organic compounds
4-Methyl-N-(4-methylphenyl)benzamide
aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com
In the title compound, C15H15NO, the amide fragment has an anti conformation. The central amide group is tilted with respect to the benzoyl ring, forming a dihedral angle of 32.3 (5)°. The benzoyl and aniline rings make a dihedral angle of 59.6 (5)°. Molecules are linked into infinite supramolecular chains via N—H⋯O hydrogen bonds. The molecule is disordered so that the aromatic rings are disposed across a twofold axis with equal occupancies.
Related literature
For background to our study of the substituent effects on the structures of benzanilides, see: Gowda et al. (2003). For related structures, see Gowda et al. (2008a,b, 2009).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009) and WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809006497/tk2377sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809006497/tk2377Isup2.hkl
Compound (I) was prepared according to the method described by Gowda et al. (2003). Plate-like colourless single crystals were obtained by slow evaporation from an ethanol solution (ca. 30 ml) of (I) (0.5 g) held at room temperature.
H atoms attached to C atoms were placed in calculated positions and refined in the riding model approximation with C–H distances of 0.93 or 0.96 Å. The position of amide-H was refined; N-H = 0.883 (15) Å. The Uiso(H) values were set at 1.2 Ueq(C-aromatic, N) and 1.5 Ueq(C-methyl). The structure was found to be disordered in
C2/c. The amide-O and -H atoms lie on a 2-fold axis with the aromatic rings disordered about this axis with equal occupancies. The geometries of the rings were restrained using the SADI and FLAT commands and the anisotropic displacement parameters were restrained with the DELU command in SHELXL-97 (Sheldrick, 2008). The atoms of the aniline moiety exhibit large thermal motion which accounts for the low value of the average ring bond distance of 1.359 (6) Å.Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell
CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).C15H15NO | F(000) = 480 |
Mr = 225.28 | Dx = 1.209 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 2932 reflections |
a = 13.3236 (5) Å | θ = 3.2–29.2° |
b = 5.3591 (2) Å | µ = 0.08 mm−1 |
c = 17.3525 (6) Å | T = 295 K |
β = 92.248 (3)° | Plate, colorless |
V = 1238.06 (8) Å3 | 0.26 × 0.25 × 0.07 mm |
Z = 4 |
Oxford Diffraction Xcalibur System diffractometer | 1235 independent reflections |
Graphite monochromator | 775 reflections with I > 2σ(I) |
Detector resolution: 10.434 pixels mm-1 | Rint = 0.029 |
ω scans with κ offsets | θmax = 26.2°, θmin = 3.8° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | h = −16→16 |
Tmin = 0.984, Tmax = 0.995 | k = −6→6 |
8166 measured reflections | l = −21→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.103 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.99 | w = [exp(0.90(sinθ/λ)2)]/[σ2(Fo2) + (0.068P)2] where P = 0.33333Fo2 + 0.66667Fc2 |
1235 reflections | (Δ/σ)max < 0.001 |
154 parameters | Δρmax = 0.12 e Å−3 |
59 restraints | Δρmin = −0.12 e Å−3 |
C15H15NO | V = 1238.06 (8) Å3 |
Mr = 225.28 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 13.3236 (5) Å | µ = 0.08 mm−1 |
b = 5.3591 (2) Å | T = 295 K |
c = 17.3525 (6) Å | 0.26 × 0.25 × 0.07 mm |
β = 92.248 (3)° |
Oxford Diffraction Xcalibur System diffractometer | 1235 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | 775 reflections with I > 2σ(I) |
Tmin = 0.984, Tmax = 0.995 | Rint = 0.029 |
8166 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 59 restraints |
wR(F2) = 0.103 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.99 | Δρmax = 0.12 e Å−3 |
1235 reflections | Δρmin = −0.12 e Å−3 |
154 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.5 | −0.0539 (2) | 0.25 | 0.0805 (4) | |
C8 | 0.52889 (16) | 0.1648 (5) | 0.26154 (14) | 0.0581 (6) | 0.5 |
C9 | 0.6171 (5) | 0.2387 (10) | 0.3106 (4) | 0.0555 (13) | 0.5 |
C10 | 0.6994 (7) | 0.0833 (15) | 0.3106 (7) | 0.0633 (14) | 0.5 |
H10 | 0.6972 | −0.0616 | 0.2811 | 0.076* | 0.5 |
C11 | 0.7862 (10) | 0.142 (3) | 0.3548 (6) | 0.0640 (17) | 0.5 |
H11 | 0.8413 | 0.0354 | 0.3549 | 0.077* | 0.5 |
C12 | 0.7905 (9) | 0.361 (3) | 0.3989 (11) | 0.061 (2) | 0.5 |
C13 | 0.7076 (9) | 0.522 (3) | 0.3987 (9) | 0.085 (3) | 0.5 |
H13 | 0.7087 | 0.6686 | 0.4272 | 0.102* | 0.5 |
C14 | 0.6229 (6) | 0.4507 (13) | 0.3538 (6) | 0.0705 (18) | 0.5 |
H14 | 0.5671 | 0.555 | 0.3533 | 0.085* | 0.5 |
C15 | 0.8883 (6) | 0.3929 (11) | 0.4511 (4) | 0.0850 (19) | 0.5 |
H15A | 0.8777 | 0.5189 | 0.4893 | 0.127* | 0.5 |
H15B | 0.9428 | 0.4419 | 0.4198 | 0.127* | 0.5 |
H15C | 0.9044 | 0.2375 | 0.4762 | 0.127* | 0.5 |
N1 | 0.47296 (14) | 0.3550 (4) | 0.23226 (11) | 0.0625 (6) | 0.5 |
H1N | 0.5 | 0.495 (4) | 0.25 | 0.075* | |
C1 | 0.3832 (5) | 0.3400 (10) | 0.1864 (4) | 0.0567 (15) | 0.5 |
C2 | 0.3155 (8) | 0.1540 (16) | 0.1904 (7) | 0.0730 (18) | 0.5 |
H2 | 0.3287 | 0.0205 | 0.2235 | 0.088* | 0.5 |
C3 | 0.2279 (10) | 0.157 (3) | 0.1466 (8) | 0.083 (3) | 0.5 |
H3 | 0.1838 | 0.0245 | 0.1517 | 0.099* | 0.5 |
C4 | 0.2007 (11) | 0.343 (3) | 0.0962 (12) | 0.076 (3) | 0.5 |
C5 | 0.2728 (8) | 0.520 (3) | 0.0939 (8) | 0.081 (2) | 0.5 |
H5 | 0.2613 | 0.6482 | 0.0586 | 0.097* | 0.5 |
C6 | 0.3605 (6) | 0.5322 (14) | 0.1370 (6) | 0.0728 (17) | 0.5 |
H6 | 0.4035 | 0.6677 | 0.1329 | 0.087* | 0.5 |
C7 | 0.1050 (8) | 0.3838 (19) | 0.0558 (5) | 0.146 (4) | 0.5 |
H7A | 0.0578 | 0.2603 | 0.0714 | 0.219* | 0.5 |
H7B | 0.1134 | 0.3716 | 0.0012 | 0.219* | 0.5 |
H7C | 0.0805 | 0.547 | 0.068 | 0.219* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0817 (8) | 0.0553 (7) | 0.1022 (9) | 0 | −0.0262 (7) | 0 |
C8 | 0.0577 (18) | 0.0537 (13) | 0.0624 (16) | −0.0023 (10) | −0.0047 (12) | −0.0014 (11) |
C9 | 0.0529 (18) | 0.053 (3) | 0.0602 (18) | 0.001 (2) | −0.0042 (13) | −0.004 (2) |
C10 | 0.052 (2) | 0.063 (4) | 0.074 (2) | 0.004 (2) | −0.0032 (17) | −0.016 (3) |
C11 | 0.046 (3) | 0.078 (4) | 0.067 (3) | 0.003 (3) | −0.0077 (19) | −0.001 (2) |
C12 | 0.045 (3) | 0.077 (4) | 0.058 (4) | −0.005 (2) | −0.016 (2) | 0.000 (3) |
C13 | 0.087 (5) | 0.082 (4) | 0.084 (4) | 0.024 (4) | −0.023 (3) | −0.008 (3) |
C14 | 0.056 (2) | 0.070 (5) | 0.084 (4) | 0.011 (3) | −0.019 (2) | −0.004 (4) |
C15 | 0.052 (2) | 0.104 (3) | 0.097 (5) | −0.017 (2) | −0.021 (2) | 0.001 (3) |
N1 | 0.0602 (15) | 0.0521 (11) | 0.0736 (15) | −0.0012 (9) | −0.0166 (9) | −0.0010 (9) |
C1 | 0.0564 (17) | 0.057 (4) | 0.056 (2) | 0.004 (3) | −0.0120 (15) | 0.004 (3) |
C2 | 0.075 (5) | 0.064 (4) | 0.080 (3) | 0.000 (3) | −0.003 (3) | 0.024 (3) |
C3 | 0.058 (5) | 0.085 (4) | 0.104 (5) | −0.017 (3) | −0.004 (3) | 0.002 (3) |
C4 | 0.069 (5) | 0.096 (5) | 0.063 (4) | 0.003 (3) | −0.007 (4) | −0.015 (3) |
C5 | 0.073 (4) | 0.104 (5) | 0.063 (3) | 0.003 (3) | −0.017 (3) | 0.016 (3) |
C6 | 0.074 (4) | 0.068 (4) | 0.076 (3) | −0.007 (3) | −0.007 (3) | 0.013 (3) |
C7 | 0.100 (5) | 0.274 (11) | 0.061 (3) | 0.040 (5) | −0.025 (3) | 0.001 (4) |
O1—C8 | 1.247 (3) | N1—N1i | 0.929 (3) |
O1—C8i | 1.247 (3) | N1—C1 | 1.413 (6) |
C8—C8i | 0.854 (4) | N1—H1N | 0.883 (15) |
C8—C9 | 1.478 (7) | C1—C2 | 1.348 (5) |
C9—C14 | 1.362 (6) | C1—C6 | 1.366 (5) |
C9—C10 | 1.377 (5) | C2—C3 | 1.368 (7) |
C10—C11 | 1.398 (7) | C2—H2 | 0.93 |
C10—H10 | 0.93 | C3—C4 | 1.363 (7) |
C11—C12 | 1.402 (7) | C3—H3 | 0.93 |
C11—H11 | 0.93 | C4—C5 | 1.352 (7) |
C12—C13 | 1.400 (6) | C4—C7 | 1.447 (14) |
C12—C15 | 1.567 (11) | C5—C6 | 1.363 (8) |
C13—C14 | 1.398 (10) | C5—H5 | 0.93 |
C13—H13 | 0.93 | C6—H6 | 0.93 |
C14—H14 | 0.93 | C7—H7A | 0.96 |
C15—H15A | 0.96 | C7—H7B | 0.96 |
C15—H15B | 0.96 | C7—H7C | 0.96 |
C15—H15C | 0.96 | ||
C8i—C8—C9 | 162.2 (4) | C2—C1—N1 | 124.5 (6) |
O1—C8—C9 | 125.3 (3) | C6—C1—N1 | 118.2 (6) |
C14—C9—C10 | 118.4 (6) | C1—C2—C3 | 121.3 (9) |
C14—C9—C8 | 124.6 (6) | C1—C2—H2 | 119.3 |
C10—C9—C8 | 117.0 (6) | C3—C2—H2 | 119.3 |
C9—C10—C11 | 120.4 (9) | C4—C3—C2 | 124.5 (12) |
C9—C10—H10 | 119.8 | C4—C3—H3 | 117.8 |
C11—C10—H10 | 119.8 | C2—C3—H3 | 117.8 |
C10—C11—C12 | 120.2 (11) | C5—C4—C3 | 111.0 (12) |
C10—C11—H11 | 119.9 | C5—C4—C7 | 119.5 (11) |
C12—C11—H11 | 119.9 | C3—C4—C7 | 129.0 (10) |
C13—C12—C11 | 119.9 (10) | C4—C5—C6 | 127.8 (13) |
C13—C12—C15 | 124.9 (9) | C4—C5—H5 | 116.1 |
C11—C12—C15 | 114.9 (8) | C6—C5—H5 | 116.1 |
C14—C13—C12 | 116.9 (10) | C5—C6—C1 | 118.1 (10) |
C14—C13—H13 | 121.5 | C5—C6—H6 | 121 |
C12—C13—H13 | 121.5 | C1—C6—H6 | 121 |
C9—C14—C13 | 124.1 (8) | C4—C7—H7A | 109.5 |
C9—C14—H14 | 117.9 | C4—C7—H7B | 109.5 |
C13—C14—H14 | 117.9 | H7A—C7—H7B | 109.5 |
N1i—N1—C1 | 172.2 (4) | C4—C7—H7C | 109.5 |
N1i—N1—H1N | 58.3 (7) | H7A—C7—H7C | 109.5 |
C1—N1—H1N | 124.7 (6) | H7B—C7—H7C | 109.5 |
C2—C1—C6 | 117.2 (6) | ||
C8i—O1—C8—C9 | 169.7 (6) | C8—C9—C14—C13 | −178.6 (11) |
C8i—C8—C9—C14 | 1.0 (19) | C12—C13—C14—C9 | 0 (2) |
O1—C8—C9—C14 | −145.7 (6) | C6—C1—C2—C3 | 0.1 (17) |
C8i—C8—C9—C10 | −177.5 (15) | N1—C1—C2—C3 | 176.9 (10) |
O1—C8—C9—C10 | 35.8 (9) | C1—C2—C3—C4 | 0 (3) |
C14—C9—C10—C11 | 0.6 (15) | C2—C3—C4—C5 | 1 (3) |
C8—C9—C10—C11 | 179.2 (9) | C2—C3—C4—C7 | −170.1 (17) |
C9—C10—C11—C12 | −1 (2) | C3—C4—C5—C6 | −3 (3) |
C10—C11—C12—C13 | 0 (3) | C7—C4—C5—C6 | 169.1 (16) |
C10—C11—C12—C15 | 175.0 (12) | C4—C5—C6—C1 | 4 (3) |
C11—C12—C13—C14 | 0 (3) | C2—C1—C6—C5 | −1.7 (15) |
C15—C12—C13—C14 | −174.0 (15) | N1—C1—C6—C5 | −178.8 (10) |
C10—C9—C14—C13 | −0.2 (16) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1ii | 0.88 (2) | 2.42 (2) | 3.202 (3) | 148 (1) |
Symmetry code: (ii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C15H15NO |
Mr | 225.28 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 295 |
a, b, c (Å) | 13.3236 (5), 5.3591 (2), 17.3525 (6) |
β (°) | 92.248 (3) |
V (Å3) | 1238.06 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.26 × 0.25 × 0.07 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur System diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.984, 0.995 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8166, 1235, 775 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.621 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.103, 0.99 |
No. of reflections | 1235 |
No. of parameters | 154 |
No. of restraints | 59 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.12, −0.12 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.883 (15) | 2.416 (19) | 3.202 (3) | 148.3 (6) |
Symmetry code: (i) x, y+1, z. |
Acknowledgements
MT and JK thank the Grant Agency of the Slovak Republic (grant No. VEGA 1/0817/08) and the Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.
References
Brandenburg, K. (2002). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2009). Z. Naturforsch. Teil A. In preparation. CCDC deposition No. 691312, CCDC, Cambridge, England. Google Scholar
Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230. CAS Google Scholar
Gowda, B. T., Tokarčík, M., Kožíšek, J. & Sowmya, B. P. (2008a). Acta Cryst. E64, o83. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o1494. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the present work, as part of a study of the substituent effects on the structures of benzanilides (Gowda et al., 2003; Gowda et al., 2008a,b), the structure of 4-methyl-N- (4-methylphenyl)benzamide (I) has been determined. The amide adopts an anti-conformation (Fig. 1), similar to that observed in N-(4-methylphenyl)benzamide (N4MPBA) (Gowda et al., 2008a), 4-methyl-N-(phenyl)benzamide (NP4MBA) (Gowda et al., 2009), 2-methyl-N-(4-methylphenyl)benzamide (N4MP2MBA) (Gowda et al., 2008b) and other benzanilides (Gowda et al., 2003). The central amide group is tilted to the benzoyl ring at an angle of 32.3 (5)°, compared to the values of 20.7 (2)°, 33.9 (14)°, 60.0 (1)°, observed for N4MPBA, NP4MBA and N4MP2MBA, respectively. The two aromatic rings form a dihedral angle of 59.6 (5)°, in comparison with the values in the structures cited above of 63.4 (1)°, 61.0 (1)°, and 81.4 (1)°, respectively. The molecules are linked by N—H···O hydrogen bonds (Table 1) into supramolecular chains running along the b axis (Fig. 2).