metal-organic compounds
Bis(3,5-dimethyl-1H-pyrazole-κN2)(pyridine-2,6-dicarboxylato-κ3O2,N,O6)copper(II)
aDepartment of Chemistry, Shanghai University, Shanghai 200444, People's Republic of China, and bDepartment of Petroleum and Chemical Industry, Guangxi Vocational and Technical Institute of Industry, People's Republic of China
*Correspondence e-mail: r5744011@yahoo.com.cn
In the 7H3NO4)(C5H8N2)2], the CuII cation assumes a distorted trigonal–bipyramidal coordination geometry formed by a pyridine-2,6-dicarboxylate dianion and two 3,5-dimethyl-1H-pyrazole molecules. N—H⋯O hydrogen bonding is present in the crystal structure.
of the title compound, [Cu(CExperimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809004577/xu2458sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809004577/xu2458Isup2.hkl
An ethanol–water solution (1:1, 20 ml) containing 1-carboxamide-3,5-dimethylpyrazole (0.14 g, 1 mmol) and CuCl2.2H2O (0.17 g, 1 mmol) was mixed with an aqueous solution (10 ml) of pyridine-2,3-dicarboxylic acid (0.17 g, 1 mmol) and NaOH (0.08 g, 2 mmol). The mixture was refluxed for 6 h. After cooling to room temperature the solution was filtered. Single crystals were obtained from the filtrate after 3 d.
Methyl H were placed in calculated positions with C—H = 0.96 Å and torsion angles were refined to fit the electron density, Uiso(H) = 1.5Ueq(C). Other H atoms were placed in calculated positions with C—H = 0.93 Å and N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C,N).
Data collection: SMART (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids. | |
Fig. 2. The unit cell packing diagram showing hydrogen bonding (dashed lines). |
[Cu(C7H3NO4)(C5H8N2)2] | Z = 2 |
Mr = 420.91 | F(000) = 434 |
Triclinic, P1 | Dx = 1.587 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.4572 (12) Å | Cell parameters from 2980 reflections |
b = 8.5083 (12) Å | θ = 2.0–25.0° |
c = 13.942 (2) Å | µ = 1.28 mm−1 |
α = 72.986 (2)° | T = 295 K |
β = 85.500 (2)° | Prism, blue |
γ = 66.760 (2)° | 0.23 × 0.15 × 0.13 mm |
V = 880.7 (2) Å3 |
Bruker APEX CCD diffractometer | 3036 independent reflections |
Radiation source: fine-focus sealed tube | 2497 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −7→10 |
Tmin = 0.775, Tmax = 0.845 | k = −8→10 |
4570 measured reflections | l = −16→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.044P)2 + 0.8468P] where P = (Fo2 + 2Fc2)/3 |
3036 reflections | (Δ/σ)max < 0.001 |
248 parameters | Δρmax = 0.67 e Å−3 |
0 restraints | Δρmin = −0.55 e Å−3 |
[Cu(C7H3NO4)(C5H8N2)2] | γ = 66.760 (2)° |
Mr = 420.91 | V = 880.7 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.4572 (12) Å | Mo Kα radiation |
b = 8.5083 (12) Å | µ = 1.28 mm−1 |
c = 13.942 (2) Å | T = 295 K |
α = 72.986 (2)° | 0.23 × 0.15 × 0.13 mm |
β = 85.500 (2)° |
Bruker APEX CCD diffractometer | 3036 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2497 reflections with I > 2σ(I) |
Tmin = 0.775, Tmax = 0.845 | Rint = 0.020 |
4570 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.67 e Å−3 |
3036 reflections | Δρmin = −0.55 e Å−3 |
248 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu | 0.48595 (5) | 0.08560 (6) | 0.27695 (4) | 0.03571 (17) | |
O11 | 0.6674 (3) | 0.1852 (3) | 0.2773 (2) | 0.0441 (7) | |
O12 | 0.9462 (3) | 0.1267 (4) | 0.2534 (2) | 0.0532 (8) | |
O13 | 0.3807 (3) | −0.0884 (3) | 0.2770 (2) | 0.0422 (6) | |
O14 | 0.4427 (4) | −0.3530 (4) | 0.2516 (2) | 0.0509 (7) | |
N11 | 0.6858 (3) | −0.1038 (4) | 0.2513 (2) | 0.0293 (6) | |
N21 | 0.3623 (4) | 0.2984 (4) | 0.1424 (2) | 0.0337 (7) | |
N22 | 0.3694 (4) | 0.4602 (4) | 0.1294 (2) | 0.0350 (7) | |
H22A | 0.4223 | 0.4823 | 0.1709 | 0.042* | |
N31 | 0.3204 (3) | 0.1863 (4) | 0.3744 (2) | 0.0314 (7) | |
N32 | 0.1637 (3) | 0.1746 (4) | 0.3799 (2) | 0.0331 (7) | |
H32A | 0.1283 | 0.1307 | 0.3419 | 0.040* | |
C11 | 0.8379 (4) | −0.0898 (5) | 0.2490 (3) | 0.0347 (8) | |
C12 | 0.9861 (5) | −0.2312 (5) | 0.2403 (3) | 0.0443 (10) | |
H12 | 1.0932 | −0.2237 | 0.2375 | 0.053* | |
C13 | 0.9699 (5) | −0.3839 (5) | 0.2359 (3) | 0.0512 (11) | |
H13 | 1.0683 | −0.4808 | 0.2303 | 0.061* | |
C14 | 0.8112 (5) | −0.3972 (5) | 0.2396 (3) | 0.0437 (10) | |
H14 | 0.8016 | −0.5008 | 0.2365 | 0.052* | |
C15 | 0.6684 (4) | −0.2511 (4) | 0.2481 (2) | 0.0328 (8) | |
C16 | 0.8196 (4) | 0.0886 (5) | 0.2600 (3) | 0.0363 (8) | |
C17 | 0.4818 (5) | −0.2331 (5) | 0.2587 (3) | 0.0350 (8) | |
C21 | 0.2857 (5) | 0.5808 (5) | 0.0456 (3) | 0.0375 (8) | |
C22 | 0.2196 (5) | 0.4948 (5) | 0.0004 (3) | 0.0424 (9) | |
H22 | 0.1546 | 0.5431 | −0.0597 | 0.051* | |
C23 | 0.2699 (5) | 0.3211 (5) | 0.0628 (3) | 0.0377 (9) | |
C24 | 0.2736 (6) | 0.7685 (5) | 0.0153 (3) | 0.0524 (11) | |
H24A | 0.2520 | 0.8126 | 0.0731 | 0.079* | |
H24B | 0.1810 | 0.8414 | −0.0340 | 0.079* | |
H24C | 0.3798 | 0.7723 | −0.0126 | 0.079* | |
C25 | 0.2362 (6) | 0.1690 (6) | 0.0483 (3) | 0.0555 (11) | |
H25A | 0.1908 | 0.1150 | 0.1082 | 0.083* | |
H25B | 0.3418 | 0.0819 | 0.0341 | 0.083* | |
H25C | 0.1543 | 0.2128 | −0.0069 | 0.083* | |
C31 | 0.0715 (4) | 0.2404 (5) | 0.4523 (3) | 0.0344 (8) | |
C32 | 0.1727 (4) | 0.2944 (5) | 0.4958 (3) | 0.0361 (8) | |
H32 | 0.1444 | 0.3447 | 0.5489 | 0.043* | |
C33 | 0.3257 (4) | 0.2602 (4) | 0.4457 (2) | 0.0300 (8) | |
C34 | −0.1051 (4) | 0.2448 (6) | 0.4742 (3) | 0.0463 (10) | |
H34A | −0.1235 | 0.1620 | 0.4466 | 0.069* | |
H34B | −0.1884 | 0.3630 | 0.4445 | 0.069* | |
H34C | −0.1174 | 0.2121 | 0.5455 | 0.069* | |
C35 | 0.4794 (5) | 0.2936 (6) | 0.4643 (3) | 0.0458 (10) | |
H35A | 0.5760 | 0.1819 | 0.4864 | 0.069* | |
H35B | 0.4554 | 0.3548 | 0.5150 | 0.069* | |
H35C | 0.5057 | 0.3658 | 0.4033 | 0.069* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.0240 (2) | 0.0284 (3) | 0.0603 (3) | −0.01015 (18) | 0.00311 (19) | −0.0211 (2) |
O11 | 0.0298 (13) | 0.0415 (15) | 0.0719 (19) | −0.0164 (12) | 0.0073 (13) | −0.0298 (14) |
O12 | 0.0338 (15) | 0.074 (2) | 0.070 (2) | −0.0317 (14) | 0.0095 (13) | −0.0341 (16) |
O13 | 0.0317 (13) | 0.0328 (14) | 0.0679 (18) | −0.0128 (11) | −0.0016 (12) | −0.0216 (13) |
O14 | 0.0624 (18) | 0.0405 (16) | 0.0659 (19) | −0.0304 (14) | 0.0011 (14) | −0.0235 (14) |
N11 | 0.0264 (14) | 0.0292 (15) | 0.0309 (15) | −0.0084 (12) | 0.0004 (12) | −0.0099 (12) |
N21 | 0.0346 (16) | 0.0286 (16) | 0.0452 (18) | −0.0157 (13) | 0.0031 (14) | −0.0168 (13) |
N22 | 0.0402 (17) | 0.0316 (16) | 0.0422 (18) | −0.0195 (14) | 0.0032 (14) | −0.0159 (14) |
N31 | 0.0228 (14) | 0.0334 (16) | 0.0435 (17) | −0.0137 (12) | 0.0031 (12) | −0.0154 (13) |
N32 | 0.0275 (15) | 0.0378 (17) | 0.0418 (18) | −0.0177 (13) | 0.0037 (13) | −0.0163 (14) |
C11 | 0.0294 (18) | 0.041 (2) | 0.0299 (19) | −0.0110 (16) | 0.0026 (15) | −0.0092 (16) |
C12 | 0.0291 (19) | 0.052 (3) | 0.044 (2) | −0.0086 (18) | 0.0083 (17) | −0.0135 (19) |
C13 | 0.046 (2) | 0.040 (2) | 0.049 (2) | 0.0004 (19) | 0.0159 (19) | −0.0142 (19) |
C14 | 0.054 (2) | 0.030 (2) | 0.042 (2) | −0.0102 (18) | 0.0095 (19) | −0.0140 (17) |
C15 | 0.042 (2) | 0.0288 (19) | 0.0280 (18) | −0.0117 (16) | 0.0020 (15) | −0.0115 (15) |
C16 | 0.0307 (19) | 0.045 (2) | 0.038 (2) | −0.0175 (17) | −0.0014 (16) | −0.0151 (17) |
C17 | 0.044 (2) | 0.0299 (19) | 0.033 (2) | −0.0163 (17) | −0.0036 (16) | −0.0080 (15) |
C21 | 0.042 (2) | 0.033 (2) | 0.040 (2) | −0.0161 (17) | 0.0095 (17) | −0.0135 (17) |
C22 | 0.051 (2) | 0.041 (2) | 0.040 (2) | −0.0217 (19) | −0.0025 (18) | −0.0133 (18) |
C23 | 0.042 (2) | 0.034 (2) | 0.042 (2) | −0.0176 (17) | 0.0028 (17) | −0.0149 (17) |
C24 | 0.072 (3) | 0.034 (2) | 0.054 (3) | −0.026 (2) | 0.004 (2) | −0.0104 (19) |
C25 | 0.072 (3) | 0.047 (3) | 0.063 (3) | −0.032 (2) | −0.010 (2) | −0.022 (2) |
C31 | 0.0277 (18) | 0.034 (2) | 0.041 (2) | −0.0130 (16) | 0.0045 (15) | −0.0096 (16) |
C32 | 0.039 (2) | 0.044 (2) | 0.033 (2) | −0.0211 (18) | 0.0062 (16) | −0.0168 (16) |
C33 | 0.0290 (18) | 0.0294 (18) | 0.0334 (19) | −0.0135 (15) | −0.0015 (15) | −0.0077 (15) |
C34 | 0.032 (2) | 0.054 (3) | 0.061 (3) | −0.0224 (19) | 0.0146 (18) | −0.022 (2) |
C35 | 0.038 (2) | 0.060 (3) | 0.053 (2) | −0.028 (2) | 0.0018 (18) | −0.025 (2) |
Cu—N11 | 1.917 (3) | C14—C15 | 1.377 (5) |
Cu—N21 | 2.172 (3) | C14—H14 | 0.9300 |
Cu—N31 | 1.994 (3) | C15—C17 | 1.523 (5) |
Cu—O11 | 2.025 (2) | C21—C22 | 1.376 (5) |
Cu—O13 | 2.006 (2) | C21—C24 | 1.491 (5) |
O11—C16 | 1.274 (4) | C22—C23 | 1.390 (5) |
O12—C16 | 1.225 (4) | C22—H22 | 0.9300 |
O13—C17 | 1.277 (4) | C23—C25 | 1.500 (5) |
O14—C17 | 1.221 (4) | C24—H24A | 0.9600 |
N11—C15 | 1.332 (4) | C24—H24B | 0.9600 |
N11—C11 | 1.334 (4) | C24—H24C | 0.9600 |
N21—C23 | 1.331 (4) | C25—H25A | 0.9600 |
N21—N22 | 1.360 (4) | C25—H25B | 0.9600 |
N22—C21 | 1.332 (5) | C25—H25C | 0.9600 |
N22—H22A | 0.8600 | C31—C32 | 1.366 (5) |
N31—C33 | 1.335 (4) | C31—C34 | 1.489 (5) |
N31—N32 | 1.362 (3) | C32—C33 | 1.388 (5) |
N32—C31 | 1.343 (4) | C32—H32 | 0.9300 |
N32—H32A | 0.8600 | C33—C35 | 1.492 (4) |
C11—C12 | 1.380 (5) | C34—H34A | 0.9600 |
C11—C16 | 1.516 (5) | C34—H34B | 0.9600 |
C12—C13 | 1.378 (6) | C34—H34C | 0.9600 |
C12—H12 | 0.9300 | C35—H35A | 0.9600 |
C13—C14 | 1.387 (6) | C35—H35B | 0.9600 |
C13—H13 | 0.9300 | C35—H35C | 0.9600 |
N11—Cu—N31 | 149.17 (12) | O14—C17—O13 | 126.4 (4) |
N11—Cu—O13 | 80.43 (11) | O14—C17—C15 | 119.8 (3) |
N31—Cu—O13 | 92.70 (11) | O13—C17—C15 | 113.7 (3) |
N11—Cu—O11 | 79.88 (11) | N22—C21—C22 | 106.1 (3) |
N31—Cu—O11 | 102.35 (10) | N22—C21—C24 | 122.8 (3) |
O13—Cu—O11 | 159.96 (10) | C22—C21—C24 | 131.1 (4) |
N11—Cu—N21 | 113.60 (11) | C21—C22—C23 | 105.9 (3) |
N31—Cu—N21 | 97.19 (11) | C21—C22—H22 | 127.0 |
O13—Cu—N21 | 101.01 (10) | C23—C22—H22 | 127.0 |
O11—Cu—N21 | 90.27 (11) | N21—C23—C22 | 110.8 (3) |
C16—O11—Cu | 115.7 (2) | N21—C23—C25 | 120.8 (3) |
C17—O13—Cu | 116.0 (2) | C22—C23—C25 | 128.4 (3) |
C15—N11—C11 | 123.2 (3) | C21—C24—H24A | 109.5 |
C15—N11—Cu | 117.9 (2) | C21—C24—H24B | 109.5 |
C11—N11—Cu | 118.4 (2) | H24A—C24—H24B | 109.5 |
C23—N21—N22 | 104.5 (3) | C21—C24—H24C | 109.5 |
C23—N21—Cu | 137.2 (2) | H24A—C24—H24C | 109.5 |
N22—N21—Cu | 118.3 (2) | H24B—C24—H24C | 109.5 |
C21—N22—N21 | 112.7 (3) | C23—C25—H25A | 109.5 |
C21—N22—H22A | 123.6 | C23—C25—H25B | 109.5 |
N21—N22—H22A | 123.6 | H25A—C25—H25B | 109.5 |
C33—N31—N32 | 105.7 (3) | C23—C25—H25C | 109.5 |
C33—N31—Cu | 135.3 (2) | H25A—C25—H25C | 109.5 |
N32—N31—Cu | 118.9 (2) | H25B—C25—H25C | 109.5 |
C31—N32—N31 | 111.4 (3) | N32—C31—C32 | 106.3 (3) |
C31—N32—H32A | 124.3 | N32—C31—C34 | 122.6 (3) |
N31—N32—H32A | 124.3 | C32—C31—C34 | 131.1 (3) |
N11—C11—C12 | 119.7 (3) | C31—C32—C33 | 107.0 (3) |
N11—C11—C16 | 111.7 (3) | C31—C32—H32 | 126.5 |
C12—C11—C16 | 128.6 (3) | C33—C32—H32 | 126.5 |
C13—C12—C11 | 117.7 (4) | N31—C33—C32 | 109.5 (3) |
C13—C12—H12 | 121.1 | N31—C33—C35 | 121.9 (3) |
C11—C12—H12 | 121.1 | C32—C33—C35 | 128.5 (3) |
C12—C13—C14 | 121.9 (3) | C31—C34—H34A | 109.5 |
C12—C13—H13 | 119.0 | C31—C34—H34B | 109.5 |
C14—C13—H13 | 119.0 | H34A—C34—H34B | 109.5 |
C15—C14—C13 | 117.4 (4) | C31—C34—H34C | 109.5 |
C15—C14—H14 | 121.3 | H34A—C34—H34C | 109.5 |
C13—C14—H14 | 121.3 | H34B—C34—H34C | 109.5 |
N11—C15—C14 | 120.0 (3) | C33—C35—H35A | 109.5 |
N11—C15—C17 | 111.8 (3) | C33—C35—H35B | 109.5 |
C14—C15—C17 | 128.2 (3) | H35A—C35—H35B | 109.5 |
O12—C16—O11 | 126.2 (3) | C33—C35—H35C | 109.5 |
O12—C16—C11 | 119.7 (3) | H35A—C35—H35C | 109.5 |
O11—C16—C11 | 114.1 (3) | H35B—C35—H35C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
N22—H22A···O14i | 0.86 | 2.10 | 2.888 (4) | 151 |
N32—H32A···O12ii | 0.86 | 2.06 | 2.860 (4) | 155 |
Symmetry codes: (i) x, y+1, z; (ii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C7H3NO4)(C5H8N2)2] |
Mr | 420.91 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 295 |
a, b, c (Å) | 8.4572 (12), 8.5083 (12), 13.942 (2) |
α, β, γ (°) | 72.986 (2), 85.500 (2), 66.760 (2) |
V (Å3) | 880.7 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.28 |
Crystal size (mm) | 0.23 × 0.15 × 0.13 |
Data collection | |
Diffractometer | Bruker APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.775, 0.845 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4570, 3036, 2497 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.106, 1.05 |
No. of reflections | 3036 |
No. of parameters | 248 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.67, −0.55 |
Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Cu—N11 | 1.917 (3) | Cu—O11 | 2.025 (2) |
Cu—N21 | 2.172 (3) | Cu—O13 | 2.006 (2) |
Cu—N31 | 1.994 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N22—H22A···O14i | 0.86 | 2.10 | 2.888 (4) | 151 |
N32—H32A···O12ii | 0.86 | 2.06 | 2.860 (4) | 155 |
Symmetry codes: (i) x, y+1, z; (ii) x−1, y, z. |
Acknowledgements
This project was supported by the Educational Development Foundation of Shanghai Educational Committee, China (grant No. AB0448).
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Haanstra, W. G., Van der Donk, W. A. J. W., Driessen, W. L., Reedijk, J., Wood, J. S. & Drew, M. G. B. (1990). J. Chem. Soc. Dalton Trans. pp. 3123–3128. CSD CrossRef Web of Science Google Scholar
Mukherjee, R. (2000). Coord. Chem. Rev. 203, 151–218. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Complexes with pyrazole-based ligands are a frequent subject of chemical investigations giving an opportunity for a better understanding the relationship between the structure and the activity of the active site of metalloproteins (Haanstra et al., 1990). Nowadays, attention is paid to the design of various pyrazole ligands with special structural properties to fulfill the specific stereochemical requirements of a particular metal-binding site (Mukherjee, 2000). In our systematic studies on transition metal complexes with the pyrazole derivatives, the title compound was prepared and its X-ray structure is presented here.
The molecular structure of the title compound is shown in Fig. 1. The compound assumes a distorted triangular bipyramid coordination geometry (Table 1), formed by a pyridine-2,6-dicarboxylate dianion and two 3,5-dimethyl-1-H-pyrazole molecules. Tridentate ligand pyridine-2,6-dicarboxylate dianion chelates to the Cu atom by a N atom of pyridine ring and two O atoms of carboxyl groups with a meridional configuration. Monodentate ligand 3,5-dimethyl-1-H-pyrazole coordinated to the Cu atom by N atoms of pyrazole rings with the 1.917 (3) Å and 1.994 (3) Å of Cu—N bound distance. The adjacent molecules are linked together via N—H···O hydrogen bonding (Table 2) between carboxy groups of pyridine-2,6-dicarboxylate dianion and uncoordinated N atom of 3,5-dimethyl-1-H-pyrazoleto, forming the supra-molecular structure (Fig. 2).