organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Di­methyl-1-phenyl­sulfonyl-1H-pyrrole-3,4-dicarbaldehyde

aPostgraduate and Research Department of Physics, Agurchand Manmull Jain College, Chennai 600 114, India, bDepartment of Physics, P. T. Lee Chengalvaraya Naicker College of Engineering and Technology, Kancheepuram 631 502, India, cPostgraduate and Research Department of Physics, RKM Vivekananda College, Chennai 600 004, India, and dDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: seshadri_pr@yahoo.com

(Received 20 January 2009; accepted 6 February 2009; online 18 February 2009)

In the title compound, C14H13NO4S, the mean planes of the pyrrole and phenyl rings form a dihedral angle of 88.7 (1)°. The aldehyde groups are slightly twisted from the pyrrole plane. In the crystal structure, mol­ecules are linked into a three-dimensional framework by C—H⋯O hydrogen bonds.

Related literature

For general background, see: Ali et al. (1989[Ali, R., Misra, B. & Nizamuddin (1989). Indian J. Chem. Sect. B, 28, 526-528.]); Amal Raj et al. (2003[Amal Raj, A., Raghunathan, R., Sridevikumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407-419.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For N-atom hybridization details, see: Beddoes et al. (1986[Beddoes, R. L., Dalton, L., Joule, J. A., Mills, O. S., Street, J. O. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NO4S

  • Mr = 291.31

  • Monoclinic, P 21 /n

  • a = 9.0257 (3) Å

  • b = 12.6240 (5) Å

  • c = 11.9914 (5) Å

  • β = 97.700 (2)°

  • V = 1353.99 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.940, Tmax = 0.952

  • 19609 measured reflections

  • 4736 independent reflections

  • 3164 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.154

  • S = 1.00

  • 4736 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O3 0.93 2.46 3.077 (2) 124
C7—H7A⋯O4 0.96 2.33 3.021 (3) 128
C11—H11⋯O4i 0.93 2.53 3.456 (2) 174
C13—H13⋯O2 0.93 2.52 3.304 (2) 143
C14—H14⋯O3ii 0.93 2.57 3.383 (2) 146
Symmetry codes: (i) x, y, z-1; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Heterocyclic compounds, especially five-membered rings, have occupied an important place among organic compounds because of their biological activities. The fungicidal activity of novel heterocycles has been reported by Ali et al. (1989). These are crucial intermediates for various pyrrole natural products possessing antitumour properties. They are found to have antifungal activity against various pathogens (Amal Raj et al., 2003). Against this background and in order to obtain detailed information on molecular conformation in the solid state, an X-ray crystallographic study of the title compound has been carried out and the results are presented here.

The geometric parameters are normal (Allen et al., 1987). The mean planes of the pyrrole and phenyl rings form a dihedral angle of 88.7 (1)°. The aldehyde groups are slightly twisted from the pyrrole plane, with O3 towards C2 and O4 towards C1, as evidenced by the torsion angles C2—C3—C5—O3 = 2.1 (3)° and C1—C2—C6—O4 = 5.9 (3)° (Fig. 1). The sum of the angles at N is 360.0, which is an indication of sp2 hybridization (Beddoes et al., 1986). In the crystal structure, the molecules are linked into a three-dimensional framework by C—H···O hydrogen bonds (Fig. 2 and Table 1).

Related literature top

For general background, see: Ali et al. (1989); Amal Raj et al. (2003). For bond-length data, see: Allen et al. (1987). For N-atom hybridization details, see: Beddoes et al. (1986). [Please check amended text]

Experimental top

To a suspension of 3°-butoxide (4.4 g, 39.7 mmol) in dry THF (20 ml), 18-crown-6 (catalyst) and 2,5-dimethyl-1H-pyrrole-3,4-dicarbaldehyde (4 g, 26.5 mmol) in dry THF were added slowly at room temperature and the reaction mixture was stirred for 15 min. To this, PhSO2Cl (6.1 g, 34.4 mmol) in dry THF (15 ml) was added and stirred for another 4 h. The mixture was then poured over ice–water (500 ml) and the solid obtained was filtered. The product, 2,5-dimethyl-1-(phenyl sulfonyl)-1H-pyrrole-3,4-dicarbaldehyde, was recrystallized from methanol. Yield 4.9 g (64%). M.p = 395 K.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.96 Å and Uiso(H) = 1.5 Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEXII (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing 30% probability displacement ellipsoids. Hydrogen atoms are represented by spheres of arbitrary radius.
[Figure 2] Fig. 2. Crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.
2,5-Dimethyl-1-phenylsulfonyl-1H-pyrrole-3,4-dicarbaldehyde top
Crystal data top
C14H13NO4SF(000) = 608
Mr = 291.31Dx = 1.429 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.0257 (3) ÅCell parameters from 6814 reflections
b = 12.6240 (5) Åθ = 2.4–32.2°
c = 11.9914 (5) ŵ = 0.25 mm1
β = 97.700 (2)°T = 293 K
V = 1353.99 (9) Å3Block, colourless
Z = 40.25 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa-APEXII area-detector
diffractometer
4736 independent reflections
Radiation source: fine-focus sealed tube3164 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 32.2°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1310
Tmin = 0.940, Tmax = 0.952k = 1818
19609 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0787P)2 + 0.2246P]
where P = (Fo2 + 2Fc2)/3
4736 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C14H13NO4SV = 1353.99 (9) Å3
Mr = 291.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.0257 (3) ŵ = 0.25 mm1
b = 12.6240 (5) ÅT = 293 K
c = 11.9914 (5) Å0.25 × 0.20 × 0.20 mm
β = 97.700 (2)°
Data collection top
Bruker Kappa-APEXII area-detector
diffractometer
4736 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3164 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.952Rint = 0.032
19609 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.00Δρmax = 0.19 e Å3
4736 reflectionsΔρmin = 0.42 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.51190 (5)0.21083 (3)0.25629 (3)0.05026 (14)
N0.56878 (14)0.29263 (9)0.36572 (10)0.0417 (3)
O10.64275 (15)0.17150 (11)0.21659 (11)0.0704 (4)
O30.82639 (16)0.54763 (12)0.58440 (12)0.0777 (4)
O20.40939 (17)0.13956 (10)0.29555 (12)0.0743 (4)
O40.49857 (19)0.36086 (17)0.70677 (12)0.1023 (6)
C10.51247 (15)0.29778 (11)0.46937 (11)0.0422 (3)
C20.59280 (15)0.37280 (11)0.53213 (11)0.0404 (3)
C30.69918 (14)0.41747 (11)0.46621 (11)0.0383 (3)
C40.68371 (15)0.36717 (11)0.36473 (11)0.0412 (3)
C50.80621 (18)0.50177 (13)0.49571 (14)0.0524 (4)
H50.86460.52230.44120.063*
C60.57651 (19)0.40278 (16)0.64774 (13)0.0579 (4)
H60.63270.46020.67790.069*
C70.3863 (2)0.23246 (17)0.50008 (16)0.0661 (5)
H7A0.35870.25710.57020.099*
H7B0.41680.15970.50750.099*
H7C0.30220.23860.44230.099*
C80.7684 (2)0.38292 (17)0.26769 (14)0.0662 (5)
H8A0.83490.44210.28250.099*
H8B0.69970.39650.20090.099*
H8C0.82530.32030.25710.099*
C90.41822 (17)0.29562 (12)0.15557 (12)0.0455 (3)
C100.4612 (2)0.29939 (16)0.04944 (14)0.0604 (4)
H100.54030.25830.03150.072*
C110.3837 (3)0.3659 (2)0.02973 (16)0.0767 (6)
H110.41040.36960.10190.092*
C120.2683 (3)0.42608 (17)0.00229 (17)0.0780 (6)
H120.21760.47070.05610.094*
C130.2260 (3)0.42188 (16)0.10310 (18)0.0744 (6)
H130.14760.46380.12070.089*
C140.3000 (2)0.35534 (13)0.18281 (14)0.0579 (4)
H140.27080.35070.25410.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0664 (3)0.0385 (2)0.0462 (2)0.00334 (15)0.00855 (17)0.00739 (14)
N0.0513 (6)0.0408 (6)0.0347 (5)0.0058 (5)0.0120 (5)0.0013 (4)
O10.0800 (8)0.0655 (8)0.0655 (8)0.0209 (7)0.0084 (6)0.0213 (6)
O30.0858 (9)0.0823 (10)0.0652 (8)0.0240 (7)0.0105 (7)0.0272 (7)
O20.1039 (10)0.0500 (7)0.0681 (8)0.0305 (7)0.0080 (7)0.0000 (6)
O40.1016 (12)0.1637 (17)0.0496 (8)0.0353 (11)0.0398 (8)0.0136 (9)
C10.0459 (7)0.0463 (7)0.0362 (6)0.0003 (5)0.0121 (5)0.0061 (5)
C20.0429 (6)0.0467 (7)0.0333 (6)0.0049 (5)0.0115 (5)0.0032 (5)
C30.0418 (6)0.0389 (7)0.0347 (6)0.0024 (5)0.0074 (5)0.0024 (5)
C40.0465 (7)0.0430 (7)0.0358 (6)0.0019 (5)0.0123 (5)0.0015 (5)
C50.0560 (8)0.0535 (9)0.0480 (8)0.0081 (7)0.0078 (6)0.0012 (7)
C60.0595 (9)0.0796 (12)0.0366 (7)0.0025 (8)0.0143 (6)0.0055 (7)
C70.0662 (10)0.0772 (12)0.0595 (10)0.0208 (9)0.0248 (8)0.0053 (9)
C80.0784 (12)0.0817 (13)0.0445 (9)0.0255 (10)0.0295 (8)0.0068 (8)
C90.0551 (8)0.0435 (7)0.0379 (7)0.0089 (6)0.0067 (6)0.0098 (5)
C100.0643 (10)0.0774 (12)0.0411 (8)0.0095 (8)0.0134 (7)0.0091 (8)
C110.0942 (15)0.0952 (16)0.0402 (9)0.0202 (12)0.0072 (9)0.0005 (9)
C120.1054 (16)0.0665 (12)0.0567 (11)0.0007 (11)0.0086 (11)0.0022 (9)
C130.0900 (14)0.0586 (11)0.0710 (12)0.0162 (10)0.0029 (10)0.0134 (9)
C140.0742 (11)0.0527 (9)0.0472 (9)0.0036 (8)0.0099 (8)0.0136 (7)
Geometric parameters (Å, º) top
S1—O21.4155 (13)C7—H7A0.9600
S1—O11.4209 (13)C7—H7B0.9600
S1—N1.6945 (12)C7—H7C0.9600
S1—C91.7452 (17)C8—H8A0.9600
N—C41.4018 (17)C8—H8B0.9600
N—C11.4060 (17)C8—H8C0.9600
O3—C51.203 (2)C9—C101.380 (2)
O4—C61.187 (2)C9—C141.381 (2)
C1—C21.358 (2)C10—C111.385 (3)
C1—C71.492 (2)C10—H100.9300
C2—C31.4382 (18)C11—C121.364 (3)
C2—C61.463 (2)C11—H110.9300
C3—C41.3631 (19)C12—C131.370 (3)
C3—C51.449 (2)C12—H120.9300
C4—C81.4890 (19)C13—C141.376 (3)
C5—H50.9300C13—H130.9300
C6—H60.9300C14—H140.9300
O2—S1—O1119.94 (9)H7A—C7—H7B109.5
O2—S1—N105.88 (7)C1—C7—H7C109.5
O1—S1—N107.05 (7)H7A—C7—H7C109.5
O2—S1—C9110.02 (8)H7B—C7—H7C109.5
O1—S1—C9109.26 (8)C4—C8—H8A109.5
N—S1—C9103.33 (7)C4—C8—H8B109.5
C4—N—C1109.39 (11)H8A—C8—H8B109.5
C4—N—S1123.39 (9)C4—C8—H8C109.5
C1—N—S1127.22 (10)H8A—C8—H8C109.5
C2—C1—N107.03 (11)H8B—C8—H8C109.5
C2—C1—C7128.14 (13)C10—C9—C14121.40 (16)
N—C1—C7124.83 (14)C10—C9—S1119.29 (14)
C1—C2—C3108.37 (12)C14—C9—S1119.29 (12)
C1—C2—C6126.27 (13)C9—C10—C11118.31 (18)
C3—C2—C6125.35 (14)C9—C10—H10120.8
C4—C3—C2108.18 (12)C11—C10—H10120.8
C4—C3—C5123.06 (13)C12—C11—C10120.27 (18)
C2—C3—C5128.76 (13)C12—C11—H11119.9
C3—C4—N107.02 (11)C10—C11—H11119.9
C3—C4—C8129.31 (14)C11—C12—C13121.2 (2)
N—C4—C8123.67 (13)C11—C12—H12119.4
O3—C5—C3125.90 (15)C13—C12—H12119.4
O3—C5—H5117.1C12—C13—C14119.66 (19)
C3—C5—H5117.1C12—C13—H13120.2
O4—C6—C2126.33 (18)C14—C13—H13120.2
O4—C6—H6116.8C13—C14—C9119.18 (16)
C2—C6—H6116.8C13—C14—H14120.4
C1—C7—H7A109.5C9—C14—H14120.4
C1—C7—H7B109.5
O2—S1—N—C4172.55 (12)C1—N—C4—C30.29 (16)
O1—S1—N—C443.51 (14)S1—N—C4—C3179.53 (10)
C9—S1—N—C471.78 (13)C1—N—C4—C8179.88 (15)
O2—S1—N—C17.23 (15)S1—N—C4—C80.1 (2)
O1—S1—N—C1136.28 (13)C4—C3—C5—O3178.68 (17)
C9—S1—N—C1108.43 (13)C2—C3—C5—O32.1 (3)
C4—N—C1—C21.03 (16)C1—C2—C6—O45.9 (3)
S1—N—C1—C2178.78 (10)C3—C2—C6—O4173.12 (19)
C4—N—C1—C7178.16 (15)O2—S1—C9—C10122.33 (14)
S1—N—C1—C72.0 (2)O1—S1—C9—C1011.30 (15)
N—C1—C2—C31.33 (16)N—S1—C9—C10125.00 (13)
C7—C1—C2—C3177.83 (16)O2—S1—C9—C1455.92 (14)
N—C1—C2—C6177.86 (14)O1—S1—C9—C14170.46 (12)
C7—C1—C2—C63.0 (3)N—S1—C9—C1456.75 (13)
C1—C2—C3—C41.18 (16)C14—C9—C10—C110.7 (3)
C6—C2—C3—C4178.02 (14)S1—C9—C10—C11178.93 (14)
C1—C2—C3—C5178.14 (14)C9—C10—C11—C120.3 (3)
C6—C2—C3—C52.7 (2)C10—C11—C12—C130.4 (3)
C2—C3—C4—N0.53 (15)C11—C12—C13—C140.5 (3)
C5—C3—C4—N178.84 (13)C12—C13—C14—C91.4 (3)
C2—C3—C4—C8179.04 (17)C10—C9—C14—C131.6 (2)
C5—C3—C4—C81.6 (3)S1—C9—C14—C13179.77 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O30.932.463.077 (2)124
C7—H7A···O40.962.333.021 (3)128
C11—H11···O4i0.932.533.456 (2)174
C13—H13···O20.932.523.304 (2)143
C14—H14···O3ii0.932.573.383 (2)146
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H13NO4S
Mr291.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.0257 (3), 12.6240 (5), 11.9914 (5)
β (°) 97.700 (2)
V3)1353.99 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa-APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.940, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
19609, 4736, 3164
Rint0.032
(sin θ/λ)max1)0.750
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.154, 1.00
No. of reflections4736
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.42

Computer programs: APEXII (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O30.932.463.077 (2)124.0
C7—H7A···O40.962.333.021 (3)128.0
C11—H11···O4i0.932.533.456 (2)174.0
C13—H13···O20.932.523.304 (2)143.0
C14—H14···O3ii0.932.573.383 (2)146.0
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z+1.
 

Acknowledgements

BB and RS thank Dr Babu Varghese, SAIF, IIT Madras, India, for his help with the data collection.

References

First citationAli, R., Misra, B. & Nizamuddin (1989). Indian J. Chem. Sect. B, 28, 526–528.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAmal Raj, A., Raghunathan, R., Sridevikumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–419.  Web of Science PubMed Google Scholar
First citationBeddoes, R. L., Dalton, L., Joule, J. A., Mills, O. S., Street, J. O. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds