metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(3,5-di­methyl-1H-pyrazole-κN2)(pyridine-2,6-di­carboxyl­ato-κ3O2,N,O6)copper(II)

aDepartment of Chemistry, Shanghai University, Shanghai 200444, People's Republic of China, and bDepartment of Petroleum and Chemical Industry, Guangxi Vocational and Technical Institute of Industry, People's Republic of China
*Correspondence e-mail: r5744011@yahoo.com.cn

(Received 12 October 2008; accepted 9 February 2009; online 18 February 2009)

In the crystal structure of the title compound, [Cu(C7H3NO4)(C5H8N2)2], the CuII cation assumes a distorted trigonal–bipyramidal coordination geometry formed by a pyridine-2,6-dicarboxyl­ate dianion and two 3,5-dimethyl-1H-pyrazole mol­ecules. N—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For general background, see: Haanstra et al. (1990[Haanstra, W. G., Van der Donk, W. A. J. W., Driessen, W. L., Reedijk, J., Wood, J. S. & Drew, M. G. B. (1990). J. Chem. Soc. Dalton Trans. pp. 3123-3128.]); Mukherjee (2000[Mukherjee, R. (2000). Coord. Chem. Rev. 203, 151-218.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H3NO4)(C5H8N2)2]

  • Mr = 420.91

  • Triclinic, [P \overline 1]

  • a = 8.4572 (12) Å

  • b = 8.5083 (12) Å

  • c = 13.942 (2) Å

  • α = 72.986 (2)°

  • β = 85.500 (2)°

  • γ = 66.760 (2)°

  • V = 880.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.28 mm−1

  • T = 295 K

  • 0.23 × 0.15 × 0.13 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.775, Tmax = 0.845

  • 4570 measured reflections

  • 3036 independent reflections

  • 2497 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.106

  • S = 1.05

  • 3036 reflections

  • 248 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Selected bond lengths (Å)

Cu—N11 1.917 (3)
Cu—N21 2.172 (3)
Cu—N31 1.994 (3)
Cu—O11 2.025 (2)
Cu—O13 2.006 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N22—H22A⋯O14i 0.86 2.10 2.888 (4) 151
N32—H32A⋯O12ii 0.86 2.06 2.860 (4) 155
Symmetry codes: (i) x, y+1, z; (ii) x-1, y, z.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Complexes with pyrazole-based ligands are a frequent subject of chemical investigations giving an opportunity for a better understanding the relationship between the structure and the activity of the active site of metalloproteins (Haanstra et al., 1990). Nowadays, attention is paid to the design of various pyrazole ligands with special structural properties to fulfill the specific stereochemical requirements of a particular metal-binding site (Mukherjee, 2000). In our systematic studies on transition metal complexes with the pyrazole derivatives, the title compound was prepared and its X-ray structure is presented here.

The molecular structure of the title compound is shown in Fig. 1. The compound assumes a distorted triangular bipyramid coordination geometry (Table 1), formed by a pyridine-2,6-dicarboxylate dianion and two 3,5-dimethyl-1-H-pyrazole molecules. Tridentate ligand pyridine-2,6-dicarboxylate dianion chelates to the Cu atom by a N atom of pyridine ring and two O atoms of carboxyl groups with a meridional configuration. Monodentate ligand 3,5-dimethyl-1-H-pyrazole coordinated to the Cu atom by N atoms of pyrazole rings with the 1.917 (3) Å and 1.994 (3) Å of Cu—N bound distance. The adjacent molecules are linked together via N—H···O hydrogen bonding (Table 2) between carboxy groups of pyridine-2,6-dicarboxylate dianion and uncoordinated N atom of 3,5-dimethyl-1-H-pyrazoleto, forming the supra-molecular structure (Fig. 2).

Related literature top

For general background, see: Haanstra et al. (1990); Mukherjee (2000).

Experimental top

An ethanol–water solution (1:1, 20 ml) containing 1-carboxamide-3,5-dimethylpyrazole (0.14 g, 1 mmol) and CuCl2.2H2O (0.17 g, 1 mmol) was mixed with an aqueous solution (10 ml) of pyridine-2,3-dicarboxylic acid (0.17 g, 1 mmol) and NaOH (0.08 g, 2 mmol). The mixture was refluxed for 6 h. After cooling to room temperature the solution was filtered. Single crystals were obtained from the filtrate after 3 d.

Refinement top

Methyl H were placed in calculated positions with C—H = 0.96 Å and torsion angles were refined to fit the electron density, Uiso(H) = 1.5Ueq(C). Other H atoms were placed in calculated positions with C—H = 0.93 Å and N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The unit cell packing diagram showing hydrogen bonding (dashed lines).
Bis(3,5-dimethyl-1H-pyrazole-κN2)(pyridine-2,6- dicarboxylato-κ3O2,N,O6)copper(II) top
Crystal data top
[Cu(C7H3NO4)(C5H8N2)2]Z = 2
Mr = 420.91F(000) = 434
Triclinic, P1Dx = 1.587 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4572 (12) ÅCell parameters from 2980 reflections
b = 8.5083 (12) Åθ = 2.0–25.0°
c = 13.942 (2) ŵ = 1.28 mm1
α = 72.986 (2)°T = 295 K
β = 85.500 (2)°Prism, blue
γ = 66.760 (2)°0.23 × 0.15 × 0.13 mm
V = 880.7 (2) Å3
Data collection top
Bruker APEX CCD
diffractometer
3036 independent reflections
Radiation source: fine-focus sealed tube2497 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 710
Tmin = 0.775, Tmax = 0.845k = 810
4570 measured reflectionsl = 1614
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.044P)2 + 0.8468P]
where P = (Fo2 + 2Fc2)/3
3036 reflections(Δ/σ)max < 0.001
248 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Cu(C7H3NO4)(C5H8N2)2]γ = 66.760 (2)°
Mr = 420.91V = 880.7 (2) Å3
Triclinic, P1Z = 2
a = 8.4572 (12) ÅMo Kα radiation
b = 8.5083 (12) ŵ = 1.28 mm1
c = 13.942 (2) ÅT = 295 K
α = 72.986 (2)°0.23 × 0.15 × 0.13 mm
β = 85.500 (2)°
Data collection top
Bruker APEX CCD
diffractometer
3036 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2497 reflections with I > 2σ(I)
Tmin = 0.775, Tmax = 0.845Rint = 0.020
4570 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.05Δρmax = 0.67 e Å3
3036 reflectionsΔρmin = 0.55 e Å3
248 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.48595 (5)0.08560 (6)0.27695 (4)0.03571 (17)
O110.6674 (3)0.1852 (3)0.2773 (2)0.0441 (7)
O120.9462 (3)0.1267 (4)0.2534 (2)0.0532 (8)
O130.3807 (3)0.0884 (3)0.2770 (2)0.0422 (6)
O140.4427 (4)0.3530 (4)0.2516 (2)0.0509 (7)
N110.6858 (3)0.1038 (4)0.2513 (2)0.0293 (6)
N210.3623 (4)0.2984 (4)0.1424 (2)0.0337 (7)
N220.3694 (4)0.4602 (4)0.1294 (2)0.0350 (7)
H22A0.42230.48230.17090.042*
N310.3204 (3)0.1863 (4)0.3744 (2)0.0314 (7)
N320.1637 (3)0.1746 (4)0.3799 (2)0.0331 (7)
H32A0.12830.13070.34190.040*
C110.8379 (4)0.0898 (5)0.2490 (3)0.0347 (8)
C120.9861 (5)0.2312 (5)0.2403 (3)0.0443 (10)
H121.09320.22370.23750.053*
C130.9699 (5)0.3839 (5)0.2359 (3)0.0512 (11)
H131.06830.48080.23030.061*
C140.8112 (5)0.3972 (5)0.2396 (3)0.0437 (10)
H140.80160.50080.23650.052*
C150.6684 (4)0.2511 (4)0.2481 (2)0.0328 (8)
C160.8196 (4)0.0886 (5)0.2600 (3)0.0363 (8)
C170.4818 (5)0.2331 (5)0.2587 (3)0.0350 (8)
C210.2857 (5)0.5808 (5)0.0456 (3)0.0375 (8)
C220.2196 (5)0.4948 (5)0.0004 (3)0.0424 (9)
H220.15460.54310.05970.051*
C230.2699 (5)0.3211 (5)0.0628 (3)0.0377 (9)
C240.2736 (6)0.7685 (5)0.0153 (3)0.0524 (11)
H24A0.25200.81260.07310.079*
H24B0.18100.84140.03400.079*
H24C0.37980.77230.01260.079*
C250.2362 (6)0.1690 (6)0.0483 (3)0.0555 (11)
H25A0.19080.11500.10820.083*
H25B0.34180.08190.03410.083*
H25C0.15430.21280.00690.083*
C310.0715 (4)0.2404 (5)0.4523 (3)0.0344 (8)
C320.1727 (4)0.2944 (5)0.4958 (3)0.0361 (8)
H320.14440.34470.54890.043*
C330.3257 (4)0.2602 (4)0.4457 (2)0.0300 (8)
C340.1051 (4)0.2448 (6)0.4742 (3)0.0463 (10)
H34A0.12350.16200.44660.069*
H34B0.18840.36300.44450.069*
H34C0.11740.21210.54550.069*
C350.4794 (5)0.2936 (6)0.4643 (3)0.0458 (10)
H35A0.57600.18190.48640.069*
H35B0.45540.35480.51500.069*
H35C0.50570.36580.40330.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0240 (2)0.0284 (3)0.0603 (3)0.01015 (18)0.00311 (19)0.0211 (2)
O110.0298 (13)0.0415 (15)0.0719 (19)0.0164 (12)0.0073 (13)0.0298 (14)
O120.0338 (15)0.074 (2)0.070 (2)0.0317 (14)0.0095 (13)0.0341 (16)
O130.0317 (13)0.0328 (14)0.0679 (18)0.0128 (11)0.0016 (12)0.0216 (13)
O140.0624 (18)0.0405 (16)0.0659 (19)0.0304 (14)0.0011 (14)0.0235 (14)
N110.0264 (14)0.0292 (15)0.0309 (15)0.0084 (12)0.0004 (12)0.0099 (12)
N210.0346 (16)0.0286 (16)0.0452 (18)0.0157 (13)0.0031 (14)0.0168 (13)
N220.0402 (17)0.0316 (16)0.0422 (18)0.0195 (14)0.0032 (14)0.0159 (14)
N310.0228 (14)0.0334 (16)0.0435 (17)0.0137 (12)0.0031 (12)0.0154 (13)
N320.0275 (15)0.0378 (17)0.0418 (18)0.0177 (13)0.0037 (13)0.0163 (14)
C110.0294 (18)0.041 (2)0.0299 (19)0.0110 (16)0.0026 (15)0.0092 (16)
C120.0291 (19)0.052 (3)0.044 (2)0.0086 (18)0.0083 (17)0.0135 (19)
C130.046 (2)0.040 (2)0.049 (2)0.0004 (19)0.0159 (19)0.0142 (19)
C140.054 (2)0.030 (2)0.042 (2)0.0102 (18)0.0095 (19)0.0140 (17)
C150.042 (2)0.0288 (19)0.0280 (18)0.0117 (16)0.0020 (15)0.0115 (15)
C160.0307 (19)0.045 (2)0.038 (2)0.0175 (17)0.0014 (16)0.0151 (17)
C170.044 (2)0.0299 (19)0.033 (2)0.0163 (17)0.0036 (16)0.0080 (15)
C210.042 (2)0.033 (2)0.040 (2)0.0161 (17)0.0095 (17)0.0135 (17)
C220.051 (2)0.041 (2)0.040 (2)0.0217 (19)0.0025 (18)0.0133 (18)
C230.042 (2)0.034 (2)0.042 (2)0.0176 (17)0.0028 (17)0.0149 (17)
C240.072 (3)0.034 (2)0.054 (3)0.026 (2)0.004 (2)0.0104 (19)
C250.072 (3)0.047 (3)0.063 (3)0.032 (2)0.010 (2)0.022 (2)
C310.0277 (18)0.034 (2)0.041 (2)0.0130 (16)0.0045 (15)0.0096 (16)
C320.039 (2)0.044 (2)0.033 (2)0.0211 (18)0.0062 (16)0.0168 (16)
C330.0290 (18)0.0294 (18)0.0334 (19)0.0135 (15)0.0015 (15)0.0077 (15)
C340.032 (2)0.054 (3)0.061 (3)0.0224 (19)0.0146 (18)0.022 (2)
C350.038 (2)0.060 (3)0.053 (2)0.028 (2)0.0018 (18)0.025 (2)
Geometric parameters (Å, º) top
Cu—N111.917 (3)C14—C151.377 (5)
Cu—N212.172 (3)C14—H140.9300
Cu—N311.994 (3)C15—C171.523 (5)
Cu—O112.025 (2)C21—C221.376 (5)
Cu—O132.006 (2)C21—C241.491 (5)
O11—C161.274 (4)C22—C231.390 (5)
O12—C161.225 (4)C22—H220.9300
O13—C171.277 (4)C23—C251.500 (5)
O14—C171.221 (4)C24—H24A0.9600
N11—C151.332 (4)C24—H24B0.9600
N11—C111.334 (4)C24—H24C0.9600
N21—C231.331 (4)C25—H25A0.9600
N21—N221.360 (4)C25—H25B0.9600
N22—C211.332 (5)C25—H25C0.9600
N22—H22A0.8600C31—C321.366 (5)
N31—C331.335 (4)C31—C341.489 (5)
N31—N321.362 (3)C32—C331.388 (5)
N32—C311.343 (4)C32—H320.9300
N32—H32A0.8600C33—C351.492 (4)
C11—C121.380 (5)C34—H34A0.9600
C11—C161.516 (5)C34—H34B0.9600
C12—C131.378 (6)C34—H34C0.9600
C12—H120.9300C35—H35A0.9600
C13—C141.387 (6)C35—H35B0.9600
C13—H130.9300C35—H35C0.9600
N11—Cu—N31149.17 (12)O14—C17—O13126.4 (4)
N11—Cu—O1380.43 (11)O14—C17—C15119.8 (3)
N31—Cu—O1392.70 (11)O13—C17—C15113.7 (3)
N11—Cu—O1179.88 (11)N22—C21—C22106.1 (3)
N31—Cu—O11102.35 (10)N22—C21—C24122.8 (3)
O13—Cu—O11159.96 (10)C22—C21—C24131.1 (4)
N11—Cu—N21113.60 (11)C21—C22—C23105.9 (3)
N31—Cu—N2197.19 (11)C21—C22—H22127.0
O13—Cu—N21101.01 (10)C23—C22—H22127.0
O11—Cu—N2190.27 (11)N21—C23—C22110.8 (3)
C16—O11—Cu115.7 (2)N21—C23—C25120.8 (3)
C17—O13—Cu116.0 (2)C22—C23—C25128.4 (3)
C15—N11—C11123.2 (3)C21—C24—H24A109.5
C15—N11—Cu117.9 (2)C21—C24—H24B109.5
C11—N11—Cu118.4 (2)H24A—C24—H24B109.5
C23—N21—N22104.5 (3)C21—C24—H24C109.5
C23—N21—Cu137.2 (2)H24A—C24—H24C109.5
N22—N21—Cu118.3 (2)H24B—C24—H24C109.5
C21—N22—N21112.7 (3)C23—C25—H25A109.5
C21—N22—H22A123.6C23—C25—H25B109.5
N21—N22—H22A123.6H25A—C25—H25B109.5
C33—N31—N32105.7 (3)C23—C25—H25C109.5
C33—N31—Cu135.3 (2)H25A—C25—H25C109.5
N32—N31—Cu118.9 (2)H25B—C25—H25C109.5
C31—N32—N31111.4 (3)N32—C31—C32106.3 (3)
C31—N32—H32A124.3N32—C31—C34122.6 (3)
N31—N32—H32A124.3C32—C31—C34131.1 (3)
N11—C11—C12119.7 (3)C31—C32—C33107.0 (3)
N11—C11—C16111.7 (3)C31—C32—H32126.5
C12—C11—C16128.6 (3)C33—C32—H32126.5
C13—C12—C11117.7 (4)N31—C33—C32109.5 (3)
C13—C12—H12121.1N31—C33—C35121.9 (3)
C11—C12—H12121.1C32—C33—C35128.5 (3)
C12—C13—C14121.9 (3)C31—C34—H34A109.5
C12—C13—H13119.0C31—C34—H34B109.5
C14—C13—H13119.0H34A—C34—H34B109.5
C15—C14—C13117.4 (4)C31—C34—H34C109.5
C15—C14—H14121.3H34A—C34—H34C109.5
C13—C14—H14121.3H34B—C34—H34C109.5
N11—C15—C14120.0 (3)C33—C35—H35A109.5
N11—C15—C17111.8 (3)C33—C35—H35B109.5
C14—C15—C17128.2 (3)H35A—C35—H35B109.5
O12—C16—O11126.2 (3)C33—C35—H35C109.5
O12—C16—C11119.7 (3)H35A—C35—H35C109.5
O11—C16—C11114.1 (3)H35B—C35—H35C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N22—H22A···O14i0.862.102.888 (4)151
N32—H32A···O12ii0.862.062.860 (4)155
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C7H3NO4)(C5H8N2)2]
Mr420.91
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.4572 (12), 8.5083 (12), 13.942 (2)
α, β, γ (°)72.986 (2), 85.500 (2), 66.760 (2)
V3)880.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.23 × 0.15 × 0.13
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.775, 0.845
No. of measured, independent and
observed [I > 2σ(I)] reflections
4570, 3036, 2497
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.106, 1.05
No. of reflections3036
No. of parameters248
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.55

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Cu—N111.917 (3)Cu—O112.025 (2)
Cu—N212.172 (3)Cu—O132.006 (2)
Cu—N311.994 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N22—H22A···O14i0.862.102.888 (4)151
N32—H32A···O12ii0.862.062.860 (4)155
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z.
 

Acknowledgements

This project was supported by the Educational Development Foundation of Shanghai Educational Committee, China (grant No. AB0448).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHaanstra, W. G., Van der Donk, W. A. J. W., Driessen, W. L., Reedijk, J., Wood, J. S. & Drew, M. G. B. (1990). J. Chem. Soc. Dalton Trans. pp. 3123–3128.  CSD CrossRef Web of Science Google Scholar
First citationMukherjee, R. (2000). Coord. Chem. Rev. 203, 151–218.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds