metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m283-m284

Construction of a dinuclear silver(I) coordination complex with a Schiff base containing 4-amino-1,2,4-triazole ligands

aDepartment of Materials Chemistry, School of Materials Science and Engineering, Key Laboratory of Non-ferrous Metals of the Ministry of Education, Central South University, Changsha 410083, People's Republic of China
*Correspondence e-mail: rosesunqz@yahoo.com.cn

(Received 1 November 2008; accepted 10 February 2009; online 18 February 2009)

The new ligand 1-(1,2,4-triazol-4-ylimino­meth­yl)-2-naphthol (L) and the title silver(I) complex, namely bis­[μ-1-(1,2,4-triazol-4-ylimino­meth­yl)-2-naphthol]bis­{[1-(1,2,4-triazol-4-yl­imino­meth­yl)-2-naphthol]silver(I)} dinitrate monohydrate, [Ag2(C13H10N4O)4](NO3)2·H2O, were synthesized. Each silver center in the dimeric complex (related by an inversion centre) is coordinated by two bridging L ligands and one additional L ligand in a monodentate fashion, exhibiting a distorted trigonal-planar coordination. The discrete dimers are further linked through O—H⋯O hydrogen bonds and weak ππ stacking inter­actions [the shortest atom–atom separation is ca 3.46 Å between the parallel stacking pairs]. Intramolecular O—H⋯N hydrogen bonds are also present.

Related literature

For the structures of other triazole Schiff base compounds, see: Beckmann & Brooker (2003[Beckmann, U. & Brooker, S. (2003). Coord. Chem. Rev. 245, 17-29.]); Drabent et al. (2003[Drabent, K., Ciunik, Z. & Chmielewski, P. J. (2003). Eur. J. Inorg. Chem. pp. 1548-1554.], 2004[Drabent, K., Białońska, A. & Ciunik, Z. (2004). Inorg. Chem. Commun. 7, 224-227.]); Garcia et al. (1997[Garcia, Y., van Koningsbruggen, P. J., Bravic, G., Guionneau, P., Chasseau, D., Cascarano, G. L., Moscovici, J., Lambert, K., Michalowicz, A. & Kahn, O. (1997). Inorg. Chem. 36, 6357-6365.]); Klingele & Brooker (2003[Klingele, M. H. & Brooker, S. (2003). Coord. Chem. Rev. 241, 119-132.]); Liu et al. (2003[Liu, J. C., Guo, G. C., Huang, J. S. & You, X. Z. (2003). Inorg. Chem. 42, 235-243.], 2006[Liu, B., Xu, L., Guo, G.-C. & Huang, J.-S. (2006). Inorg. Chem. Commun. 9, 687-690.]); Wang et al. (2006[Wang, Y., Yi, L., Yang, X., Ding, B., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2006). Inorg. Chem. 45, 5822-5829.]); Yi et al. (2004[Yi, L., Ding, B., Zhao, B., Cheng, P., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2004). Inorg. Chem. 43, 33-43.]); Zhai et al. (2006[Zhai, Q.-G., Wu, X.-Y., Chen, S.-M., Lu, C.-Z. & Yang, W.-B. (2006). Cryst. Growth Des. 6, 2126-2135.]). For related literature, see: Han et al. (2004[Han, W., Yi, L., Liu, Z.-Q., Gu, W., Yan, S.-P., Cheng, P., Liao, D.-Z. & Jiang, Z.-H. (2004). Eur. J. Inorg. Chem. pp. 2130-2136.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(C13H10N4O)4](NO3)2·H2O

  • Mr = 1310.78

  • Triclinic, [P \overline 1]

  • a = 9.8594 (15) Å

  • b = 10.7081 (15) Å

  • c = 12.8567 (19) Å

  • α = 82.391 (2)°

  • β = 81.155 (2)°

  • γ = 77.626 (2)°

  • V = 1303.1 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.826, Tmax = 0.887

  • 6610 measured reflections

  • 4536 independent reflections

  • 3137 reflections with I > 2σ(I)

  • Rint = 0.118

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.133

  • S = 1.00

  • 4536 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.82 1.83 2.548 (4) 145
O2—H2B⋯N5 0.82 1.87 2.588 (5) 145
O1W—H1WA⋯O3i 0.85 1.85 2.594 (15) 145
Symmetry code: (i) x, y-1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,2,4-triazoles and their derivatives are interesting bridging ligands. 1,2,4-triazoles can coordinate with metals by bridging two adjacent nitrogen atoms (N1 and N2) or via the 4-positioned one (N4). It is also a readily available and inexpensive resource. In the past two decades, a variety of coordination compounds containing 1,2,4-triazoles, N4 substituted 1,2,4-triazoles and their derivatives as ligands coordinated to metal ions have been reported (Beckmann & Brooker, 2003; Garcia et al., 1997; Klingele & Brooker, 2003; Liu et al., 2006; Liu et al., 2003; Yi et al., 2004; Zhai et al., 2006). Relatively few structurally characterized compounds based on 4-amido-1,2,4-triazoles Schiff base ligands have been reported (Drabent et al., 2004 and 2003; Wang et al., 2006). Here we describe the synthesis of the Ag(I) metal complex with a Schiff-base containing triazole ligand.

The molecular structure of complex 1 is shown in Figure 1. It consists of a discrete binuclear complex of Ag(I) bridged by two N1,N2-coordinated triazole ligands and an additional triazole ligand is bound to the Ag(I) ion in a monodentate fashion. This coordination mode results in a trigonal planar coordination environment (the sum of the angles around Ag metal atom is equal to 360 °). The Ag—Ag distance is equal to 3.81 Å, which is over the summed van der Waals radii of two Ag(I) atoms (3.44 Å) (Han et al., 2004). The Ag—N bond distances are in the range of 2.18–2.33 Å. The six-membered Ag-[N—N]2-Ag rings remain almost planar (the mean plane deviation is 0.06 Å) from planarity, which is similar withdinuclear Cu(I) complex (Drabent et al., 2004). The Ag—N—N—Ag dihedral angle is 15.1 °.

In this complex all the ligands L are coordinated in almost planar E configuration and the resulting binuclear units can be described as X-shaped dimers. Sheets formed through C-H···O hydrogen bonds are further aggregated into three-dimensions by weak π-π stacking interactions between the naphthyl rings of the neighbouring dimers in different sheets and the shortest atom···atom separation is ca 3.46 Å between the parallel stacking pairs. The anions and water molecules interact with one another through O—H···N, O—H···O hydrogen bonds.

Related literature top

For related compounds, see: Beckmann & Brooker (2003); Drabent et al. (2003, 2004); Garcia et al. (1997); Klingele & Brooker (2003); Liu et al. (2003, 2006); Wang et al. (2006); Yi et al. (2004); Zhai et al. (2006). For related literature, see: Han et al. (2004).

Experimental top

Preparation of complex 1: The ligand L (0.1 mmol, 0.024 g) and AgNO3 (0.1 mmol, 0.017 g) were mixed in acetonitrile and stirred at room temperature for one hour, the yellow solution was filtered and evaporated at room temperature. A few days later orange block crystals were obtained.

Preparation of the ligand L: An ethanolic solution (20 ml) of 2-hydroxy-1-napthaldehyde (1.72 g, 10 mmol) was added to a warm ethanolic solution (10 ml) of 4-amino- 1,2,4-triazole (0.84 g, 10 mmol) and the resulting solution was refluxed for four hours. The reaction mixture was then cooled to room temperature. Upon standing overnight the resultant yellow solid was filtered off, washed with diethyl ether and dried under vacuum. Yield: 90%. 1H NMR (500 MHz, DMSO, 298 K): 9.66 (s, 1H), 9.34 (s, 2H), 8.84–8.86 (d, 1H), 8.05–8.07 (d, 1H), 7.90–7.92 (d, 1H), 7.61–7.64 (t, 1H), 7.43–7.46 (t, 1H), 7.28–7.30 (d, 1H).

Refinement top

All of the non-hydrogen atoms were refined with anisotropic thermal displacement coefficients. The positions of hydrogen atoms were fixed geometrically at calculated distances and allowed to ride on the parent non-hydrogen atoms. The water molecule was refined as disordered with the s.o.f. being fixed at 0.5 and its hydrogen atoms located in the difference Fourier maps and fixed at calculated distances from the parent oxygen atom.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A perspective view of the molecular structure showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [symmetry code: (A) 2 - x, -y, 2 - z.]
[Figure 2] Fig. 2. A packing diagram for the crystal along b axis, the NO3-, H2O and hydrogen atoms are omitted for clarity.
bis[µ-1-(1,2,4-triazol-4-yliminomethyl)-2-naphthol]bis{[1-(1,2,4-triazol-4- yliminomethyl)-2-naphthol]silver(I)} dinitrate monohydrate top
Crystal data top
[Ag2(C13H10N4O)4](NO3)2·H2OZ = 1
Mr = 1310.78F(000) = 662
Triclinic, P1Dx = 1.670 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8594 (15) ÅCell parameters from 2250 reflections
b = 10.7081 (15) Åθ = 2.4–25.4°
c = 12.8567 (19) ŵ = 0.83 mm1
α = 82.391 (2)°T = 293 K
β = 81.155 (2)°Block, orange
γ = 77.626 (2)°0.2 × 0.18 × 0.16 mm
V = 1303.1 (3) Å3
Data collection top
Bruker APEX CCD area-detector
diffractometer
4536 independent reflections
Radiation source: fine-focus sealed tube3137 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.118
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1011
Tmin = 0.826, Tmax = 0.887k = 128
6610 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: geom, H2O from difmap
wR(F2) = 0.133H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0601P)2]
where P = (Fo2 + 2Fc2)/3
4536 reflections(Δ/σ)max = 0.001
379 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 0.84 e Å3
Crystal data top
[Ag2(C13H10N4O)4](NO3)2·H2Oγ = 77.626 (2)°
Mr = 1310.78V = 1303.1 (3) Å3
Triclinic, P1Z = 1
a = 9.8594 (15) ÅMo Kα radiation
b = 10.7081 (15) ŵ = 0.83 mm1
c = 12.8567 (19) ÅT = 293 K
α = 82.391 (2)°0.2 × 0.18 × 0.16 mm
β = 81.155 (2)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
4536 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3137 reflections with I > 2σ(I)
Tmin = 0.826, Tmax = 0.887Rint = 0.118
6610 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.00Δρmax = 0.85 e Å3
4536 reflectionsΔρmin = 0.84 e Å3
379 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.84563 (4)0.12190 (4)0.95202 (3)0.0613 (2)
O10.3147 (4)0.5935 (3)0.5781 (2)0.0564 (9)
H1A0.38620.55140.60020.085*
O21.2327 (4)0.0054 (4)0.4026 (3)0.0701 (11)
H2B1.20180.00290.46560.105*
N10.4657 (4)0.4732 (4)0.7179 (3)0.0488 (10)
N20.5888 (4)0.3908 (4)0.7472 (3)0.0447 (10)
N30.7966 (4)0.2720 (4)0.7236 (3)0.0590 (12)
N40.7427 (4)0.2564 (4)0.8288 (3)0.0554 (11)
N51.2436 (4)0.0497 (4)0.6037 (3)0.0453 (9)
N61.1907 (4)0.0406 (3)0.7095 (3)0.0412 (9)
N71.0373 (4)0.0221 (4)0.8420 (3)0.0489 (10)
N81.1554 (4)0.0524 (4)0.8806 (3)0.0447 (10)
C10.1290 (5)0.6319 (4)0.8481 (4)0.0423 (11)
C20.1404 (6)0.6048 (5)0.9573 (4)0.0530 (13)
H2A0.22320.55610.97890.064*
C30.0338 (6)0.6481 (6)1.0306 (4)0.0633 (15)
H3A0.04490.62871.10190.076*
C40.0937 (6)0.7218 (6)1.0028 (4)0.0663 (15)
H4A0.16640.75061.05450.080*
C50.1082 (6)0.7501 (5)0.8987 (5)0.0650 (15)
H5A0.19220.79930.87940.078*
C60.0002 (5)0.7072 (5)0.8189 (4)0.0514 (12)
C70.0158 (6)0.7374 (5)0.7109 (4)0.0582 (14)
H7A0.10030.78590.69210.070*
C80.0863 (6)0.6988 (5)0.6352 (4)0.0552 (14)
H8A0.07220.72000.56460.066*
C90.2163 (5)0.6255 (4)0.6608 (4)0.0442 (11)
C100.2382 (5)0.5910 (4)0.7651 (4)0.0404 (11)
C110.3702 (5)0.5102 (4)0.7907 (4)0.0419 (11)
H11A0.38400.48580.86110.050*
C120.6178 (5)0.3277 (5)0.8406 (4)0.0515 (13)
H12A0.55820.33380.90400.062*
C130.7004 (5)0.3530 (5)0.6776 (4)0.0548 (14)
H13A0.70820.38090.60570.066*
C141.5717 (5)0.2019 (5)0.4532 (4)0.0459 (11)
C151.6506 (5)0.2714 (5)0.5336 (4)0.0570 (13)
H15A1.61100.27110.60410.068*
C161.7841 (6)0.3386 (6)0.5089 (5)0.0684 (16)
H16A1.83270.38460.56290.082*
C171.8483 (7)0.3395 (6)0.4050 (6)0.083 (2)
H17A1.94050.38210.38970.099*
C181.7744 (7)0.2771 (6)0.3256 (5)0.0719 (17)
H18A1.81530.28100.25560.086*
C191.6372 (6)0.2068 (5)0.3479 (4)0.0577 (14)
C201.5622 (7)0.1409 (6)0.2656 (4)0.0679 (17)
H20A1.60400.14570.19590.082*
C211.4303 (7)0.0703 (6)0.2851 (4)0.0673 (17)
H21A1.38400.02590.22940.081*
C221.3641 (6)0.0650 (5)0.3907 (4)0.0526 (13)
C231.4329 (5)0.1275 (4)0.4742 (3)0.0435 (11)
C241.3675 (5)0.1161 (5)0.5824 (3)0.0441 (11)
H24A1.41630.15780.63770.053*
C251.0619 (5)0.0279 (5)0.7388 (4)0.0477 (12)
H25A1.00000.07250.69260.057*
C261.2458 (5)0.0883 (4)0.7999 (3)0.0432 (11)
H26A1.33460.13900.80390.052*
N90.5609 (6)0.7008 (7)0.8823 (5)0.0847 (17)
O30.5165 (10)0.7921 (8)0.9419 (6)0.183 (4)
O40.5557 (6)0.7361 (6)0.7950 (4)0.125 (2)
O50.5869 (6)0.5986 (5)0.9295 (5)0.116 (2)
O1W0.6044 (13)0.0162 (13)0.9945 (10)0.143 (5)0.50
H1WA0.60680.07830.95890.171*0.50
H1WB0.56000.02071.05660.171*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0486 (3)0.0810 (4)0.0381 (2)0.0158 (2)0.00257 (16)0.00200 (18)
O10.053 (2)0.067 (2)0.0399 (17)0.0063 (18)0.0092 (16)0.0002 (16)
O20.076 (3)0.077 (3)0.0453 (19)0.013 (2)0.0091 (18)0.0055 (18)
N10.041 (2)0.054 (3)0.046 (2)0.005 (2)0.0109 (19)0.0009 (19)
N20.037 (2)0.051 (2)0.039 (2)0.0072 (18)0.0074 (17)0.0035 (17)
N30.046 (3)0.076 (3)0.041 (2)0.011 (2)0.0012 (19)0.001 (2)
N40.048 (3)0.073 (3)0.037 (2)0.009 (2)0.0116 (19)0.001 (2)
N50.047 (2)0.046 (2)0.0352 (19)0.0018 (19)0.0022 (17)0.0045 (16)
N60.038 (2)0.041 (2)0.0361 (19)0.0033 (18)0.0052 (16)0.0051 (16)
N70.038 (2)0.054 (3)0.043 (2)0.0105 (19)0.0008 (17)0.0038 (18)
N80.037 (2)0.053 (3)0.036 (2)0.0062 (18)0.0033 (17)0.0029 (17)
C10.036 (3)0.039 (3)0.051 (3)0.003 (2)0.010 (2)0.004 (2)
C20.045 (3)0.061 (3)0.052 (3)0.008 (3)0.011 (2)0.003 (2)
C30.058 (4)0.087 (4)0.044 (3)0.017 (3)0.006 (2)0.013 (3)
C40.049 (3)0.082 (4)0.063 (3)0.004 (3)0.009 (3)0.022 (3)
C50.041 (3)0.060 (4)0.089 (4)0.001 (3)0.005 (3)0.012 (3)
C60.035 (3)0.051 (3)0.066 (3)0.002 (2)0.009 (2)0.008 (2)
C70.043 (3)0.058 (3)0.070 (4)0.005 (3)0.024 (3)0.001 (3)
C80.056 (3)0.056 (3)0.049 (3)0.006 (3)0.022 (3)0.000 (2)
C90.046 (3)0.041 (3)0.045 (3)0.003 (2)0.011 (2)0.001 (2)
C100.034 (3)0.036 (3)0.051 (3)0.003 (2)0.011 (2)0.005 (2)
C110.037 (3)0.046 (3)0.039 (2)0.000 (2)0.007 (2)0.005 (2)
C120.042 (3)0.067 (3)0.035 (2)0.014 (2)0.008 (2)0.006 (2)
C130.045 (3)0.071 (4)0.036 (2)0.009 (3)0.001 (2)0.002 (2)
C140.048 (3)0.043 (3)0.048 (3)0.014 (2)0.005 (2)0.014 (2)
C150.048 (3)0.058 (3)0.062 (3)0.004 (3)0.006 (3)0.019 (3)
C160.041 (3)0.076 (4)0.086 (4)0.004 (3)0.001 (3)0.022 (3)
C170.053 (4)0.079 (5)0.109 (5)0.007 (3)0.025 (4)0.040 (4)
C180.068 (4)0.076 (4)0.069 (4)0.024 (3)0.031 (3)0.029 (3)
C190.062 (4)0.056 (3)0.055 (3)0.022 (3)0.018 (3)0.020 (3)
C200.085 (5)0.074 (4)0.042 (3)0.027 (4)0.022 (3)0.014 (3)
C210.097 (5)0.068 (4)0.033 (3)0.014 (4)0.002 (3)0.002 (2)
C220.063 (4)0.048 (3)0.043 (3)0.008 (3)0.003 (2)0.008 (2)
C230.049 (3)0.040 (3)0.039 (2)0.010 (2)0.005 (2)0.008 (2)
C240.042 (3)0.048 (3)0.039 (2)0.006 (2)0.003 (2)0.003 (2)
C250.038 (3)0.055 (3)0.039 (2)0.007 (2)0.002 (2)0.001 (2)
C260.041 (3)0.047 (3)0.036 (2)0.002 (2)0.005 (2)0.004 (2)
N90.076 (4)0.099 (5)0.081 (4)0.028 (4)0.029 (3)0.021 (4)
O30.216 (9)0.163 (7)0.149 (6)0.041 (6)0.080 (6)0.057 (6)
O40.101 (4)0.177 (6)0.076 (3)0.002 (4)0.015 (3)0.031 (4)
O50.132 (5)0.090 (4)0.118 (4)0.007 (3)0.041 (4)0.027 (3)
O1W0.115 (10)0.181 (12)0.125 (9)0.003 (9)0.005 (8)0.057 (8)
Geometric parameters (Å, º) top
Ag1—N8i2.182 (3)C7—H7A0.9300
Ag1—N42.209 (4)C8—C91.413 (6)
Ag1—N72.329 (4)C8—H8A0.9300
O1—C91.351 (6)C9—C101.381 (6)
O1—H1A0.8200C10—C111.458 (6)
O2—C221.349 (7)C11—H11A0.9300
O2—H2B0.8200C12—H12A0.9300
N1—C111.259 (6)C13—H13A0.9300
N1—N21.410 (5)C14—C191.410 (6)
N2—C131.333 (6)C14—C151.422 (7)
N2—C121.338 (5)C14—C231.434 (7)
N3—C131.298 (6)C15—C161.370 (8)
N3—N41.377 (5)C15—H15A0.9300
N4—C121.300 (6)C16—C171.388 (9)
N5—C241.284 (6)C16—H16A0.9300
N5—N61.389 (5)C17—C181.363 (9)
N6—C251.349 (6)C17—H17A0.9300
N6—C261.351 (5)C18—C191.407 (8)
N7—C251.307 (6)C18—H18A0.9300
N7—N81.383 (5)C19—C201.409 (8)
N8—C261.301 (6)C20—C211.362 (9)
N8—Ag1i2.182 (3)C20—H20A0.9300
C1—C21.412 (6)C21—C221.416 (7)
C1—C61.428 (6)C21—H21A0.9300
C1—C101.435 (6)C22—C231.378 (7)
C2—C31.346 (8)C23—C241.450 (6)
C2—H2A0.9300C24—H24A0.9300
C3—C41.403 (8)C25—H25A0.9300
C3—H3A0.9300C26—H26A0.9300
C4—C51.355 (8)N9—O41.141 (6)
C4—H4A0.9300N9—O51.176 (7)
C5—C61.406 (7)N9—O31.284 (9)
C5—H5A0.9300O1W—H1WA0.8499
C6—C71.408 (7)O1W—H1WB0.8500
C7—C81.326 (8)
N8i—Ag1—N4147.87 (16)N1—C11—C10120.2 (4)
N8i—Ag1—N7114.48 (13)N1—C11—H11A119.9
N4—Ag1—N797.64 (14)C10—C11—H11A119.9
C9—O1—H1A109.5N4—C12—N2109.3 (4)
C22—O2—H2B109.5N4—C12—H12A125.4
C11—N1—N2117.8 (4)N2—C12—H12A125.4
C13—N2—C12106.0 (4)N3—C13—N2111.0 (4)
C13—N2—N1123.0 (4)N3—C13—H13A124.5
C12—N2—N1130.8 (4)N2—C13—H13A124.5
C13—N3—N4105.8 (4)C19—C14—C15116.7 (5)
C12—N4—N3108.0 (4)C19—C14—C23119.6 (5)
C12—N4—Ag1126.5 (3)C15—C14—C23123.7 (4)
N3—N4—Ag1125.4 (3)C16—C15—C14121.1 (5)
C24—N5—N6117.6 (4)C16—C15—H15A119.5
C25—N6—C26106.3 (4)C14—C15—H15A119.5
C25—N6—N5121.5 (4)C15—C16—C17121.4 (6)
C26—N6—N5132.2 (4)C15—C16—H16A119.3
C25—N7—N8106.9 (4)C17—C16—H16A119.3
C25—N7—Ag1130.5 (3)C18—C17—C16119.1 (6)
N8—N7—Ag1122.5 (3)C18—C17—H17A120.4
C26—N8—N7107.8 (3)C16—C17—H17A120.4
C26—N8—Ag1i129.5 (3)C17—C18—C19121.0 (6)
N7—N8—Ag1i121.5 (3)C17—C18—H18A119.5
C2—C1—C6117.2 (4)C19—C18—H18A119.5
C2—C1—C10124.7 (4)C18—C19—C20120.7 (5)
C6—C1—C10118.1 (4)C18—C19—C14120.6 (6)
C3—C2—C1121.2 (5)C20—C19—C14118.7 (5)
C3—C2—H2A119.4C21—C20—C19121.9 (5)
C1—C2—H2A119.4C21—C20—H20A119.1
C2—C3—C4121.9 (5)C19—C20—H20A119.1
C2—C3—H3A119.0C20—C21—C22119.6 (5)
C4—C3—H3A119.0C20—C21—H21A120.2
C5—C4—C3118.5 (5)C22—C21—H21A120.2
C5—C4—H4A120.8O2—C22—C23123.6 (5)
C3—C4—H4A120.8O2—C22—C21115.6 (5)
C4—C5—C6121.9 (5)C23—C22—C21120.8 (5)
C4—C5—H5A119.0C22—C23—C14119.4 (4)
C6—C5—H5A119.0C22—C23—C24120.6 (5)
C5—C6—C7121.6 (5)C14—C23—C24120.0 (4)
C5—C6—C1119.2 (5)N5—C24—C23121.5 (4)
C7—C6—C1119.2 (5)N5—C24—H24A119.3
C8—C7—C6121.9 (5)C23—C24—H24A119.3
C8—C7—H7A119.0N7—C25—N6109.7 (4)
C6—C7—H7A119.0N7—C25—H25A125.2
C7—C8—C9120.6 (4)N6—C25—H25A125.2
C7—C8—H8A119.7N8—C26—N6109.3 (4)
C9—C8—H8A119.7N8—C26—H26A125.3
O1—C9—C10123.3 (4)N6—C26—H26A125.3
O1—C9—C8116.2 (4)O4—N9—O5134.0 (9)
C10—C9—C8120.5 (5)O4—N9—O3112.1 (8)
C9—C10—C1119.7 (4)O5—N9—O3113.6 (7)
C9—C10—C11120.1 (4)H1WA—O1W—H1WB115.9
C1—C10—C11120.2 (4)
C11—N1—N2—C13175.1 (5)C1—C10—C11—N1179.3 (4)
C11—N1—N2—C1210.7 (8)N3—N4—C12—N20.9 (6)
C13—N3—N4—C120.2 (6)Ag1—N4—C12—N2176.5 (3)
C13—N3—N4—Ag1175.9 (4)C13—N2—C12—N41.1 (6)
N8i—Ag1—N4—C1211.8 (6)N1—N2—C12—N4176.1 (5)
N7—Ag1—N4—C12170.0 (5)N4—N3—C13—N20.5 (6)
N8i—Ag1—N4—N3173.4 (3)C12—N2—C13—N31.0 (6)
N7—Ag1—N4—N34.9 (4)N1—N2—C13—N3176.5 (4)
C24—N5—N6—C25179.6 (4)C19—C14—C15—C160.5 (8)
C24—N5—N6—C261.0 (7)C23—C14—C15—C16178.6 (5)
N8i—Ag1—N7—C25170.2 (4)C14—C15—C16—C171.3 (9)
N4—Ag1—N7—C2510.8 (5)C15—C16—C17—C183.2 (10)
N8i—Ag1—N7—N814.1 (4)C16—C17—C18—C193.3 (9)
N4—Ag1—N7—N8164.8 (3)C17—C18—C19—C20179.0 (6)
C25—N7—N8—C260.0 (5)C17—C18—C19—C141.5 (9)
Ag1—N7—N8—C26176.6 (3)C15—C14—C19—C180.3 (7)
C25—N7—N8—Ag1i168.3 (3)C23—C14—C19—C18178.7 (5)
Ag1—N7—N8—Ag1i15.1 (5)C15—C14—C19—C20179.1 (5)
C6—C1—C2—C30.0 (7)C23—C14—C19—C201.8 (7)
C10—C1—C2—C3179.0 (5)C18—C19—C20—C21178.8 (6)
C1—C2—C3—C40.1 (9)C14—C19—C20—C211.7 (9)
C2—C3—C4—C50.4 (9)C19—C20—C21—C221.7 (9)
C3—C4—C5—C60.4 (9)C20—C21—C22—O2178.9 (5)
C4—C5—C6—C7179.7 (5)C20—C21—C22—C231.8 (9)
C4—C5—C6—C10.2 (8)O2—C22—C23—C14178.8 (5)
C2—C1—C6—C50.0 (7)C21—C22—C23—C141.9 (8)
C10—C1—C6—C5179.1 (5)O2—C22—C23—C242.5 (8)
C2—C1—C6—C7179.5 (5)C21—C22—C23—C24176.7 (5)
C10—C1—C6—C70.5 (7)C19—C14—C23—C222.0 (7)
C5—C6—C7—C8179.1 (5)C15—C14—C23—C22179.0 (5)
C1—C6—C7—C80.5 (8)C19—C14—C23—C24176.7 (4)
C6—C7—C8—C90.3 (9)C15—C14—C23—C242.3 (7)
C7—C8—C9—O1178.4 (5)N6—N5—C24—C23178.0 (4)
C7—C8—C9—C101.2 (8)C22—C23—C24—N51.1 (7)
O1—C9—C10—C1178.4 (4)C14—C23—C24—N5179.7 (5)
C8—C9—C10—C11.2 (7)N8—N7—C25—N60.4 (6)
O1—C9—C10—C113.4 (7)Ag1—N7—C25—N6176.6 (3)
C8—C9—C10—C11177.0 (4)C26—N6—C25—N70.7 (6)
C2—C1—C10—C9178.6 (5)N5—N6—C25—N7179.5 (4)
C6—C1—C10—C90.3 (7)N7—N8—C26—N60.4 (5)
C2—C1—C10—C113.2 (7)Ag1i—N8—C26—N6166.7 (3)
C6—C1—C10—C11177.8 (4)C25—N6—C26—N80.7 (6)
N2—N1—C11—C10177.4 (4)N5—N6—C26—N8179.4 (4)
C9—C10—C11—N11.2 (7)
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.832.548 (4)145
O2—H2B···N50.821.872.588 (5)145
O1W—H1WA···O3ii0.851.852.594 (15)145
Symmetry code: (ii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Ag2(C13H10N4O)4](NO3)2·H2O
Mr1310.78
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.8594 (15), 10.7081 (15), 12.8567 (19)
α, β, γ (°)82.391 (2), 81.155 (2), 77.626 (2)
V3)1303.1 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.2 × 0.18 × 0.16
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.826, 0.887
No. of measured, independent and
observed [I > 2σ(I)] reflections
6610, 4536, 3137
Rint0.118
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.133, 1.00
No. of reflections4536
No. of parameters379
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 0.84

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.832.548 (4)145
O2—H2B···N50.821.872.588 (5)145
O1W—H1WA···O3i0.851.852.594 (15)145
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors acknowledge the financial support from the Innovation Program for College Students of Central South University (grant No. 081053308).

References

First citationBeckmann, U. & Brooker, S. (2003). Coord. Chem. Rev. 245, 17–29.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDrabent, K., Białońska, A. & Ciunik, Z. (2004). Inorg. Chem. Commun. 7, 224–227.  Web of Science CSD CrossRef CAS Google Scholar
First citationDrabent, K., Ciunik, Z. & Chmielewski, P. J. (2003). Eur. J. Inorg. Chem. pp. 1548–1554.  CSD CrossRef Google Scholar
First citationGarcia, Y., van Koningsbruggen, P. J., Bravic, G., Guionneau, P., Chasseau, D., Cascarano, G. L., Moscovici, J., Lambert, K., Michalowicz, A. & Kahn, O. (1997). Inorg. Chem. 36, 6357–6365.  Web of Science CSD CrossRef CAS Google Scholar
First citationHan, W., Yi, L., Liu, Z.-Q., Gu, W., Yan, S.-P., Cheng, P., Liao, D.-Z. & Jiang, Z.-H. (2004). Eur. J. Inorg. Chem. pp. 2130–2136.  Web of Science CSD CrossRef Google Scholar
First citationKlingele, M. H. & Brooker, S. (2003). Coord. Chem. Rev. 241, 119–132.  Web of Science CrossRef CAS Google Scholar
First citationLiu, J. C., Guo, G. C., Huang, J. S. & You, X. Z. (2003). Inorg. Chem. 42, 235–243.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, B., Xu, L., Guo, G.-C. & Huang, J.-S. (2006). Inorg. Chem. Commun. 9, 687–690.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y., Yi, L., Yang, X., Ding, B., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2006). Inorg. Chem. 45, 5822–5829.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYi, L., Ding, B., Zhao, B., Cheng, P., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2004). Inorg. Chem. 43, 33–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhai, Q.-G., Wu, X.-Y., Chen, S.-M., Lu, C.-Z. & Yang, W.-B. (2006). Cryst. Growth Des. 6, 2126–2135.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m283-m284
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds