.3
C2—C3—C4121.9 (2)C9—C10—H10120.3
O3—C4—C5126.4 (2)N1—C11—C10119.7 (2)
O3—C4—C3115.7 (2)N1—C11—H11120.2
C5—C4—C3117.85 (19)C10—C11—H11120.2
C6—C5—C4122.9 (2)O5—C12—O6126.9 (2)
C6—C5—Cl2119.23 (17)O5—C12—C7120.4 (2)
C4—C5—Cl2117.86 (17)O6—C12—C7112.7 (2)
O4—C6—C5126.3 (2)
O1—C1—C2—C3177.9 (2)C4—C5—C6—C10.7 (3)
C6—C1—C2—C32.1 (3)Cl2—C5—C6—C1179.21 (16)
O1—C1—C2—Cl11.3 (3)O1—C1—C6—O40.9 (3)
C6—C1—C2—Cl1178.77 (16)C2—C1—C6—O4179.2 (2)
C1—C2—C3—O2177.7 (2)O1—C1—C6—C5179.2 (2)
Cl1—C2—C3—O21.4 (3)C2—C1—C6—C50.7 (3)
C1—C2—C3—C43.3 (3)C11—N1—C7—C80.6 (4)
Cl1—C2—C3—C4177.58 (16)C11—N1—C7—C12179.6 (2)
O2—C3—C4—O33.3 (3)N1—C7—C8—C90.7 (4)
C2—C3—C4—O3175.8 (2)C12—C7—C8—C9179.5 (2)
O2—C3—C4—C5177.73 (19)C7—C8—C9—C100.1 (4)
C2—C3—C4—C53.2 (3)C8—C9—C10—C110.7 (4)
O3—C4—C5—C6177.0 (2)C7—N1—C11—C100.2 (4)
C3—C4—C5—C61.8 (3)C9—C10—C11—N10.8 (4)
O3—C4—C5—Cl23.0 (3)N1—C7—C12—O511.4 (3)
C3—C4—C5—Cl2178.11 (16)C8—C7—C12—O5168.8 (2)
C4—C5—C6—O4179.2 (2)N1—C7—C12—O6168.4 (2)
Cl2—C5—C6—O40.8 (3)C8—C7—C12—O611.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.92 (4)2.11 (3)2.932 (2)147 (3)
N1—H1···O50.92 (4)2.33 (4)2.698 (2)103 (2)
N1—H1···O5i0.92 (4)2.34 (4)2.900 (2)119 (3)
O2—H2···O30.79 (3)2.11 (3)2.612 (2)122 (3)
O2—H2···O5ii0.79 (3)2.05 (3)2.746 (2)148 (3)
O6—H6···O4iii0.90 (3)1.63 (3)2.528 (2)177.1 (15)
C8—H8···O4iv0.952.503.338 (3)147
C9—H9···O3v0.952.333.227 (3)156
C11—H11···O1vi0.952.463.374 (3)162
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1/2, z1/2; (iii) x, y, z+1; (iv) x+1, y+1, z+1; (v) x+1, y+1/2, z+1/2; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC6H6NO2+·C6HCl2O4
Mr332.10
Crystal system, space groupMonoclinic, P21/c
Temperature (K)103
a, b, c (Å)9.4166 (8), 19.6900 (16), 6.7089 (6)
β (°) 99.043 (3)
V3)1228.45 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.56
Crystal size (mm)0.30 × 0.30 × 0.23
Data collection
DiffractometerRigaku R-AXIS RAPID-II
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.847, 0.880
No. of measured, independent and
observed [I > 2σ(I)] reflections
9710, 3433, 2228
Rint0.047
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.144, 1.10
No. of reflections3433
No. of parameters202
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.92

Computer programs: PROCESS-AUTO (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.92 (4)2.11 (3)2.932 (2)147 (3)
O2—H2···O5i0.79 (3)2.05 (3)2.746 (2)148 (3)
O6—H6···O4ii0.90 (3)1.63 (3)2.528 (2)177.1 (15)
C8—H8···O4iii0.952.503.338 (3)147
C9—H9···O3iv0.952.333.227 (3)156
C11—H11···O1v0.952.463.374 (3)162
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+1/2, z+1/2; (v) x, y+1, z.
 

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (C) (No. 19550018) from the Japan Society for the Promotion of Science.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGotoh, K., Tabuchi, Y., Akashi, H. & Ishida, H. (2006). Acta Cryst. E62, o4420–o4421.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIshida, H. (2009). Private communication (deposition numbers CCDC 720198 and CCDC 720199). CCDC, Cambridge, England.  Google Scholar
First citationRigaku/MSC (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTabuchi, Y., Takahashi, A., Gotoh, K., Akashi, H. & Ishida, H. (2005). Acta Cryst. E61, o4215–o4217.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds