organic compounds
Aminoguanidinium hydrogen fumarate
aDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India, bDepartment of Physics, SMK Fomra Institute of Technology, Thaiyur, Chennai 603 103, India, cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and dDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, India
*Correspondence e-mail: a_spandian@yahoo.com
The title compound, CH7N4+·C4H3O4−, is a molecular salt in which the aminoguanidinium cations and fumarate monoanions are close to planar, with maximum deviations of 0.011 (1) and 0.177 (1) Å, respectively. The crystal packing is stabilized by intermolecular N—H⋯O and O—H⋯O hydrogen bonds.
Related literature
For related structures, see: Adams (1977); Akella & Keszler (1994); Mullen & Hellner (1978). For biological applications, see: Makita et al. (1995); Brownlee et al. (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell APEX2; data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809004553/wm2220sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809004553/wm2220Isup2.hkl
Needle-shaped single crystals of aminoguanidium hydrogenfumarate were prepared by slow evaporation of the aqueous solution obtained by dissolving of aminoguanidinium hydrogencarbonate (0.136g; 0.001mol) in fumaric acid (0.116 g; 1 mmol) solution (30 mL) at ambient condition. Colourless single crystals suitable for X-ray diffraction obtained after four days were collected, washed with ethanol and air dried.
All N bound H atoms were located in a difference map and refined freely. All other H atoms were fixed geometrically and allowed to ride on their parent atoms, with distances of O—H = 0.82Å and C—H = 0.93Å with Uiso(H)= 1.2Ueq.
Data collection: APEX2 (Bruker, 2004); cell
APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).CH7N4+·C4H3O4− | F(000) = 400 |
Mr = 190.17 | Dx = 1.554 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1824 reflections |
a = 6.3869 (3) Å | θ = 2–29.9° |
b = 19.8731 (10) Å | µ = 0.13 mm−1 |
c = 7.0482 (4) Å | T = 293 K |
β = 114.688 (3)° | Block, colourless |
V = 812.84 (8) Å3 | 0.26 × 0.15 × 0.15 mm |
Z = 4 |
Bruker APEXII CCD area-detector diffractometer | 2340 independent reflections |
Radiation source: fine-focus sealed tube | 1824 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
Detector resolution: 10.0 pixels mm-1 | θmax = 29.9°, θmin = 2.1° |
ω scans | h = −8→7 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −24→27 |
Tmin = 0.966, Tmax = 0.976 | l = −9→9 |
10713 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.132 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0756P)2 + 0.1408P] where P = (Fo2 + 2Fc2)/3 |
2340 reflections | (Δ/σ)max < 0.001 |
146 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.31 e Å−3 |
CH7N4+·C4H3O4− | V = 812.84 (8) Å3 |
Mr = 190.17 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 6.3869 (3) Å | µ = 0.13 mm−1 |
b = 19.8731 (10) Å | T = 293 K |
c = 7.0482 (4) Å | 0.26 × 0.15 × 0.15 mm |
β = 114.688 (3)° |
Bruker APEXII CCD area-detector diffractometer | 2340 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1824 reflections with I > 2σ(I) |
Tmin = 0.966, Tmax = 0.976 | Rint = 0.028 |
10713 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.132 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.33 e Å−3 |
2340 reflections | Δρmin = −0.31 e Å−3 |
146 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
H11B | 0.243 (3) | 0.4484 (12) | 0.254 (3) | 0.057 (5)* | |
H12 | 0.573 (3) | 0.3932 (11) | 0.302 (3) | 0.056 (5)* | |
H13A | 0.861 (4) | 0.3941 (12) | 0.204 (3) | 0.072 (6)* | |
C1 | 1.12336 (19) | 0.84396 (5) | 0.68336 (19) | 0.0281 (3) | |
C2 | 0.9984 (2) | 0.78049 (5) | 0.68320 (19) | 0.0274 (2) | |
H2 | 1.0738 | 0.7396 | 0.6953 | 0.033* | |
C3 | 0.7863 (2) | 0.78034 (6) | 0.6666 (2) | 0.0292 (3) | |
H3 | 0.7125 | 0.8212 | 0.6595 | 0.035* | |
C4 | 0.6603 (2) | 0.71704 (5) | 0.65888 (19) | 0.0279 (3) | |
O6 | 1.04931 (17) | 0.89803 (5) | 0.71551 (19) | 0.0466 (3) | |
O7 | 1.30209 (15) | 0.83829 (4) | 0.64654 (17) | 0.0362 (2) | |
O8 | 0.45191 (15) | 0.72255 (4) | 0.64769 (17) | 0.0374 (2) | |
H8 | 0.4189 | 0.7625 | 0.6465 | 0.056* | |
O9 | 0.74557 (17) | 0.66199 (4) | 0.66416 (19) | 0.0434 (3) | |
H10A | 0.521 (3) | 0.5783 (9) | 0.214 (3) | 0.046 (5)* | |
H10B | 0.747 (4) | 0.5370 (10) | 0.245 (3) | 0.057 (5)* | |
H11A | 0.221 (3) | 0.5225 (10) | 0.224 (3) | 0.053 (5)* | |
C5 | 0.5133 (2) | 0.48405 (6) | 0.25398 (18) | 0.0277 (3) | |
N10 | 0.6094 (2) | 0.54110 (5) | 0.23653 (19) | 0.0350 (3) | |
N11 | 0.3028 (2) | 0.48299 (6) | 0.2428 (2) | 0.0412 (3) | |
N12 | 0.6265 (2) | 0.42625 (5) | 0.2812 (2) | 0.0361 (3) | |
N13 | 0.8519 (2) | 0.42556 (6) | 0.2974 (2) | 0.0431 (3) | |
H13B | 0.935 (4) | 0.4125 (10) | 0.424 (3) | 0.061 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0233 (5) | 0.0217 (5) | 0.0413 (6) | −0.0015 (4) | 0.0153 (5) | 0.0003 (4) |
C2 | 0.0253 (5) | 0.0198 (5) | 0.0400 (6) | −0.0004 (4) | 0.0166 (5) | 0.0010 (4) |
C3 | 0.0270 (6) | 0.0179 (5) | 0.0477 (7) | −0.0010 (4) | 0.0206 (5) | −0.0004 (4) |
C4 | 0.0264 (5) | 0.0200 (5) | 0.0412 (6) | −0.0018 (4) | 0.0180 (5) | 0.0000 (4) |
O6 | 0.0395 (5) | 0.0226 (4) | 0.0891 (8) | −0.0035 (4) | 0.0382 (6) | −0.0077 (5) |
O7 | 0.0291 (4) | 0.0264 (4) | 0.0620 (6) | −0.0027 (3) | 0.0279 (4) | 0.0003 (4) |
O8 | 0.0280 (4) | 0.0228 (4) | 0.0683 (7) | −0.0027 (3) | 0.0272 (4) | −0.0004 (4) |
O9 | 0.0390 (5) | 0.0196 (4) | 0.0796 (7) | 0.0023 (3) | 0.0328 (5) | 0.0019 (4) |
C5 | 0.0301 (6) | 0.0208 (5) | 0.0345 (6) | 0.0007 (4) | 0.0158 (5) | 0.0002 (4) |
N10 | 0.0341 (6) | 0.0206 (5) | 0.0553 (7) | −0.0007 (4) | 0.0238 (5) | 0.0025 (4) |
N11 | 0.0350 (6) | 0.0254 (5) | 0.0713 (9) | 0.0000 (5) | 0.0304 (6) | 0.0024 (5) |
N12 | 0.0353 (6) | 0.0193 (5) | 0.0599 (7) | 0.0021 (4) | 0.0260 (5) | 0.0052 (4) |
N13 | 0.0345 (6) | 0.0348 (6) | 0.0638 (9) | 0.0076 (5) | 0.0244 (6) | 0.0025 (6) |
C1—O6 | 1.2325 (14) | C5—N10 | 1.3190 (15) |
C1—O7 | 1.2770 (14) | C5—N12 | 1.3278 (15) |
C1—C2 | 1.4922 (15) | N10—H10A | 0.905 (18) |
C2—C3 | 1.3105 (16) | N10—H10B | 0.86 (2) |
C2—H2 | 0.9300 | N11—H11B | 0.80 (2) |
C3—C4 | 1.4820 (15) | N11—H11A | 0.92 (2) |
C3—H3 | 0.9300 | N12—N13 | 1.3960 (16) |
C4—O9 | 1.2159 (14) | N12—H12 | 0.78 (2) |
C4—O8 | 1.3044 (14) | N13—H13A | 0.93 (2) |
O8—H8 | 0.8200 | N13—H13B | 0.87 (2) |
C5—N11 | 1.3136 (17) | ||
O6—C1—O7 | 123.96 (10) | N11—C5—N12 | 118.46 (11) |
O6—C1—C2 | 119.40 (10) | N10—C5—N12 | 120.71 (11) |
O7—C1—C2 | 116.64 (10) | C5—N10—H10A | 115.9 (12) |
C3—C2—C1 | 122.32 (10) | C5—N10—H10B | 114.5 (14) |
C3—C2—H2 | 118.8 | H10A—N10—H10B | 129.6 (19) |
C1—C2—H2 | 118.8 | C5—N11—H11B | 121.4 (15) |
C2—C3—C4 | 122.04 (10) | C5—N11—H11A | 120.0 (12) |
C2—C3—H3 | 119.0 | H11B—N11—H11A | 119 (2) |
C4—C3—H3 | 119.0 | C5—N12—N13 | 120.06 (11) |
O9—C4—O8 | 120.67 (10) | C5—N12—H12 | 120.1 (15) |
O9—C4—C3 | 122.22 (10) | N13—N12—H12 | 119.5 (15) |
O8—C4—C3 | 117.11 (10) | N12—N13—H13A | 108.3 (15) |
C4—O8—H8 | 109.5 | N12—N13—H13B | 104.9 (14) |
N11—C5—N10 | 120.83 (11) | H13A—N13—H13B | 109.7 (19) |
O6—C1—C2—C3 | 16.50 (19) | C2—C3—C4—O8 | 178.28 (11) |
O7—C1—C2—C3 | −162.59 (12) | N11—C5—N12—N13 | −178.90 (13) |
C1—C2—C3—C4 | 177.74 (11) | N10—C5—N12—N13 | 1.8 (2) |
C2—C3—C4—O9 | −1.2 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O8—H8···O7i | 0.82 | 1.68 | 2.489 (1) | 168 |
N10—H10A···O7ii | 0.91 (2) | 2.09 (2) | 2.993 (1) | 177 (2) |
N11—H11A···O6ii | 0.92 (2) | 1.91 (2) | 2.827 (2) | 173 (2) |
Symmetry codes: (i) x−1, y, z; (ii) x−1, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | CH7N4+·C4H3O4− |
Mr | 190.17 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 6.3869 (3), 19.8731 (10), 7.0482 (4) |
β (°) | 114.688 (3) |
V (Å3) | 812.84 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.13 |
Crystal size (mm) | 0.26 × 0.15 × 0.15 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.966, 0.976 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10713, 2340, 1824 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.702 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.132, 1.04 |
No. of reflections | 2340 |
No. of parameters | 146 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.33, −0.31 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O8—H8···O7i | 0.82 | 1.68 | 2.489 (1) | 168.3 |
N10—H10A···O7ii | 0.91 (2) | 2.09 (2) | 2.993 (1) | 177 (2) |
N11—H11A···O6ii | 0.92 (2) | 1.91 (2) | 2.827 (2) | 173 (2) |
Symmetry codes: (i) x−1, y, z; (ii) x−1, −y+3/2, z−1/2. |
Acknowledgements
SM and ASP thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.
References
Adams, J. M. (1977). Acta Cryst. B33, 1513–1515. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Akella, A. & Keszler, D. A. (1994). Acta Cryst. C50, 1974–1976. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Brownlee, M., Vlassara, H. & Cerami, A. (1986). Diabetic Complications and Scientific and Clinical Aspects. London: Pitman. Google Scholar
Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Makita, Z., Yanagisawa, K. & Kuwajima, S. (1995). J. Diabetes Complications, 9, 265–268. CrossRef CAS PubMed Web of Science Google Scholar
Mullen, D. & Hellner, E. (1978). Acta Cryst. B34, 2789–2794. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Aminoguanadine is an early inhibitor of advanced glycosylation end products (Makita et al., 1995). It helps prevent proteins cross-linking and is being used in diabetes, atherosclerosis, renal and aging disorders (Brownlee et al., 1986). Aminoguanadine is a highly reactive nucleophillic reagent that reacts with many biological molecules (pyridoxal phosphate, pyruvate, glucose, malondialdehyde, and others). The crystal structures of several guanidinium salts have previously been reported over the last three decades (Adams, 1977; Mullen & Hellner, 1978). Here we report the crystal structure of the title compound, aminoguanidinium hydrogenfumarate, (I), (Fig. 1). In the molecular salt (I), the aminoguanidinium cation and fumarate anion each are nearly planar, with maximum deviations of -0.011 (1) Å and -0.177 (1) Å for atom N12 and O7, respectively ( Fig. 1). The bond lengths in (I) are comparable with the corresponding values observed in related structures (Akella & Keszler , 1994). The angle between the best planes of the aminoguanidinium cation and the fumarate anion is 12.78 (6)°. Atom N10 and N11 in the molecule at (x, y, z) donate one proton each to the atoms O7 and O6 in the molecule at (-1+x, 3/2-y, -1/2+z), generating a R22(8) ring motif (Table 1 and Fig. 2). Also, an O—H···O interaction is observed (Table 1). Thus, the symmetry-related molecules are cross linked by these hydrogen bonds to generate a three-dimensional network.