metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m277-m278

Tetra­aqua­(2,2′-di­amino-4,4′-bi-1,3-thia­zole-κ2N3,N3′)nickel(II) bis­­(pyridine-2,6-di­carboxyl­ato-κ3O2,N,O6)nickel(II) trihydrate

aDepartment of Chemistry, Shanghai University, Shanghai 200444, People's Republic of China, and bDepartment of Petroleum and Chemical Industry, Guangxi Vocational and Technical Institute of Industry, People's Republic of China
*Correspondence e-mail: r5744011@yahoo.com.cn

(Received 23 October 2008; accepted 9 February 2009; online 18 February 2009)

The crystal structure of the title compound, [Ni(C6H6N4S2)(H2O)4][Ni(C7H3NO4)2]·3H2O, consists of NiII complex cations, NiII complex anions and lattice water mol­ecules. The NiII ions in both the complex cation and anion assume a distorted octa­hedral coordination geometry. O—H⋯O, N—H⋯O and C—H⋯S hydrogen bonds occur in the crystal structure.

Related literature

For general background, see: Waring (1981[Waring, M. J. (1981). Annu. Rev. Biochem. 50, 159-192.]); Fisher et al. (1985[Fisher, L. M., Kurod, R. & Sakai, T. (1985). Biochemistry, 24, 3199-3207.]). For a related structure, see: Liu et al. (2003[Liu, J.-G., Xu, D.-J., Sun, W.-L., Wu, Z.-Y., Xu, Y.-Z., Wu, J.-Y. & Chiang, M. Y. (2003). J. Coord. Chem. 56, 71-76.]); Zhang et al. (2006[Zhang, L.-J., Liu, B.-X., Ge, H.-Q. & Xu, D.-J. (2006). Acta Cryst. E62, m2180-m2182.]). For synthesis, see: Erlenmeyer (1948[Erlenmeyer, H. (1948). Helv. Chim. Acta, 31, 206-210.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C6H6N4S2)(H2O)4][Ni(C7H3NO4)2]·3H2O

  • Mr = 772.01

  • Triclinic, [P \overline 1]

  • a = 11.4756 (13) Å

  • b = 11.5609 (13) Å

  • c = 13.2667 (15) Å

  • α = 65.3590 (10)°

  • β = 82.1140 (11)°

  • γ = 66.0180 (10)°

  • V = 1460.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.51 mm−1

  • T = 295 K

  • 0.23 × 0.18 × 0.15 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.710, Tmax = 0.795

  • 7580 measured reflections

  • 5052 independent reflections

  • 4181 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.084

  • S = 1.05

  • 5052 reflections

  • 412 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O14i 0.86 1.75 2.606 (3) 174
O1—H1B⋯O21ii 0.82 1.92 2.747 (3) 176
O2—H2A⋯O12iii 0.77 2.01 2.772 (3) 169
O2—H2B⋯O22ii 0.76 2.12 2.874 (3) 170
O3—H3A⋯O3Wii 0.78 1.98 2.742 (3) 169
O3—H3B⋯O11iii 0.75 1.94 2.683 (3) 173
O4—H4A⋯O24iv 0.83 1.89 2.717 (4) 179
O4—H4B⋯O1W 0.74 2.16 2.820 (4) 149
O1W—H1WA⋯O23iv 0.91 2.01 2.907 (4) 166
O1W—H1WB⋯O24iii 0.75 2.41 3.150 (5) 169
O2W—H2WB⋯O3Wv 0.72 2.41 3.104 (4) 162
O2W—H2WA⋯O14 0.79 2.02 2.815 (4) 174
O3W—H3WA⋯O22vi 0.73 2.24 2.934 (3) 158
O3W—H3WB⋯O21 0.88 2.10 2.892 (3) 149
N32—H32A⋯O12 0.98 1.97 2.940 (5) 169
N32—H32B⋯O2 0.95 2.19 2.996 (5) 142
N34—H34A⋯O2Wvii 0.92 1.98 2.886 (4) 168
N34—H34B⋯O3 0.92 2.12 2.952 (4) 149
C12—H12⋯S31 0.93 2.71 3.631 (4) 170
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, y, z+1; (iii) -x, -y+1, -z+1; (iv) x, y+1, z; (v) -x+1, -y, -z; (vi) -x, -y+1, -z; (vii) x, y+1, z+1.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Transition metal complexes of 2,2'-diamino-4,4'-bi-1,3-thiazole (DABT) have shown potential application in some fields, for example, a CoII complex and a NiII complex with the DABT ligand have been found to be effective inhibitors of DNA synthesis of tumor cell (Waring, 1981; Fisher et al., 1985). As part of serial structural investigation of metal complexes with DABT, the title NiII complex was prepared in the laboratory and its X-ray structure is presented here.

The crystal of title compound consists of NiII complex cations, NiII complex anions and lattice water molecules (Fig. 1). Within the complex cation, the NiII ion is coordinated by a DABT ligand and four water molecules in a distorted octahedral geometry. The thiazole rings of DABT are approximately coplanar with the dihedral angle of 6.2 (2)° between thiazole rings. The average of Ni—N bond distance of 2.082 (2) Å is comparable to the Ni—N bond distance of 2.103 (4) Å found in [Ni(C6H6N4S2)2(H2O)2][Ni(C7H3NO4)2].5(H2O) (Zhang et al., 2006) and 2.113 (2) Å found in [Ni(C8H4O4)(C6H6N4S2)2].3.5H2O (Liu et al., 2003).

In the complex anion, the NiII ion is chelated by two pyridinedicarboxylate (pdc) dianions with a distorted octahedral geometry. Two planar pdc ligands are nearly perpendicular to each other, the dihedral angle being 88.46 (8)°.

The extensive hydrogen bonding between lattice water molecules, complex cainos and complex anions helps to stabilize the crystal structure (Table 1).

Related literature top

For general background, see: Waring (1981); Fisher et al. (1985). For a related structure, see: Liu et al. (2003); Zhang et al. (2006). For synthesis, see: Erlenmeyer (1948).

Experimental top

The microcrystals of DABT were obtained in the manner reported by Erlenmeyer (1948). An aqueous solution (20 ml) containing DABT (0.20 g, 1 mmol) and NiCl2 (0.13 g, 1 mmol) was mixed with another aqueous solution (10 ml) of 2,6-pyridinedicarboxylic acid (0.17 g, 1 mmol) and NaOH (0.08 g, 2 mmol). The mixture was refluxed for 6 h. The solution was filtered after cooling to room temperature. Green single crystals were obtained from the filtrate after 30 d.

Refinement top

Aromatic H atoms were placed in calculated positions with C—H = 0.93 Å and were included in the final cycles of refinement in riding mode with Uiso(H) = 1.2Ueq(C). H atoms on N atom of amino group of DABT and on O atom of water molecules were located in a difference Fourier map and also included in the final cycles of refinement in riding mode with Uiso(H) = 1.5Ueq(O) or 1.2Ueq(N).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms), dashed lines showing the hydrogen bonding.
Tetraaqua(2,2'-diamino-4,4'-bi-1,3-thiazole- κ2N3,N3')nickel(II) bis(pyridine-2,6-dicarboxylato-κ3O2,N,O6)nickel(II) trihydrate top
Crystal data top
[Ni(C6H6N4S2)(H2O)4][Ni(C7H3NO4)2]·3H2OZ = 2
Mr = 772.01F(000) = 792
Triclinic, P1Dx = 1.755 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.4756 (13) ÅCell parameters from 4980 reflections
b = 11.5609 (13) Åθ = 2.0–25.0°
c = 13.2667 (15) ŵ = 1.51 mm1
α = 65.359 (1)°T = 295 K
β = 82.1140 (11)°Prism, green
γ = 66.018 (1)°0.23 × 0.18 × 0.15 mm
V = 1460.6 (3) Å3
Data collection top
Bruker APEX CCD
diffractometer
5052 independent reflections
Radiation source: fine-focus sealed tube4181 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 137
Tmin = 0.710, Tmax = 0.795k = 1313
7580 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0368P)2 + 0.7271P]
where P = (Fo2 + 2Fc2)/3
5052 reflections(Δ/σ)max = 0.001
412 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Ni(C6H6N4S2)(H2O)4][Ni(C7H3NO4)2]·3H2Oγ = 66.018 (1)°
Mr = 772.01V = 1460.6 (3) Å3
Triclinic, P1Z = 2
a = 11.4756 (13) ÅMo Kα radiation
b = 11.5609 (13) ŵ = 1.51 mm1
c = 13.2667 (15) ÅT = 295 K
α = 65.359 (1)°0.23 × 0.18 × 0.15 mm
β = 82.1140 (11)°
Data collection top
Bruker APEX CCD
diffractometer
5052 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4181 reflections with I > 2σ(I)
Tmin = 0.710, Tmax = 0.795Rint = 0.018
7580 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.05Δρmax = 0.31 e Å3
5052 reflectionsΔρmin = 0.43 e Å3
412 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.16770 (3)0.07786 (4)0.17826 (3)0.02475 (11)
Ni20.23271 (3)0.51033 (4)0.71455 (3)0.02385 (11)
O10.2614 (2)0.3223 (2)0.84334 (17)0.0390 (6)
H1A0.33960.26570.86110.059*
H1B0.21340.30250.89400.059*
O20.06240 (19)0.4957 (2)0.68468 (17)0.0343 (5)
H2A0.00070.56040.66910.051*
H2B0.04300.44510.73560.051*
O30.13816 (18)0.6134 (2)0.81574 (16)0.0319 (5)
H3A0.13920.56670.87830.048*
H3B0.06920.65330.79760.048*
O40.1730 (2)0.7000 (2)0.58611 (17)0.0414 (6)
H4A0.12380.73510.53180.062*
H4B0.17730.75790.59390.062*
O110.10601 (19)0.2234 (2)0.25192 (17)0.0337 (5)
O120.1791 (2)0.2960 (2)0.35197 (18)0.0389 (5)
O130.29701 (19)0.0576 (2)0.11358 (17)0.0326 (5)
O140.50368 (19)0.1545 (2)0.08943 (17)0.0349 (5)
O210.10956 (19)0.2430 (2)0.01530 (16)0.0311 (5)
O220.0369 (2)0.3366 (2)0.12130 (17)0.0382 (5)
O230.1450 (2)0.0753 (2)0.32817 (17)0.0362 (5)
O240.0132 (3)0.1844 (3)0.4064 (2)0.0612 (8)
N110.3291 (2)0.0700 (2)0.21889 (19)0.0232 (5)
N210.0100 (2)0.0718 (2)0.14401 (19)0.0239 (5)
N310.3493 (2)0.4052 (2)0.62139 (19)0.0290 (6)
N320.2175 (3)0.3633 (4)0.5323 (3)0.0644 (10)
H32A0.21690.33530.47220.077*
H32B0.14190.42220.55250.077*
N330.4079 (2)0.5113 (2)0.74188 (19)0.0257 (5)
N340.3714 (3)0.6488 (3)0.8419 (2)0.0467 (8)
H34A0.41670.65700.88870.056*
H34B0.28680.65920.84760.056*
S310.47085 (9)0.26783 (9)0.50388 (7)0.0432 (2)
S320.61255 (8)0.50673 (9)0.80414 (8)0.0412 (2)
C110.3283 (3)0.1372 (3)0.2798 (2)0.0248 (6)
C120.4413 (3)0.1217 (3)0.3184 (3)0.0343 (7)
H120.44120.16980.35970.041*
C130.5547 (3)0.0337 (3)0.2948 (3)0.0360 (8)
H130.63200.02100.32090.043*
C140.5528 (3)0.0360 (3)0.2316 (3)0.0297 (7)
H140.62840.09530.21480.036*
C150.4374 (3)0.0157 (3)0.1945 (2)0.0238 (6)
C160.1940 (3)0.2267 (3)0.2975 (2)0.0279 (7)
C170.4124 (3)0.0821 (3)0.1264 (2)0.0263 (6)
C210.0484 (3)0.1524 (3)0.0445 (2)0.0238 (6)
C220.1516 (3)0.1387 (3)0.0152 (2)0.0316 (7)
H220.19320.19580.05400.038*
C230.1914 (3)0.0377 (4)0.0917 (3)0.0384 (8)
H230.25980.02540.07370.046*
C240.1295 (3)0.0449 (3)0.1947 (3)0.0356 (8)
H240.15570.11270.24670.043*
C250.0284 (3)0.0246 (3)0.2186 (2)0.0279 (7)
C260.0113 (3)0.2535 (3)0.0281 (2)0.0267 (7)
C270.0489 (3)0.1018 (3)0.3268 (3)0.0361 (8)
C310.4781 (3)0.3740 (3)0.6331 (2)0.0270 (7)
C320.5566 (3)0.3003 (3)0.5773 (3)0.0382 (8)
H320.64500.27120.57830.046*
C330.3309 (3)0.3552 (3)0.5550 (3)0.0364 (8)
C340.5109 (3)0.4281 (3)0.7014 (2)0.0281 (7)
C350.6263 (3)0.4128 (3)0.7279 (3)0.0372 (8)
H350.70330.35890.70790.045*
C360.4474 (3)0.5613 (3)0.7966 (3)0.0307 (7)
O1W0.1949 (3)0.9552 (3)0.5228 (2)0.0749 (9)
H1WA0.18100.95960.45480.112*
H1WB0.14111.01420.53090.112*
O2W0.5287 (2)0.3045 (3)0.0391 (2)0.0537 (7)
H2WB0.59460.35080.02700.081*
H2WA0.51670.25870.00490.081*
O3W0.1763 (2)0.4471 (2)0.03785 (18)0.0483 (6)
H3WA0.14750.48370.07450.072*
H3WB0.14920.37960.05740.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0183 (2)0.0276 (2)0.0284 (2)0.00704 (16)0.00210 (15)0.01206 (16)
Ni20.0214 (2)0.0248 (2)0.0232 (2)0.00605 (16)0.00041 (15)0.00997 (16)
O10.0254 (12)0.0335 (12)0.0358 (12)0.0041 (10)0.0056 (10)0.0017 (10)
O20.0263 (11)0.0338 (12)0.0377 (12)0.0071 (10)0.0021 (9)0.0130 (10)
O30.0244 (11)0.0359 (12)0.0290 (11)0.0038 (9)0.0016 (9)0.0138 (9)
O40.0510 (15)0.0320 (12)0.0317 (12)0.0134 (11)0.0126 (11)0.0025 (10)
O110.0204 (11)0.0401 (12)0.0423 (13)0.0039 (10)0.0023 (10)0.0245 (10)
O120.0338 (13)0.0422 (13)0.0471 (14)0.0064 (10)0.0004 (10)0.0312 (11)
O130.0244 (12)0.0385 (12)0.0417 (13)0.0083 (10)0.0025 (9)0.0247 (10)
O140.0282 (12)0.0351 (12)0.0417 (13)0.0035 (10)0.0006 (10)0.0239 (10)
O210.0299 (12)0.0327 (11)0.0303 (11)0.0160 (10)0.0016 (9)0.0077 (9)
O220.0388 (13)0.0392 (12)0.0274 (12)0.0171 (11)0.0044 (10)0.0013 (10)
O230.0287 (12)0.0432 (13)0.0308 (12)0.0153 (10)0.0064 (9)0.0060 (10)
O240.0633 (18)0.0762 (19)0.0344 (14)0.0482 (16)0.0134 (12)0.0120 (13)
N110.0191 (12)0.0251 (12)0.0261 (13)0.0069 (10)0.0008 (10)0.0117 (10)
N210.0195 (12)0.0266 (13)0.0228 (13)0.0079 (10)0.0002 (10)0.0080 (10)
N310.0305 (14)0.0314 (14)0.0260 (13)0.0096 (12)0.0009 (11)0.0147 (11)
N320.048 (2)0.098 (3)0.077 (2)0.0195 (19)0.0009 (18)0.070 (2)
N330.0242 (13)0.0241 (12)0.0262 (13)0.0080 (11)0.0006 (10)0.0090 (10)
N340.0357 (16)0.0591 (19)0.067 (2)0.0165 (15)0.0037 (15)0.0468 (17)
S310.0550 (6)0.0434 (5)0.0343 (5)0.0156 (4)0.0099 (4)0.0242 (4)
S320.0301 (5)0.0451 (5)0.0524 (5)0.0159 (4)0.0051 (4)0.0198 (4)
C110.0259 (16)0.0219 (14)0.0279 (15)0.0099 (12)0.0002 (12)0.0103 (12)
C120.0332 (18)0.0415 (18)0.0411 (19)0.0174 (15)0.0003 (15)0.0250 (16)
C130.0225 (16)0.0424 (19)0.050 (2)0.0126 (15)0.0024 (14)0.0234 (16)
C140.0181 (15)0.0298 (16)0.0389 (18)0.0074 (13)0.0012 (13)0.0136 (14)
C150.0224 (15)0.0229 (14)0.0261 (15)0.0097 (12)0.0024 (12)0.0092 (12)
C160.0262 (16)0.0251 (15)0.0264 (16)0.0051 (13)0.0019 (13)0.0088 (13)
C170.0281 (17)0.0217 (15)0.0257 (16)0.0074 (13)0.0010 (13)0.0079 (12)
C210.0186 (15)0.0260 (15)0.0254 (15)0.0061 (12)0.0004 (12)0.0111 (12)
C220.0252 (16)0.0406 (18)0.0270 (16)0.0118 (14)0.0045 (13)0.0107 (14)
C230.0301 (18)0.057 (2)0.0347 (18)0.0252 (17)0.0010 (14)0.0162 (16)
C240.0324 (18)0.0446 (19)0.0312 (17)0.0242 (16)0.0031 (14)0.0081 (15)
C250.0269 (16)0.0309 (16)0.0237 (15)0.0112 (13)0.0014 (13)0.0081 (13)
C260.0226 (16)0.0248 (15)0.0304 (17)0.0061 (13)0.0004 (13)0.0116 (13)
C270.0306 (18)0.0411 (19)0.0297 (18)0.0144 (15)0.0036 (14)0.0058 (15)
C310.0276 (16)0.0228 (15)0.0264 (16)0.0089 (13)0.0051 (13)0.0079 (12)
C320.0375 (19)0.0330 (17)0.0402 (19)0.0105 (15)0.0101 (15)0.0167 (15)
C330.042 (2)0.0367 (18)0.0312 (17)0.0121 (16)0.0003 (15)0.0164 (15)
C340.0264 (16)0.0223 (15)0.0301 (16)0.0086 (13)0.0020 (13)0.0066 (12)
C350.0270 (18)0.0326 (17)0.047 (2)0.0073 (14)0.0024 (15)0.0152 (15)
C360.0271 (17)0.0320 (17)0.0353 (17)0.0139 (14)0.0002 (13)0.0130 (14)
O1W0.108 (3)0.0634 (19)0.0524 (17)0.0390 (18)0.0031 (17)0.0143 (15)
O2W0.0598 (17)0.0577 (16)0.0551 (16)0.0190 (14)0.0104 (13)0.0327 (13)
O3W0.0644 (17)0.0424 (14)0.0417 (14)0.0231 (13)0.0052 (12)0.0187 (11)
Geometric parameters (Å, º) top
Ni1—N111.956 (2)N33—C341.394 (4)
Ni1—N211.960 (2)N34—C361.339 (4)
Ni1—O132.067 (2)N34—H34A0.9184
Ni1—O232.110 (2)N34—H34B0.9241
Ni1—O112.121 (2)S31—C321.711 (4)
Ni1—O212.164 (2)S31—C331.736 (3)
Ni2—O42.041 (2)S32—C351.720 (3)
Ni2—O12.056 (2)S32—C361.740 (3)
Ni2—N312.067 (2)C11—C121.375 (4)
Ni2—O32.0695 (19)C11—C161.519 (4)
Ni2—N332.096 (2)C12—C131.380 (4)
Ni2—O22.131 (2)C12—H120.9300
O1—H1A0.8609C13—C141.390 (4)
O1—H1B0.8248C13—H130.9300
O2—H2A0.7732C14—C151.371 (4)
O2—H2B0.7640C14—H140.9300
O3—H3A0.7774C15—C171.523 (4)
O3—H3B0.7478C21—C221.381 (4)
O4—H4A0.8275C21—C261.515 (4)
O4—H4B0.7402C22—C231.386 (4)
O11—C161.267 (4)C22—H220.9300
O12—C161.236 (3)C23—C241.383 (4)
O13—C171.257 (3)C23—H230.9300
O14—C171.235 (3)C24—C251.373 (4)
O21—C261.276 (3)C24—H240.9300
O22—C261.234 (3)C25—C271.510 (4)
O23—C271.263 (4)C31—C321.344 (4)
O24—C271.247 (4)C31—C341.453 (4)
N11—C111.332 (4)C32—H320.9300
N11—C151.337 (3)C34—C351.340 (4)
N21—C211.330 (3)C35—H350.9300
N21—C251.333 (4)O1W—H1WA0.9140
N31—C331.314 (4)O1W—H1WB0.7473
N31—C311.387 (4)O2W—H2WB0.7194
N32—C331.335 (4)O2W—H2WA0.7934
N32—H32A0.9783O3W—H3WA0.7332
N32—H32B0.9467O3W—H3WB0.8837
N33—C361.312 (4)
N11—Ni1—N21175.99 (9)C35—S32—C3689.37 (15)
N11—Ni1—O1379.07 (9)N11—C11—C12120.2 (3)
N21—Ni1—O1399.01 (9)N11—C11—C16112.4 (2)
N11—Ni1—O2397.79 (9)C12—C11—C16127.4 (3)
N21—Ni1—O2378.84 (9)C11—C12—C13119.0 (3)
O13—Ni1—O2395.95 (9)C11—C12—H12120.5
N11—Ni1—O1177.57 (8)C13—C12—H12120.5
N21—Ni1—O11104.53 (9)C12—C13—C14119.6 (3)
O13—Ni1—O11156.33 (8)C12—C13—H13120.2
O23—Ni1—O1190.94 (9)C14—C13—H13120.2
N11—Ni1—O21106.47 (9)C15—C14—C13118.9 (3)
N21—Ni1—O2177.05 (8)C15—C14—H14120.6
O13—Ni1—O2192.33 (8)C13—C14—H14120.6
O23—Ni1—O21155.44 (8)N11—C15—C14120.2 (3)
O11—Ni1—O2190.65 (8)N11—C15—C17111.9 (2)
O4—Ni2—O1170.27 (9)C14—C15—C17127.9 (3)
O4—Ni2—N3195.55 (9)O12—C16—O11126.0 (3)
O1—Ni2—N3188.13 (9)O12—C16—C11119.3 (3)
O4—Ni2—O386.23 (8)O11—C16—C11114.7 (2)
O1—Ni2—O391.32 (8)O14—C17—O13125.6 (3)
N31—Ni2—O3172.35 (9)O14—C17—C15119.2 (3)
O4—Ni2—N3394.86 (9)O13—C17—C15115.2 (2)
O1—Ni2—N3394.67 (9)N21—C21—C22120.8 (3)
N31—Ni2—N3379.68 (9)N21—C21—C26113.1 (2)
O3—Ni2—N3392.77 (9)C22—C21—C26126.1 (3)
O4—Ni2—O287.35 (9)C21—C22—C23118.2 (3)
O1—Ni2—O283.27 (8)C21—C22—H22120.9
N31—Ni2—O296.50 (9)C23—C22—H22120.9
O3—Ni2—O291.00 (8)C24—C23—C22120.1 (3)
N33—Ni2—O2175.75 (8)C24—C23—H23119.9
Ni2—O1—H1A116.2C22—C23—H23119.9
Ni2—O1—H1B128.2C25—C24—C23118.5 (3)
H1A—O1—H1B111.8C25—C24—H24120.7
Ni2—O2—H2A119.6C23—C24—H24120.7
Ni2—O2—H2B112.6N21—C25—C24120.9 (3)
H2A—O2—H2B100.9N21—C25—C27112.8 (3)
Ni2—O3—H3A115.4C24—C25—C27126.3 (3)
Ni2—O3—H3B109.9O22—C26—O21126.0 (3)
H3A—O3—H3B105.8O22—C26—C21119.1 (3)
Ni2—O4—H4A132.5O21—C26—C21114.8 (2)
Ni2—O4—H4B118.2O24—C27—O23125.7 (3)
H4A—O4—H4B106.3O24—C27—C25118.3 (3)
C16—O11—Ni1115.03 (18)O23—C27—C25116.1 (3)
C17—O13—Ni1115.52 (18)C32—C31—N31115.6 (3)
C26—O21—Ni1114.41 (18)C32—C31—C34128.2 (3)
C27—O23—Ni1113.85 (19)N31—C31—C34116.2 (2)
C11—N11—C15122.1 (2)C31—C32—S31110.3 (3)
C11—N11—Ni1119.51 (19)C31—C32—H32124.8
C15—N11—Ni1117.94 (19)S31—C32—H32124.8
C21—N21—C25121.5 (2)N31—C33—N32124.3 (3)
C21—N21—Ni1120.25 (19)N31—C33—S31113.6 (3)
C25—N21—Ni1117.90 (19)N32—C33—S31122.0 (3)
C33—N31—C31110.7 (3)C35—C34—N33115.4 (3)
C33—N31—Ni2134.9 (2)C35—C34—C31129.0 (3)
C31—N31—Ni2114.33 (19)N33—C34—C31115.5 (3)
C33—N32—H32A114.5C34—C35—S32110.6 (2)
C33—N32—H32B119.9C34—C35—H35124.7
H32A—N32—H32B121.6S32—C35—H35124.7
C36—N33—C34110.7 (3)N33—C36—N34125.1 (3)
C36—N33—Ni2135.7 (2)N33—C36—S32113.9 (2)
C34—N33—Ni2113.26 (19)N34—C36—S32121.0 (2)
C36—N34—H34A111.4H1WA—O1W—H1WB107.0
C36—N34—H34B116.1H2WB—O2W—H2WA104.5
H34A—N34—H34B126.2H3WA—O3W—H3WB107.6
C32—S31—C3389.77 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O14i0.861.752.606 (3)174
O1—H1B···O21ii0.821.922.747 (3)176
O2—H2A···O12iii0.772.012.772 (3)169
O2—H2B···O22ii0.762.122.874 (3)170
O3—H3A···O3Wii0.781.982.742 (3)169
O3—H3B···O11iii0.751.942.683 (3)173
O4—H4A···O24iv0.831.892.717 (4)179
O4—H4B···O1W0.742.162.820 (4)149
O1W—H1WA···O23iv0.912.012.907 (4)166
O1W—H1WB···O24iii0.752.413.150 (5)169
O2W—H2WB···O3Wv0.722.413.104 (4)162
O2W—H2WA···O140.792.022.815 (4)174
O3W—H3WA···O22vi0.732.242.934 (3)158
O3W—H3WB···O210.882.102.892 (3)149
N32—H32A···O120.981.972.940 (5)169
N32—H32B···O20.952.192.996 (5)142
N34—H34A···O2Wvii0.921.982.886 (4)168
N34—H34B···O30.922.122.952 (4)149
C12—H12···S310.932.713.631 (4)170
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x, y+1, z+1; (iv) x, y+1, z; (v) x+1, y, z; (vi) x, y+1, z; (vii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C6H6N4S2)(H2O)4][Ni(C7H3NO4)2]·3H2O
Mr772.01
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)11.4756 (13), 11.5609 (13), 13.2667 (15)
α, β, γ (°)65.359 (1), 82.1140 (11), 66.018 (1)
V3)1460.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.51
Crystal size (mm)0.23 × 0.18 × 0.15
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.710, 0.795
No. of measured, independent and
observed [I > 2σ(I)] reflections
7580, 5052, 4181
Rint0.018
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.084, 1.05
No. of reflections5052
No. of parameters412
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.43

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O14i0.861.752.606 (3)174
O1—H1B···O21ii0.821.922.747 (3)176
O2—H2A···O12iii0.772.012.772 (3)169
O2—H2B···O22ii0.762.122.874 (3)170
O3—H3A···O3Wii0.781.982.742 (3)169
O3—H3B···O11iii0.751.942.683 (3)173
O4—H4A···O24iv0.831.892.717 (4)179
O4—H4B···O1W0.742.162.820 (4)149
O1W—H1WA···O23iv0.912.012.907 (4)166
O1W—H1WB···O24iii0.752.413.150 (5)169
O2W—H2WB···O3Wv0.722.413.104 (4)162
O2W—H2WA···O140.792.022.815 (4)174
O3W—H3WA···O22vi0.732.242.934 (3)158
O3W—H3WB···O210.882.102.892 (3)149
N32—H32A···O120.981.972.940 (5)169
N32—H32B···O20.952.192.996 (5)142
N34—H34A···O2Wvii0.921.982.886 (4)168
N34—H34B···O30.922.122.952 (4)149
C12—H12···S310.932.713.631 (4)170
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x, y+1, z+1; (iv) x, y+1, z; (v) x+1, y, z; (vi) x, y+1, z; (vii) x, y+1, z+1.
 

Acknowledgements

This project was supported by the Educational Development Foundation of Shanghai Educational Committee, China (grant No. AB0448).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationErlenmeyer, H. (1948). Helv. Chim. Acta, 31, 206–210.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFisher, L. M., Kurod, R. & Sakai, T. (1985). Biochemistry, 24, 3199–3207.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLiu, J.-G., Xu, D.-J., Sun, W.-L., Wu, Z.-Y., Xu, Y.-Z., Wu, J.-Y. & Chiang, M. Y. (2003). J. Coord. Chem. 56, 71–76.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWaring, M. J. (1981). Annu. Rev. Biochem. 50, 159–192.  CrossRef CAS PubMed Web of Science Google Scholar
First citationZhang, L.-J., Liu, B.-X., Ge, H.-Q. & Xu, D.-J. (2006). Acta Cryst. E62, m2180–m2182.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m277-m278
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds