organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Amino­guanidinium hydrogen fumarate

aDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India, bDepartment of Physics, SMK Fomra Institute of Technology, Thaiyur, Chennai 603 103, India, cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and dDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, India
*Correspondence e-mail: a_spandian@yahoo.com

(Received 4 February 2009; accepted 8 February 2009; online 18 February 2009)

The title compound, CH7N4+·C4H3O4, is a molecular salt in which the amino­guanidinium cations and fumarate monoanions are close to planar, with maximum deviations of 0.011 (1) and 0.177 (1) Å, respectively. The crystal packing is stabilized by inter­molecular N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For related structures, see: Adams (1977[Adams, J. M. (1977). Acta Cryst. B33, 1513-1515.]); Akella & Keszler (1994[Akella, A. & Keszler, D. A. (1994). Acta Cryst. C50, 1974-1976.]); Mullen & Hellner (1978[Mullen, D. & Hellner, E. (1978). Acta Cryst. B34, 2789-2794.]). For biological applications, see: Makita et al. (1995[Makita, Z., Yanagisawa, K. & Kuwajima, S. (1995). J. Diabetes Complications, 9, 265-268.]); Brownlee et al. (1986[Brownlee, M., Vlassara, H. & Cerami, A. (1986). Diabetic Complications and Scientific and Clinical Aspects. London: Pitman.]).

[Scheme 1]

Experimental

Crystal data
  • CH7N4+·C4H3O4

  • Mr = 190.17

  • Monoclinic, P 21 /c

  • a = 6.3869 (3) Å

  • b = 19.8731 (10) Å

  • c = 7.0482 (4) Å

  • β = 114.688 (3)°

  • V = 812.84 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 K

  • 0.26 × 0.15 × 0.15 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.966, Tmax = 0.976

  • 10713 measured reflections

  • 2340 independent reflections

  • 1824 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.132

  • S = 1.04

  • 2340 reflections

  • 146 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8⋯O7i 0.82 1.68 2.489 (1) 168
N10—H10A⋯O7ii 0.91 (2) 2.09 (2) 2.993 (1) 177 (2)
N11—H11A⋯O6ii 0.92 (2) 1.91 (2) 2.827 (2) 173 (2)
Symmetry codes: (i) x-1, y, z; (ii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Aminoguanadine is an early inhibitor of advanced glycosylation end products (Makita et al., 1995). It helps prevent proteins cross-linking and is being used in diabetes, atherosclerosis, renal and aging disorders (Brownlee et al., 1986). Aminoguanadine is a highly reactive nucleophillic reagent that reacts with many biological molecules (pyridoxal phosphate, pyruvate, glucose, malondialdehyde, and others). The crystal structures of several guanidinium salts have previously been reported over the last three decades (Adams, 1977; Mullen & Hellner, 1978). Here we report the crystal structure of the title compound, aminoguanidinium hydrogenfumarate, (I), (Fig. 1). In the molecular salt (I), the aminoguanidinium cation and fumarate anion each are nearly planar, with maximum deviations of -0.011 (1) Å and -0.177 (1) Å for atom N12 and O7, respectively ( Fig. 1). The bond lengths in (I) are comparable with the corresponding values observed in related structures (Akella & Keszler , 1994). The angle between the best planes of the aminoguanidinium cation and the fumarate anion is 12.78 (6)°. Atom N10 and N11 in the molecule at (x, y, z) donate one proton each to the atoms O7 and O6 in the molecule at (-1+x, 3/2-y, -1/2+z), generating a R22(8) ring motif (Table 1 and Fig. 2). Also, an O—H···O interaction is observed (Table 1). Thus, the symmetry-related molecules are cross linked by these hydrogen bonds to generate a three-dimensional network.

Related literature top

For related structures, see: Adams (1977); Akella & Keszler (1994); Mullen & Hellner (1978). For biological applications, see: Makita et al. (1995); Brownlee et al. (1986).

Experimental top

Needle-shaped single crystals of aminoguanidium hydrogenfumarate were prepared by slow evaporation of the aqueous solution obtained by dissolving of aminoguanidinium hydrogencarbonate (0.136g; 0.001mol) in fumaric acid (0.116 g; 1 mmol) solution (30 mL) at ambient condition. Colourless single crystals suitable for X-ray diffraction obtained after four days were collected, washed with ethanol and air dried.

Refinement top

All N bound H atoms were located in a difference map and refined freely. All other H atoms were fixed geometrically and allowed to ride on their parent atoms, with distances of O—H = 0.82Å and C—H = 0.93Å with Uiso(H)= 1.2Ueq.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the ions present in compound (I) showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. N—H···O and O—H···O hydrogen bonds (dotted lines) in the title compound. [Symmetry codes: (i) x-1, -y+3/2, z-1/2; (ii)x-1, y, z].
Aminoguanidinium hydrogen fumarate top
Crystal data top
CH7N4+·C4H3O4F(000) = 400
Mr = 190.17Dx = 1.554 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1824 reflections
a = 6.3869 (3) Åθ = 2–29.9°
b = 19.8731 (10) ŵ = 0.13 mm1
c = 7.0482 (4) ÅT = 293 K
β = 114.688 (3)°Block, colourless
V = 812.84 (8) Å30.26 × 0.15 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2340 independent reflections
Radiation source: fine-focus sealed tube1824 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 10.0 pixels mm-1θmax = 29.9°, θmin = 2.1°
ω scansh = 87
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2427
Tmin = 0.966, Tmax = 0.976l = 99
10713 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0756P)2 + 0.1408P]
where P = (Fo2 + 2Fc2)/3
2340 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
CH7N4+·C4H3O4V = 812.84 (8) Å3
Mr = 190.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.3869 (3) ŵ = 0.13 mm1
b = 19.8731 (10) ÅT = 293 K
c = 7.0482 (4) Å0.26 × 0.15 × 0.15 mm
β = 114.688 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2340 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1824 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.976Rint = 0.028
10713 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.33 e Å3
2340 reflectionsΔρmin = 0.31 e Å3
146 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H11B0.243 (3)0.4484 (12)0.254 (3)0.057 (5)*
H120.573 (3)0.3932 (11)0.302 (3)0.056 (5)*
H13A0.861 (4)0.3941 (12)0.204 (3)0.072 (6)*
C11.12336 (19)0.84396 (5)0.68336 (19)0.0281 (3)
C20.9984 (2)0.78049 (5)0.68320 (19)0.0274 (2)
H21.07380.73960.69530.033*
C30.7863 (2)0.78034 (6)0.6666 (2)0.0292 (3)
H30.71250.82120.65950.035*
C40.6603 (2)0.71704 (5)0.65888 (19)0.0279 (3)
O61.04931 (17)0.89803 (5)0.71551 (19)0.0466 (3)
O71.30209 (15)0.83829 (4)0.64654 (17)0.0362 (2)
O80.45191 (15)0.72255 (4)0.64769 (17)0.0374 (2)
H80.41890.76250.64650.056*
O90.74557 (17)0.66199 (4)0.66416 (19)0.0434 (3)
H10A0.521 (3)0.5783 (9)0.214 (3)0.046 (5)*
H10B0.747 (4)0.5370 (10)0.245 (3)0.057 (5)*
H11A0.221 (3)0.5225 (10)0.224 (3)0.053 (5)*
C50.5133 (2)0.48405 (6)0.25398 (18)0.0277 (3)
N100.6094 (2)0.54110 (5)0.23653 (19)0.0350 (3)
N110.3028 (2)0.48299 (6)0.2428 (2)0.0412 (3)
N120.6265 (2)0.42625 (5)0.2812 (2)0.0361 (3)
N130.8519 (2)0.42556 (6)0.2974 (2)0.0431 (3)
H13B0.935 (4)0.4125 (10)0.424 (3)0.061 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0233 (5)0.0217 (5)0.0413 (6)0.0015 (4)0.0153 (5)0.0003 (4)
C20.0253 (5)0.0198 (5)0.0400 (6)0.0004 (4)0.0166 (5)0.0010 (4)
C30.0270 (6)0.0179 (5)0.0477 (7)0.0010 (4)0.0206 (5)0.0004 (4)
C40.0264 (5)0.0200 (5)0.0412 (6)0.0018 (4)0.0180 (5)0.0000 (4)
O60.0395 (5)0.0226 (4)0.0891 (8)0.0035 (4)0.0382 (6)0.0077 (5)
O70.0291 (4)0.0264 (4)0.0620 (6)0.0027 (3)0.0279 (4)0.0003 (4)
O80.0280 (4)0.0228 (4)0.0683 (7)0.0027 (3)0.0272 (4)0.0004 (4)
O90.0390 (5)0.0196 (4)0.0796 (7)0.0023 (3)0.0328 (5)0.0019 (4)
C50.0301 (6)0.0208 (5)0.0345 (6)0.0007 (4)0.0158 (5)0.0002 (4)
N100.0341 (6)0.0206 (5)0.0553 (7)0.0007 (4)0.0238 (5)0.0025 (4)
N110.0350 (6)0.0254 (5)0.0713 (9)0.0000 (5)0.0304 (6)0.0024 (5)
N120.0353 (6)0.0193 (5)0.0599 (7)0.0021 (4)0.0260 (5)0.0052 (4)
N130.0345 (6)0.0348 (6)0.0638 (9)0.0076 (5)0.0244 (6)0.0025 (6)
Geometric parameters (Å, º) top
C1—O61.2325 (14)C5—N101.3190 (15)
C1—O71.2770 (14)C5—N121.3278 (15)
C1—C21.4922 (15)N10—H10A0.905 (18)
C2—C31.3105 (16)N10—H10B0.86 (2)
C2—H20.9300N11—H11B0.80 (2)
C3—C41.4820 (15)N11—H11A0.92 (2)
C3—H30.9300N12—N131.3960 (16)
C4—O91.2159 (14)N12—H120.78 (2)
C4—O81.3044 (14)N13—H13A0.93 (2)
O8—H80.8200N13—H13B0.87 (2)
C5—N111.3136 (17)
O6—C1—O7123.96 (10)N11—C5—N12118.46 (11)
O6—C1—C2119.40 (10)N10—C5—N12120.71 (11)
O7—C1—C2116.64 (10)C5—N10—H10A115.9 (12)
C3—C2—C1122.32 (10)C5—N10—H10B114.5 (14)
C3—C2—H2118.8H10A—N10—H10B129.6 (19)
C1—C2—H2118.8C5—N11—H11B121.4 (15)
C2—C3—C4122.04 (10)C5—N11—H11A120.0 (12)
C2—C3—H3119.0H11B—N11—H11A119 (2)
C4—C3—H3119.0C5—N12—N13120.06 (11)
O9—C4—O8120.67 (10)C5—N12—H12120.1 (15)
O9—C4—C3122.22 (10)N13—N12—H12119.5 (15)
O8—C4—C3117.11 (10)N12—N13—H13A108.3 (15)
C4—O8—H8109.5N12—N13—H13B104.9 (14)
N11—C5—N10120.83 (11)H13A—N13—H13B109.7 (19)
O6—C1—C2—C316.50 (19)C2—C3—C4—O8178.28 (11)
O7—C1—C2—C3162.59 (12)N11—C5—N12—N13178.90 (13)
C1—C2—C3—C4177.74 (11)N10—C5—N12—N131.8 (2)
C2—C3—C4—O91.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O7i0.821.682.489 (1)168
N10—H10A···O7ii0.91 (2)2.09 (2)2.993 (1)177 (2)
N11—H11A···O6ii0.92 (2)1.91 (2)2.827 (2)173 (2)
Symmetry codes: (i) x1, y, z; (ii) x1, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaCH7N4+·C4H3O4
Mr190.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.3869 (3), 19.8731 (10), 7.0482 (4)
β (°) 114.688 (3)
V3)812.84 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.26 × 0.15 × 0.15
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.966, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
10713, 2340, 1824
Rint0.028
(sin θ/λ)max1)0.702
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.132, 1.04
No. of reflections2340
No. of parameters146
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.31

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O7i0.821.682.489 (1)168.3
N10—H10A···O7ii0.91 (2)2.09 (2)2.993 (1)177 (2)
N11—H11A···O6ii0.92 (2)1.91 (2)2.827 (2)173 (2)
Symmetry codes: (i) x1, y, z; (ii) x1, y+3/2, z1/2.
 

Acknowledgements

SM and ASP thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationAdams, J. M. (1977). Acta Cryst. B33, 1513–1515.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAkella, A. & Keszler, D. A. (1994). Acta Cryst. C50, 1974–1976.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrownlee, M., Vlassara, H. & Cerami, A. (1986). Diabetic Complications and Scientific and Clinical Aspects. London: Pitman.  Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMakita, Z., Yanagisawa, K. & Kuwajima, S. (1995). J. Diabetes Complications, 9, 265–268.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMullen, D. & Hellner, E. (1978). Acta Cryst. B34, 2789–2794.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds