metal-organic compounds
Construction of a dinuclear silver(I) coordination complex with a Schiff base containing 4-amino-1,2,4-triazole ligands
aDepartment of Materials Chemistry, School of Materials Science and Engineering, Key Laboratory of Non-ferrous Metals of the Ministry of Education, Central South University, Changsha 410083, People's Republic of China
*Correspondence e-mail: rosesunqz@yahoo.com.cn
The new ligand 1-(1,2,4-triazol-4-yliminomethyl)-2-naphthol (L) and the title silver(I) complex, namely bis[μ-1-(1,2,4-triazol-4-yliminomethyl)-2-naphthol]bis{[1-(1,2,4-triazol-4-yliminomethyl)-2-naphthol]silver(I)} dinitrate monohydrate, [Ag2(C13H10N4O)4](NO3)2·H2O, were synthesized. Each silver center in the dimeric complex (related by an inversion centre) is coordinated by two bridging L ligands and one additional L ligand in a monodentate fashion, exhibiting a distorted trigonal-planar coordination. The discrete dimers are further linked through O—H⋯O hydrogen bonds and weak π–π stacking interactions [the shortest atom–atom separation is ca 3.46 Å between the parallel stacking pairs]. Intramolecular O—H⋯N hydrogen bonds are also present.
Related literature
For the structures of other triazole Schiff base compounds, see: Beckmann & Brooker (2003); Drabent et al. (2003, 2004); Garcia et al. (1997); Klingele & Brooker (2003); Liu et al. (2003, 2006); Wang et al. (2006); Yi et al. (2004); Zhai et al. (2006). For related literature, see: Han et al. (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809004760/wk2097sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809004760/wk2097Isup2.hkl
Preparation of complex 1: The ligand L (0.1 mmol, 0.024 g) and AgNO3 (0.1 mmol, 0.017 g) were mixed in acetonitrile and stirred at room temperature for one hour, the yellow solution was filtered and evaporated at room temperature. A few days later orange block crystals were obtained.
Preparation of the ligand L: An ethanolic solution (20 ml) of 2-hydroxy-1-napthaldehyde (1.72 g, 10 mmol) was added to a warm ethanolic solution (10 ml) of 4-amino- 1,2,4-triazole (0.84 g, 10 mmol) and the resulting solution was refluxed for four hours. The reaction mixture was then cooled to room temperature. Upon standing overnight the resultant yellow solid was filtered off, washed with diethyl ether and dried under vacuum. Yield: 90%. 1H NMR (500 MHz, DMSO, 298 K): 9.66 (s, 1H), 9.34 (s, 2H), 8.84–8.86 (d, 1H), 8.05–8.07 (d, 1H), 7.90–7.92 (d, 1H), 7.61–7.64 (t, 1H), 7.43–7.46 (t, 1H), 7.28–7.30 (d, 1H).
All of the non-hydrogen atoms were refined with anisotropic thermal displacement coefficients. The positions of hydrogen atoms were fixed geometrically at calculated distances and allowed to ride on the parent non-hydrogen atoms. The water molecule was refined as disordered with the s.o.f. being fixed at 0.5 and its hydrogen atoms located in the difference Fourier maps and fixed at calculated distances from the parent oxygen atom.
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Ag2(C13H10N4O)4](NO3)2·H2O | Z = 1 |
Mr = 1310.78 | F(000) = 662 |
Triclinic, P1 | Dx = 1.670 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.8594 (15) Å | Cell parameters from 2250 reflections |
b = 10.7081 (15) Å | θ = 2.4–25.4° |
c = 12.8567 (19) Å | µ = 0.83 mm−1 |
α = 82.391 (2)° | T = 293 K |
β = 81.155 (2)° | Block, orange |
γ = 77.626 (2)° | 0.2 × 0.18 × 0.16 mm |
V = 1303.1 (3) Å3 |
Bruker APEX CCD area-detector diffractometer | 4536 independent reflections |
Radiation source: fine-focus sealed tube | 3137 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.118 |
ϕ and ω scans | θmax = 25.0°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −10→11 |
Tmin = 0.826, Tmax = 0.887 | k = −12→8 |
6610 measured reflections | l = −15→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: geom, H2O from difmap |
wR(F2) = 0.133 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0601P)2] where P = (Fo2 + 2Fc2)/3 |
4536 reflections | (Δ/σ)max = 0.001 |
379 parameters | Δρmax = 0.85 e Å−3 |
0 restraints | Δρmin = −0.84 e Å−3 |
[Ag2(C13H10N4O)4](NO3)2·H2O | γ = 77.626 (2)° |
Mr = 1310.78 | V = 1303.1 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 9.8594 (15) Å | Mo Kα radiation |
b = 10.7081 (15) Å | µ = 0.83 mm−1 |
c = 12.8567 (19) Å | T = 293 K |
α = 82.391 (2)° | 0.2 × 0.18 × 0.16 mm |
β = 81.155 (2)° |
Bruker APEX CCD area-detector diffractometer | 4536 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 3137 reflections with I > 2σ(I) |
Tmin = 0.826, Tmax = 0.887 | Rint = 0.118 |
6610 measured reflections |
R[F2 > 2σ(F2)] = 0.055 | 0 restraints |
wR(F2) = 0.133 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.85 e Å−3 |
4536 reflections | Δρmin = −0.84 e Å−3 |
379 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ag1 | 0.84563 (4) | 0.12190 (4) | 0.95202 (3) | 0.0613 (2) | |
O1 | 0.3147 (4) | 0.5935 (3) | 0.5781 (2) | 0.0564 (9) | |
H1A | 0.3862 | 0.5514 | 0.6002 | 0.085* | |
O2 | 1.2327 (4) | 0.0054 (4) | 0.4026 (3) | 0.0701 (11) | |
H2B | 1.2018 | 0.0029 | 0.4656 | 0.105* | |
N1 | 0.4657 (4) | 0.4732 (4) | 0.7179 (3) | 0.0488 (10) | |
N2 | 0.5888 (4) | 0.3908 (4) | 0.7472 (3) | 0.0447 (10) | |
N3 | 0.7966 (4) | 0.2720 (4) | 0.7236 (3) | 0.0590 (12) | |
N4 | 0.7427 (4) | 0.2564 (4) | 0.8288 (3) | 0.0554 (11) | |
N5 | 1.2436 (4) | −0.0497 (4) | 0.6037 (3) | 0.0453 (9) | |
N6 | 1.1907 (4) | −0.0406 (3) | 0.7095 (3) | 0.0412 (9) | |
N7 | 1.0373 (4) | 0.0221 (4) | 0.8420 (3) | 0.0489 (10) | |
N8 | 1.1554 (4) | −0.0524 (4) | 0.8806 (3) | 0.0447 (10) | |
C1 | 0.1290 (5) | 0.6319 (4) | 0.8481 (4) | 0.0423 (11) | |
C2 | 0.1404 (6) | 0.6048 (5) | 0.9573 (4) | 0.0530 (13) | |
H2A | 0.2232 | 0.5561 | 0.9789 | 0.064* | |
C3 | 0.0338 (6) | 0.6481 (6) | 1.0306 (4) | 0.0633 (15) | |
H3A | 0.0449 | 0.6287 | 1.1019 | 0.076* | |
C4 | −0.0937 (6) | 0.7218 (6) | 1.0028 (4) | 0.0663 (15) | |
H4A | −0.1664 | 0.7506 | 1.0545 | 0.080* | |
C5 | −0.1082 (6) | 0.7501 (5) | 0.8987 (5) | 0.0650 (15) | |
H5A | −0.1922 | 0.7993 | 0.8794 | 0.078* | |
C6 | −0.0002 (5) | 0.7072 (5) | 0.8189 (4) | 0.0514 (12) | |
C7 | −0.0158 (6) | 0.7374 (5) | 0.7109 (4) | 0.0582 (14) | |
H7A | −0.1003 | 0.7859 | 0.6921 | 0.070* | |
C8 | 0.0863 (6) | 0.6988 (5) | 0.6352 (4) | 0.0552 (14) | |
H8A | 0.0722 | 0.7200 | 0.5646 | 0.066* | |
C9 | 0.2163 (5) | 0.6255 (4) | 0.6608 (4) | 0.0442 (11) | |
C10 | 0.2382 (5) | 0.5910 (4) | 0.7651 (4) | 0.0404 (11) | |
C11 | 0.3702 (5) | 0.5102 (4) | 0.7907 (4) | 0.0419 (11) | |
H11A | 0.3840 | 0.4858 | 0.8611 | 0.050* | |
C12 | 0.6178 (5) | 0.3277 (5) | 0.8406 (4) | 0.0515 (13) | |
H12A | 0.5582 | 0.3338 | 0.9040 | 0.062* | |
C13 | 0.7004 (5) | 0.3530 (5) | 0.6776 (4) | 0.0548 (14) | |
H13A | 0.7082 | 0.3809 | 0.6057 | 0.066* | |
C14 | 1.5717 (5) | −0.2019 (5) | 0.4532 (4) | 0.0459 (11) | |
C15 | 1.6506 (5) | −0.2714 (5) | 0.5336 (4) | 0.0570 (13) | |
H15A | 1.6110 | −0.2711 | 0.6041 | 0.068* | |
C16 | 1.7841 (6) | −0.3386 (6) | 0.5089 (5) | 0.0684 (16) | |
H16A | 1.8327 | −0.3846 | 0.5629 | 0.082* | |
C17 | 1.8483 (7) | −0.3395 (6) | 0.4050 (6) | 0.083 (2) | |
H17A | 1.9405 | −0.3821 | 0.3897 | 0.099* | |
C18 | 1.7744 (7) | −0.2771 (6) | 0.3256 (5) | 0.0719 (17) | |
H18A | 1.8153 | −0.2810 | 0.2556 | 0.086* | |
C19 | 1.6372 (6) | −0.2068 (5) | 0.3479 (4) | 0.0577 (14) | |
C20 | 1.5622 (7) | −0.1409 (6) | 0.2656 (4) | 0.0679 (17) | |
H20A | 1.6040 | −0.1457 | 0.1959 | 0.082* | |
C21 | 1.4303 (7) | −0.0703 (6) | 0.2851 (4) | 0.0673 (17) | |
H21A | 1.3840 | −0.0259 | 0.2294 | 0.081* | |
C22 | 1.3641 (6) | −0.0650 (5) | 0.3907 (4) | 0.0526 (13) | |
C23 | 1.4329 (5) | −0.1275 (4) | 0.4742 (3) | 0.0435 (11) | |
C24 | 1.3675 (5) | −0.1161 (5) | 0.5824 (3) | 0.0441 (11) | |
H24A | 1.4163 | −0.1578 | 0.6377 | 0.053* | |
C25 | 1.0619 (5) | 0.0279 (5) | 0.7388 (4) | 0.0477 (12) | |
H25A | 1.0000 | 0.0725 | 0.6926 | 0.057* | |
C26 | 1.2458 (5) | −0.0883 (4) | 0.7999 (3) | 0.0432 (11) | |
H26A | 1.3346 | −0.1390 | 0.8039 | 0.052* | |
N9 | 0.5609 (6) | 0.7008 (7) | 0.8823 (5) | 0.0847 (17) | |
O3 | 0.5165 (10) | 0.7921 (8) | 0.9419 (6) | 0.183 (4) | |
O4 | 0.5557 (6) | 0.7361 (6) | 0.7950 (4) | 0.125 (2) | |
O5 | 0.5869 (6) | 0.5986 (5) | 0.9295 (5) | 0.116 (2) | |
O1W | 0.6044 (13) | −0.0162 (13) | 0.9945 (10) | 0.143 (5) | 0.50 |
H1WA | 0.6068 | −0.0783 | 0.9589 | 0.171* | 0.50 |
H1WB | 0.5600 | −0.0207 | 1.0566 | 0.171* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.0486 (3) | 0.0810 (4) | 0.0381 (2) | 0.0158 (2) | −0.00257 (16) | 0.00200 (18) |
O1 | 0.053 (2) | 0.067 (2) | 0.0399 (17) | 0.0063 (18) | −0.0092 (16) | 0.0002 (16) |
O2 | 0.076 (3) | 0.077 (3) | 0.0453 (19) | 0.013 (2) | −0.0091 (18) | −0.0055 (18) |
N1 | 0.041 (2) | 0.054 (3) | 0.046 (2) | 0.005 (2) | −0.0109 (19) | −0.0009 (19) |
N2 | 0.037 (2) | 0.051 (2) | 0.039 (2) | 0.0072 (18) | −0.0074 (17) | −0.0035 (17) |
N3 | 0.046 (3) | 0.076 (3) | 0.041 (2) | 0.011 (2) | −0.0012 (19) | −0.001 (2) |
N4 | 0.048 (3) | 0.073 (3) | 0.037 (2) | 0.009 (2) | −0.0116 (19) | −0.001 (2) |
N5 | 0.047 (2) | 0.046 (2) | 0.0352 (19) | 0.0018 (19) | 0.0022 (17) | −0.0045 (16) |
N6 | 0.038 (2) | 0.041 (2) | 0.0361 (19) | 0.0033 (18) | 0.0052 (16) | −0.0051 (16) |
N7 | 0.038 (2) | 0.054 (3) | 0.043 (2) | 0.0105 (19) | −0.0008 (17) | −0.0038 (18) |
N8 | 0.037 (2) | 0.053 (3) | 0.036 (2) | 0.0062 (18) | −0.0033 (17) | −0.0029 (17) |
C1 | 0.036 (3) | 0.039 (3) | 0.051 (3) | −0.003 (2) | −0.010 (2) | −0.004 (2) |
C2 | 0.045 (3) | 0.061 (3) | 0.052 (3) | −0.008 (3) | −0.011 (2) | −0.003 (2) |
C3 | 0.058 (4) | 0.087 (4) | 0.044 (3) | −0.017 (3) | 0.006 (2) | −0.013 (3) |
C4 | 0.049 (3) | 0.082 (4) | 0.063 (3) | −0.004 (3) | 0.009 (3) | −0.022 (3) |
C5 | 0.041 (3) | 0.060 (4) | 0.089 (4) | 0.001 (3) | −0.005 (3) | −0.012 (3) |
C6 | 0.035 (3) | 0.051 (3) | 0.066 (3) | −0.002 (2) | −0.009 (2) | −0.008 (2) |
C7 | 0.043 (3) | 0.058 (3) | 0.070 (4) | 0.005 (3) | −0.024 (3) | −0.001 (3) |
C8 | 0.056 (3) | 0.056 (3) | 0.049 (3) | 0.006 (3) | −0.022 (3) | 0.000 (2) |
C9 | 0.046 (3) | 0.041 (3) | 0.045 (3) | −0.003 (2) | −0.011 (2) | −0.001 (2) |
C10 | 0.034 (3) | 0.036 (3) | 0.051 (3) | −0.003 (2) | −0.011 (2) | −0.005 (2) |
C11 | 0.037 (3) | 0.046 (3) | 0.039 (2) | 0.000 (2) | −0.007 (2) | −0.005 (2) |
C12 | 0.042 (3) | 0.067 (3) | 0.035 (2) | 0.014 (2) | −0.008 (2) | −0.006 (2) |
C13 | 0.045 (3) | 0.071 (4) | 0.036 (2) | 0.009 (3) | −0.001 (2) | 0.002 (2) |
C14 | 0.048 (3) | 0.043 (3) | 0.048 (3) | −0.014 (2) | 0.005 (2) | −0.014 (2) |
C15 | 0.048 (3) | 0.058 (3) | 0.062 (3) | −0.004 (3) | 0.006 (3) | −0.019 (3) |
C16 | 0.041 (3) | 0.076 (4) | 0.086 (4) | −0.004 (3) | −0.001 (3) | −0.022 (3) |
C17 | 0.053 (4) | 0.079 (5) | 0.109 (5) | −0.007 (3) | 0.025 (4) | −0.040 (4) |
C18 | 0.068 (4) | 0.076 (4) | 0.069 (4) | −0.024 (3) | 0.031 (3) | −0.029 (3) |
C19 | 0.062 (4) | 0.056 (3) | 0.055 (3) | −0.022 (3) | 0.018 (3) | −0.020 (3) |
C20 | 0.085 (5) | 0.074 (4) | 0.042 (3) | −0.027 (4) | 0.022 (3) | −0.014 (3) |
C21 | 0.097 (5) | 0.068 (4) | 0.033 (3) | −0.014 (4) | −0.002 (3) | −0.002 (2) |
C22 | 0.063 (4) | 0.048 (3) | 0.043 (3) | −0.008 (3) | 0.003 (2) | −0.008 (2) |
C23 | 0.049 (3) | 0.040 (3) | 0.039 (2) | −0.010 (2) | 0.005 (2) | −0.008 (2) |
C24 | 0.042 (3) | 0.048 (3) | 0.039 (2) | −0.006 (2) | 0.003 (2) | −0.003 (2) |
C25 | 0.038 (3) | 0.055 (3) | 0.039 (2) | 0.007 (2) | −0.002 (2) | 0.001 (2) |
C26 | 0.041 (3) | 0.047 (3) | 0.036 (2) | 0.002 (2) | −0.005 (2) | −0.004 (2) |
N9 | 0.076 (4) | 0.099 (5) | 0.081 (4) | −0.028 (4) | −0.029 (3) | 0.021 (4) |
O3 | 0.216 (9) | 0.163 (7) | 0.149 (6) | −0.041 (6) | 0.080 (6) | −0.057 (6) |
O4 | 0.101 (4) | 0.177 (6) | 0.076 (3) | −0.002 (4) | −0.015 (3) | 0.031 (4) |
O5 | 0.132 (5) | 0.090 (4) | 0.118 (4) | −0.007 (3) | −0.041 (4) | 0.027 (3) |
O1W | 0.115 (10) | 0.181 (12) | 0.125 (9) | −0.003 (9) | 0.005 (8) | −0.057 (8) |
Ag1—N8i | 2.182 (3) | C7—H7A | 0.9300 |
Ag1—N4 | 2.209 (4) | C8—C9 | 1.413 (6) |
Ag1—N7 | 2.329 (4) | C8—H8A | 0.9300 |
O1—C9 | 1.351 (6) | C9—C10 | 1.381 (6) |
O1—H1A | 0.8200 | C10—C11 | 1.458 (6) |
O2—C22 | 1.349 (7) | C11—H11A | 0.9300 |
O2—H2B | 0.8200 | C12—H12A | 0.9300 |
N1—C11 | 1.259 (6) | C13—H13A | 0.9300 |
N1—N2 | 1.410 (5) | C14—C19 | 1.410 (6) |
N2—C13 | 1.333 (6) | C14—C15 | 1.422 (7) |
N2—C12 | 1.338 (5) | C14—C23 | 1.434 (7) |
N3—C13 | 1.298 (6) | C15—C16 | 1.370 (8) |
N3—N4 | 1.377 (5) | C15—H15A | 0.9300 |
N4—C12 | 1.300 (6) | C16—C17 | 1.388 (9) |
N5—C24 | 1.284 (6) | C16—H16A | 0.9300 |
N5—N6 | 1.389 (5) | C17—C18 | 1.363 (9) |
N6—C25 | 1.349 (6) | C17—H17A | 0.9300 |
N6—C26 | 1.351 (5) | C18—C19 | 1.407 (8) |
N7—C25 | 1.307 (6) | C18—H18A | 0.9300 |
N7—N8 | 1.383 (5) | C19—C20 | 1.409 (8) |
N8—C26 | 1.301 (6) | C20—C21 | 1.362 (9) |
N8—Ag1i | 2.182 (3) | C20—H20A | 0.9300 |
C1—C2 | 1.412 (6) | C21—C22 | 1.416 (7) |
C1—C6 | 1.428 (6) | C21—H21A | 0.9300 |
C1—C10 | 1.435 (6) | C22—C23 | 1.378 (7) |
C2—C3 | 1.346 (8) | C23—C24 | 1.450 (6) |
C2—H2A | 0.9300 | C24—H24A | 0.9300 |
C3—C4 | 1.403 (8) | C25—H25A | 0.9300 |
C3—H3A | 0.9300 | C26—H26A | 0.9300 |
C4—C5 | 1.355 (8) | N9—O4 | 1.141 (6) |
C4—H4A | 0.9300 | N9—O5 | 1.176 (7) |
C5—C6 | 1.406 (7) | N9—O3 | 1.284 (9) |
C5—H5A | 0.9300 | O1W—H1WA | 0.8499 |
C6—C7 | 1.408 (7) | O1W—H1WB | 0.8500 |
C7—C8 | 1.326 (8) | ||
N8i—Ag1—N4 | 147.87 (16) | N1—C11—C10 | 120.2 (4) |
N8i—Ag1—N7 | 114.48 (13) | N1—C11—H11A | 119.9 |
N4—Ag1—N7 | 97.64 (14) | C10—C11—H11A | 119.9 |
C9—O1—H1A | 109.5 | N4—C12—N2 | 109.3 (4) |
C22—O2—H2B | 109.5 | N4—C12—H12A | 125.4 |
C11—N1—N2 | 117.8 (4) | N2—C12—H12A | 125.4 |
C13—N2—C12 | 106.0 (4) | N3—C13—N2 | 111.0 (4) |
C13—N2—N1 | 123.0 (4) | N3—C13—H13A | 124.5 |
C12—N2—N1 | 130.8 (4) | N2—C13—H13A | 124.5 |
C13—N3—N4 | 105.8 (4) | C19—C14—C15 | 116.7 (5) |
C12—N4—N3 | 108.0 (4) | C19—C14—C23 | 119.6 (5) |
C12—N4—Ag1 | 126.5 (3) | C15—C14—C23 | 123.7 (4) |
N3—N4—Ag1 | 125.4 (3) | C16—C15—C14 | 121.1 (5) |
C24—N5—N6 | 117.6 (4) | C16—C15—H15A | 119.5 |
C25—N6—C26 | 106.3 (4) | C14—C15—H15A | 119.5 |
C25—N6—N5 | 121.5 (4) | C15—C16—C17 | 121.4 (6) |
C26—N6—N5 | 132.2 (4) | C15—C16—H16A | 119.3 |
C25—N7—N8 | 106.9 (4) | C17—C16—H16A | 119.3 |
C25—N7—Ag1 | 130.5 (3) | C18—C17—C16 | 119.1 (6) |
N8—N7—Ag1 | 122.5 (3) | C18—C17—H17A | 120.4 |
C26—N8—N7 | 107.8 (3) | C16—C17—H17A | 120.4 |
C26—N8—Ag1i | 129.5 (3) | C17—C18—C19 | 121.0 (6) |
N7—N8—Ag1i | 121.5 (3) | C17—C18—H18A | 119.5 |
C2—C1—C6 | 117.2 (4) | C19—C18—H18A | 119.5 |
C2—C1—C10 | 124.7 (4) | C18—C19—C20 | 120.7 (5) |
C6—C1—C10 | 118.1 (4) | C18—C19—C14 | 120.6 (6) |
C3—C2—C1 | 121.2 (5) | C20—C19—C14 | 118.7 (5) |
C3—C2—H2A | 119.4 | C21—C20—C19 | 121.9 (5) |
C1—C2—H2A | 119.4 | C21—C20—H20A | 119.1 |
C2—C3—C4 | 121.9 (5) | C19—C20—H20A | 119.1 |
C2—C3—H3A | 119.0 | C20—C21—C22 | 119.6 (5) |
C4—C3—H3A | 119.0 | C20—C21—H21A | 120.2 |
C5—C4—C3 | 118.5 (5) | C22—C21—H21A | 120.2 |
C5—C4—H4A | 120.8 | O2—C22—C23 | 123.6 (5) |
C3—C4—H4A | 120.8 | O2—C22—C21 | 115.6 (5) |
C4—C5—C6 | 121.9 (5) | C23—C22—C21 | 120.8 (5) |
C4—C5—H5A | 119.0 | C22—C23—C14 | 119.4 (4) |
C6—C5—H5A | 119.0 | C22—C23—C24 | 120.6 (5) |
C5—C6—C7 | 121.6 (5) | C14—C23—C24 | 120.0 (4) |
C5—C6—C1 | 119.2 (5) | N5—C24—C23 | 121.5 (4) |
C7—C6—C1 | 119.2 (5) | N5—C24—H24A | 119.3 |
C8—C7—C6 | 121.9 (5) | C23—C24—H24A | 119.3 |
C8—C7—H7A | 119.0 | N7—C25—N6 | 109.7 (4) |
C6—C7—H7A | 119.0 | N7—C25—H25A | 125.2 |
C7—C8—C9 | 120.6 (4) | N6—C25—H25A | 125.2 |
C7—C8—H8A | 119.7 | N8—C26—N6 | 109.3 (4) |
C9—C8—H8A | 119.7 | N8—C26—H26A | 125.3 |
O1—C9—C10 | 123.3 (4) | N6—C26—H26A | 125.3 |
O1—C9—C8 | 116.2 (4) | O4—N9—O5 | 134.0 (9) |
C10—C9—C8 | 120.5 (5) | O4—N9—O3 | 112.1 (8) |
C9—C10—C1 | 119.7 (4) | O5—N9—O3 | 113.6 (7) |
C9—C10—C11 | 120.1 (4) | H1WA—O1W—H1WB | 115.9 |
C1—C10—C11 | 120.2 (4) | ||
C11—N1—N2—C13 | −175.1 (5) | C1—C10—C11—N1 | 179.3 (4) |
C11—N1—N2—C12 | 10.7 (8) | N3—N4—C12—N2 | −0.9 (6) |
C13—N3—N4—C12 | 0.2 (6) | Ag1—N4—C12—N2 | −176.5 (3) |
C13—N3—N4—Ag1 | 175.9 (4) | C13—N2—C12—N4 | 1.1 (6) |
N8i—Ag1—N4—C12 | −11.8 (6) | N1—N2—C12—N4 | 176.1 (5) |
N7—Ag1—N4—C12 | 170.0 (5) | N4—N3—C13—N2 | 0.5 (6) |
N8i—Ag1—N4—N3 | 173.4 (3) | C12—N2—C13—N3 | −1.0 (6) |
N7—Ag1—N4—N3 | −4.9 (4) | N1—N2—C13—N3 | −176.5 (4) |
C24—N5—N6—C25 | 179.6 (4) | C19—C14—C15—C16 | 0.5 (8) |
C24—N5—N6—C26 | 1.0 (7) | C23—C14—C15—C16 | −178.6 (5) |
N8i—Ag1—N7—C25 | 170.2 (4) | C14—C15—C16—C17 | 1.3 (9) |
N4—Ag1—N7—C25 | −10.8 (5) | C15—C16—C17—C18 | −3.2 (10) |
N8i—Ag1—N7—N8 | −14.1 (4) | C16—C17—C18—C19 | 3.3 (9) |
N4—Ag1—N7—N8 | 164.8 (3) | C17—C18—C19—C20 | 179.0 (6) |
C25—N7—N8—C26 | 0.0 (5) | C17—C18—C19—C14 | −1.5 (9) |
Ag1—N7—N8—C26 | −176.6 (3) | C15—C14—C19—C18 | −0.3 (7) |
C25—N7—N8—Ag1i | −168.3 (3) | C23—C14—C19—C18 | 178.7 (5) |
Ag1—N7—N8—Ag1i | 15.1 (5) | C15—C14—C19—C20 | 179.1 (5) |
C6—C1—C2—C3 | 0.0 (7) | C23—C14—C19—C20 | −1.8 (7) |
C10—C1—C2—C3 | 179.0 (5) | C18—C19—C20—C21 | −178.8 (6) |
C1—C2—C3—C4 | 0.1 (9) | C14—C19—C20—C21 | 1.7 (9) |
C2—C3—C4—C5 | −0.4 (9) | C19—C20—C21—C22 | −1.7 (9) |
C3—C4—C5—C6 | 0.4 (9) | C20—C21—C22—O2 | −178.9 (5) |
C4—C5—C6—C7 | −179.7 (5) | C20—C21—C22—C23 | 1.8 (9) |
C4—C5—C6—C1 | −0.2 (8) | O2—C22—C23—C14 | 178.8 (5) |
C2—C1—C6—C5 | 0.0 (7) | C21—C22—C23—C14 | −1.9 (8) |
C10—C1—C6—C5 | −179.1 (5) | O2—C22—C23—C24 | −2.5 (8) |
C2—C1—C6—C7 | 179.5 (5) | C21—C22—C23—C24 | 176.7 (5) |
C10—C1—C6—C7 | 0.5 (7) | C19—C14—C23—C22 | 2.0 (7) |
C5—C6—C7—C8 | 179.1 (5) | C15—C14—C23—C22 | −179.0 (5) |
C1—C6—C7—C8 | −0.5 (8) | C19—C14—C23—C24 | −176.7 (4) |
C6—C7—C8—C9 | −0.3 (9) | C15—C14—C23—C24 | 2.3 (7) |
C7—C8—C9—O1 | −178.4 (5) | N6—N5—C24—C23 | −178.0 (4) |
C7—C8—C9—C10 | 1.2 (8) | C22—C23—C24—N5 | 1.1 (7) |
O1—C9—C10—C1 | 178.4 (4) | C14—C23—C24—N5 | 179.7 (5) |
C8—C9—C10—C1 | −1.2 (7) | N8—N7—C25—N6 | 0.4 (6) |
O1—C9—C10—C11 | −3.4 (7) | Ag1—N7—C25—N6 | 176.6 (3) |
C8—C9—C10—C11 | 177.0 (4) | C26—N6—C25—N7 | −0.7 (6) |
C2—C1—C10—C9 | −178.6 (5) | N5—N6—C25—N7 | −179.5 (4) |
C6—C1—C10—C9 | 0.3 (7) | N7—N8—C26—N6 | −0.4 (5) |
C2—C1—C10—C11 | 3.2 (7) | Ag1i—N8—C26—N6 | 166.7 (3) |
C6—C1—C10—C11 | −177.8 (4) | C25—N6—C26—N8 | 0.7 (6) |
N2—N1—C11—C10 | −177.4 (4) | N5—N6—C26—N8 | 179.4 (4) |
C9—C10—C11—N1 | 1.2 (7) |
Symmetry code: (i) −x+2, −y, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···N1 | 0.82 | 1.83 | 2.548 (4) | 145 |
O2—H2B···N5 | 0.82 | 1.87 | 2.588 (5) | 145 |
O1W—H1WA···O3ii | 0.85 | 1.85 | 2.594 (15) | 145 |
Symmetry code: (ii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | [Ag2(C13H10N4O)4](NO3)2·H2O |
Mr | 1310.78 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 9.8594 (15), 10.7081 (15), 12.8567 (19) |
α, β, γ (°) | 82.391 (2), 81.155 (2), 77.626 (2) |
V (Å3) | 1303.1 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.83 |
Crystal size (mm) | 0.2 × 0.18 × 0.16 |
Data collection | |
Diffractometer | Bruker APEX CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2000) |
Tmin, Tmax | 0.826, 0.887 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6610, 4536, 3137 |
Rint | 0.118 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.055, 0.133, 1.00 |
No. of reflections | 4536 |
No. of parameters | 379 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.85, −0.84 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···N1 | 0.82 | 1.83 | 2.548 (4) | 145 |
O2—H2B···N5 | 0.82 | 1.87 | 2.588 (5) | 145 |
O1W—H1WA···O3i | 0.85 | 1.85 | 2.594 (15) | 145 |
Symmetry code: (i) x, y−1, z. |
Acknowledgements
The authors acknowledge the financial support from the Innovation Program for College Students of Central South University (grant No. 081053308).
References
Beckmann, U. & Brooker, S. (2003). Coord. Chem. Rev. 245, 17–29. Web of Science CrossRef CAS Google Scholar
Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Drabent, K., Białońska, A. & Ciunik, Z. (2004). Inorg. Chem. Commun. 7, 224–227. Web of Science CSD CrossRef CAS Google Scholar
Drabent, K., Ciunik, Z. & Chmielewski, P. J. (2003). Eur. J. Inorg. Chem. pp. 1548–1554. CSD CrossRef Google Scholar
Garcia, Y., van Koningsbruggen, P. J., Bravic, G., Guionneau, P., Chasseau, D., Cascarano, G. L., Moscovici, J., Lambert, K., Michalowicz, A. & Kahn, O. (1997). Inorg. Chem. 36, 6357–6365. Web of Science CSD CrossRef CAS Google Scholar
Han, W., Yi, L., Liu, Z.-Q., Gu, W., Yan, S.-P., Cheng, P., Liao, D.-Z. & Jiang, Z.-H. (2004). Eur. J. Inorg. Chem. pp. 2130–2136. Web of Science CSD CrossRef Google Scholar
Klingele, M. H. & Brooker, S. (2003). Coord. Chem. Rev. 241, 119–132. Web of Science CrossRef CAS Google Scholar
Liu, J. C., Guo, G. C., Huang, J. S. & You, X. Z. (2003). Inorg. Chem. 42, 235–243. Web of Science CSD CrossRef PubMed CAS Google Scholar
Liu, B., Xu, L., Guo, G.-C. & Huang, J.-S. (2006). Inorg. Chem. Commun. 9, 687–690. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Y., Yi, L., Yang, X., Ding, B., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2006). Inorg. Chem. 45, 5822–5829. Web of Science CSD CrossRef PubMed CAS Google Scholar
Yi, L., Ding, B., Zhao, B., Cheng, P., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2004). Inorg. Chem. 43, 33–43. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhai, Q.-G., Wu, X.-Y., Chen, S.-M., Lu, C.-Z. & Yang, W.-B. (2006). Cryst. Growth Des. 6, 2126–2135. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1,2,4-triazoles and their derivatives are interesting bridging ligands. 1,2,4-triazoles can coordinate with metals by bridging two adjacent nitrogen atoms (N1 and N2) or via the 4-positioned one (N4). It is also a readily available and inexpensive resource. In the past two decades, a variety of coordination compounds containing 1,2,4-triazoles, N4 substituted 1,2,4-triazoles and their derivatives as ligands coordinated to metal ions have been reported (Beckmann & Brooker, 2003; Garcia et al., 1997; Klingele & Brooker, 2003; Liu et al., 2006; Liu et al., 2003; Yi et al., 2004; Zhai et al., 2006). Relatively few structurally characterized compounds based on 4-amido-1,2,4-triazoles Schiff base ligands have been reported (Drabent et al., 2004 and 2003; Wang et al., 2006). Here we describe the synthesis of the Ag(I) metal complex with a Schiff-base containing triazole ligand.
The molecular structure of complex 1 is shown in Figure 1. It consists of a discrete binuclear complex of Ag(I) bridged by two N1,N2-coordinated triazole ligands and an additional triazole ligand is bound to the Ag(I) ion in a monodentate fashion. This coordination mode results in a trigonal planar coordination environment (the sum of the angles around Ag metal atom is equal to 360 °). The Ag—Ag distance is equal to 3.81 Å, which is over the summed van der Waals radii of two Ag(I) atoms (3.44 Å) (Han et al., 2004). The Ag—N bond distances are in the range of 2.18–2.33 Å. The six-membered Ag-[N—N]2-Ag rings remain almost planar (the mean plane deviation is 0.06 Å) from planarity, which is similar withdinuclear Cu(I) complex (Drabent et al., 2004). The Ag—N—N—Ag dihedral angle is 15.1 °.
In this complex all the ligands L are coordinated in almost planar E configuration and the resulting binuclear units can be described as X-shaped dimers. Sheets formed through C-H···O hydrogen bonds are further aggregated into three-dimensions by weak π-π stacking interactions between the naphthyl rings of the neighbouring dimers in different sheets and the shortest atom···atom separation is ca 3.46 Å between the parallel stacking pairs. The anions and water molecules interact with one another through O—H···N, O—H···O hydrogen bonds.