organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Di­morpholino­ethane-1,2-di­thione

aDepartment of Chemistry, Shanghai University, People's Republic of China
*Correspondence e-mail: r5744011@yahoo.com.cn

(Received 6 October 2008; accepted 14 January 2009; online 11 February 2009)

The title compound, C10H16N2O2S2, was prepared by a reaction of 4-tert-butyl­benzene, morpholine and sulfur. In the crystal structure, both morpholine rings display the typical chair conformation. Weak C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For general background, see: Carmack (1989[Carmack, M. (1989). J. Heterocycl. Chem. 26, 1319-1323.]). For a related structure, see: Rozentsveig et al. (2005[Rozentsveig, I. B., Levkovskaya, G. G., Rozentsveig, G. N., Mirskova, A. N., Krivdin, L. B., Larina, L. I. & Albanov, A. I. (2005). Tetrahedron Lett. 46, 8889-8893.]).

[Scheme 1]

Experimental

Crystal data
  • C10H16N2O2S2

  • Mr = 260.37

  • Monoclinic, C 2/c

  • a = 34.661 (7) Å

  • b = 6.5155 (12) Å

  • c = 10.6632 (19) Å

  • β = 93.633 (2)°

  • V = 2403.3 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 295 (2) K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.905, Tmax = 0.940

  • 6026 measured reflections

  • 2118 independent reflections

  • 1673 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.086

  • S = 1.05

  • 2118 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O1i 0.97 2.51 3.400 (3) 153
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Willgerodt-Kindler reaction is an important synthesize reaction of medicament, but the reaction mechanism is not completely clear (Carmack, 1989). To investigate the reaction mechanism of Willgerodt-Kindler reaction, we performed the reaction of morpholine with 4-tert-butylphenyl and sulfur and obtained single crystals of the title compound. Herein we present its X-ray structure.

The molecular structure of the title compound is shown in Fig. 1. Within the molecule structure, two CS bond distances are 1.656 (2) Å and 1.666 (2) Å, respectively. The two planes containing the C—S bonds, C1/C4/N1/C5/S1 and C7/C10/N2/C6/S2, are nearly perpendicular to each other with a dihedral angle of 89.94 (7)°. Both morpholino rings display the typical chair conformation, which agrees with that found in the dimorpholine derivative, 4-chloro-N-(2-(4-methylphenyl)-1,2-dimorpholinoethylidene)benzenesulfonamide (Rozentsveig et al., 2005). The adjacent molecules are linked together via C—H···O weak hydrogen bonding (Table 1).

Related literature top

For general background, see: Carmack (1989). For a related structure, see: Rozentsveig et al. (2005).

Experimental top

The title compound was prepared by a reaction of 4'-tert-butylacetophenone (17.72 g, 0.1 mol), morpholine (33 ml, 0.375 mol) and sulfur (5.29 g, 0.165 mol) at 397–405 K until the reaction mixture changed color to puce. Add methanol (100 ml) and active carbon (1 g) into the reaction mixture after the reaction undergoing 10 h. After the reaction mixture cooling to room temperature, the filemot solid product was separated from the reaction mixture. The filemot solid product and was mixed with an ethanol-water solution (1:3) and an aqueous solution (20 ml) of NaOH (0.05 g 1.14 mmol). The mixture was refluxed for 4 h at 357 K and the kelly depositions were obtained from the cooling reaction mixture. The single crystals of the title compound were obtained by recrystallization of the solid product from an ethanol solution after 2 d.

Refinement top

H atoms were placed in calculated positions with C—H = 0.97 Å and included in the final cycles of refinement in riding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids.
1,2-Dimorpholinoethane-1,2-dithione top
Crystal data top
C10H16N2O2S2F(000) = 1104
Mr = 260.37Dx = 1.439 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2010 reflections
a = 34.661 (7) Åθ = 2.0–25.0°
b = 6.5155 (12) ŵ = 0.43 mm1
c = 10.6632 (19) ÅT = 295 K
β = 93.633 (2)°Prism, colorless
V = 2403.3 (8) Å30.25 × 0.20 × 0.15 mm
Z = 8
Data collection top
Bruker APEX CCD
diffractometer
2118 independent reflections
Radiation source: fine-focus sealed tube1673 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3940
Tmin = 0.905, Tmax = 0.940k = 77
6026 measured reflectionsl = 127
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0357P)2 + 1.3632P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2118 reflectionsΔρmax = 0.19 e Å3
146 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0028 (3)
Crystal data top
C10H16N2O2S2V = 2403.3 (8) Å3
Mr = 260.37Z = 8
Monoclinic, C2/cMo Kα radiation
a = 34.661 (7) ŵ = 0.43 mm1
b = 6.5155 (12) ÅT = 295 K
c = 10.6632 (19) Å0.25 × 0.20 × 0.15 mm
β = 93.633 (2)°
Data collection top
Bruker APEX CCD
diffractometer
2118 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1673 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.940Rint = 0.029
6026 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.05Δρmax = 0.19 e Å3
2118 reflectionsΔρmin = 0.20 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.372884 (17)0.19547 (8)0.11699 (5)0.0400 (2)
S20.380220 (17)0.28649 (9)0.28638 (5)0.04075 (19)
N10.32643 (5)0.1044 (3)0.03467 (16)0.0338 (4)
N20.41166 (5)0.2706 (3)0.06457 (16)0.0322 (4)
O10.27344 (4)0.2067 (3)0.16300 (16)0.0515 (5)
O20.48123 (4)0.2411 (3)0.04519 (17)0.0557 (5)
C10.29717 (6)0.0402 (4)0.0084 (2)0.0458 (6)
H1A0.27480.02690.04120.055*
H1B0.30700.17900.00140.055*
C20.28575 (7)0.0009 (4)0.1446 (2)0.0504 (6)
H2A0.30760.02580.19470.060*
H2B0.26500.09130.17270.060*
C30.30297 (7)0.3439 (4)0.1261 (2)0.0489 (6)
H3A0.29400.48330.14120.059*
H3B0.32490.32080.17650.059*
C40.31559 (6)0.3191 (3)0.0111 (2)0.0400 (6)
H4A0.33750.40790.03270.048*
H4B0.29470.35730.06260.048*
C50.35897 (6)0.0447 (3)0.09058 (18)0.0294 (5)
C60.38568 (6)0.2090 (3)0.13964 (18)0.0288 (5)
C70.41350 (6)0.2047 (3)0.0666 (2)0.0356 (5)
H7A0.41010.32250.12180.043*
H7B0.39280.10810.08780.043*
C80.45103 (6)0.1074 (4)0.0844 (2)0.0490 (6)
H8A0.45320.01870.03610.059*
H8B0.45290.07330.17240.059*
C90.47931 (6)0.2926 (4)0.0832 (2)0.0508 (6)
H9A0.50130.37830.10930.061*
H9B0.48090.16820.13330.061*
C100.44318 (6)0.4028 (4)0.1069 (2)0.0433 (6)
H10A0.44210.43200.19580.052*
H10B0.44180.53150.06110.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0510 (4)0.0286 (3)0.0395 (4)0.0032 (3)0.0054 (3)0.0015 (2)
S20.0501 (4)0.0399 (3)0.0323 (3)0.0051 (3)0.0034 (3)0.0076 (2)
N10.0288 (9)0.0299 (9)0.0418 (11)0.0012 (8)0.0053 (8)0.0005 (8)
N20.0271 (9)0.0358 (10)0.0336 (10)0.0022 (8)0.0007 (7)0.0031 (8)
O10.0382 (9)0.0582 (11)0.0560 (11)0.0050 (8)0.0147 (7)0.0016 (8)
O20.0339 (9)0.0722 (12)0.0620 (12)0.0023 (8)0.0117 (8)0.0043 (9)
C10.0345 (12)0.0426 (14)0.0587 (16)0.0099 (11)0.0092 (11)0.0003 (11)
C20.0424 (14)0.0558 (16)0.0512 (16)0.0012 (12)0.0115 (11)0.0101 (12)
C30.0402 (13)0.0461 (15)0.0594 (16)0.0046 (12)0.0054 (11)0.0089 (12)
C40.0301 (11)0.0351 (12)0.0539 (15)0.0058 (10)0.0048 (10)0.0021 (10)
C50.0327 (11)0.0323 (11)0.0234 (11)0.0004 (9)0.0030 (8)0.0003 (9)
C60.0273 (10)0.0266 (11)0.0320 (12)0.0036 (9)0.0032 (9)0.0025 (9)
C70.0347 (12)0.0405 (13)0.0316 (12)0.0002 (10)0.0013 (9)0.0012 (10)
C80.0437 (14)0.0554 (16)0.0486 (15)0.0028 (12)0.0090 (11)0.0080 (12)
C90.0314 (13)0.0636 (17)0.0571 (17)0.0067 (12)0.0003 (11)0.0028 (13)
C100.0344 (12)0.0436 (14)0.0517 (15)0.0106 (11)0.0020 (10)0.0075 (11)
Geometric parameters (Å, º) top
S1—C51.656 (2)C3—C41.509 (3)
S2—C61.666 (2)C3—H3A0.9700
N1—C51.301 (2)C3—H3B0.9700
N1—C11.438 (3)C4—H4A0.9700
N1—C41.466 (3)C4—H4B0.9700
N2—C61.305 (3)C5—C61.488 (3)
N2—C101.441 (2)C7—C81.470 (3)
N2—C71.468 (3)C7—H7A0.9700
O1—C31.397 (3)C7—H7B0.9700
O1—C21.417 (3)C8—H8A0.9700
O2—C81.405 (3)C8—H8B0.9700
O2—C91.415 (3)C9—C101.479 (3)
C1—C21.505 (3)C9—H9A0.9700
C1—H1A0.9700C9—H9B0.9700
C1—H1B0.9700C10—H10A0.9700
C2—H2A0.9700C10—H10B0.9700
C2—H2B0.9700
C5—N1—C1121.59 (18)H4A—C4—H4B108.3
C5—N1—C4124.67 (17)N1—C5—C6116.62 (18)
C1—N1—C4113.73 (16)N1—C5—S1126.50 (16)
C6—N2—C10122.03 (18)C6—C5—S1116.84 (14)
C6—N2—C7124.58 (17)N2—C6—C5116.33 (18)
C10—N2—C7113.29 (17)N2—C6—S2127.33 (16)
C3—O1—C2110.98 (16)C5—C6—S2116.28 (15)
C8—O2—C9110.79 (18)N2—C7—C8109.97 (17)
N1—C1—C2109.19 (19)N2—C7—H7A109.7
N1—C1—H1A109.8C8—C7—H7A109.7
C2—C1—H1A109.8N2—C7—H7B109.7
N1—C1—H1B109.8C8—C7—H7B109.7
C2—C1—H1B109.8H7A—C7—H7B108.2
H1A—C1—H1B108.3O2—C8—C7110.04 (19)
O1—C2—C1111.12 (19)O2—C8—H8A109.7
O1—C2—H2A109.4C7—C8—H8A109.7
C1—C2—H2A109.4O2—C8—H8B109.7
O1—C2—H2B109.4C7—C8—H8B109.7
C1—C2—H2B109.4H8A—C8—H8B108.2
H2A—C2—H2B108.0O2—C9—C10111.87 (19)
O1—C3—C4111.5 (2)O2—C9—H9A109.2
O1—C3—H3A109.3C10—C9—H9A109.2
C4—C3—H3A109.3O2—C9—H9B109.2
O1—C3—H3B109.3C10—C9—H9B109.2
C4—C3—H3B109.3H9A—C9—H9B107.9
H3A—C3—H3B108.0N2—C10—C9106.86 (19)
N1—C4—C3108.89 (18)N2—C10—H10A110.4
N1—C4—H4A109.9C9—C10—H10A110.4
C3—C4—H4A109.9N2—C10—H10B110.4
N1—C4—H4B109.9C9—C10—H10B110.4
C3—C4—H4B109.9H10A—C10—H10B108.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O1i0.972.513.400 (3)153
Symmetry code: (i) x+1/2, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC10H16N2O2S2
Mr260.37
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)34.661 (7), 6.5155 (12), 10.6632 (19)
β (°) 93.633 (2)
V3)2403.3 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.905, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
6026, 2118, 1673
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.086, 1.05
No. of reflections2118
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.20

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O1i0.972.513.400 (3)153
Symmetry code: (i) x+1/2, y1/2, z1/2.
 

Acknowledgements

The project was supported by the Educational Development Foundation of the Shanghai Educational Committee, China (AB0448).

References

First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA.  Google Scholar
First citationCarmack, M. (1989). J. Heterocycl. Chem. 26, 1319–1323.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationRozentsveig, I. B., Levkovskaya, G. G., Rozentsveig, G. N., Mirskova, A. N., Krivdin, L. B., Larina, L. I. & Albanov, A. I. (2005). Tetrahedron Lett. 46, 8889–8893.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds