organic compounds
Methyl 7-methoxy-9-oxo-9H-xanthene-2-carboxylate
aUniversity of Gdańsk, Faculty of Chemistry, Sobieskiego 18/19, 80-952 Gdańsk, Poland
*Correspondence e-mail: art@chem.univ.gda.pl
The 16H12O5, is stabilized by C—H⋯O hydrogen bonds and C=O⋯π interactions; π–π interactions are also present. With respective average deviations from planarity of 0.003 (2) and 0.002 (1) Å, the xanthone and ester fragments are oriented at an angle of 2.8 (2)° with respect to each other. The mean planes of the xanthone skeleton lie either parallel to each other or are inclined at an angle of 85.5 (2)° in the crystal structure.
of the title compound, CRelated literature
For general background and uses of xanthones, see: Chen et al. (1993); Denisova-Dyatlova & Glyzin (1982); Fukai et al. (2005); Gopalakrishnan et al. (1997); Ignatushchenko et al. (2000); Ito et al. (2003); Librowski et al. (2005); Pfister et al. (1972, 1980). For related structures, see: Evans et al. (2004); Shi et al. (2004); Macias et al. (2001). For synthesis, see: Geertsema et al. (2006). For background to the various types of intermolecular interactions, see: Bianchi et al. (2004); Steiner (1999) Santos-Contreras et al. (2007); Hunter & Sanders (1990). For analysis of intermolecular interactions, see: Spek (2003).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).
Supporting information
10.1107/S1600536809003602/xu2476sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809003602/xu2476Isup2.hkl
7-Methoxy-9-oxo-9H-xanthene-2-carboxylatic acid methyl ester was synthesized by three steps. First, in a nucleophilic substitution of 4-methoxyphenol and 4-bromoisophthalic acid, to yield 4-(4-methoxyphenoxy)isophthalic acid, by refluxing 45 min in N,N-dimethylformamide with potassium carbonate, sodium iodide and activated Cu-bronze. In the next reaction, called intramolecular Friedel–Crafts acylation was synthesized 7-methoxy-9-oxo-9H-xanthene-2-carboxylatic acid (Geertsema et al., 2006). In last step 7-methoxy-9-oxo-9H-xanthene-2-carboxylatic acid was esterified with methanol by refluxing in thionyl chloride in 45 min and then treated with mixture of methanol and triethylamine in room temperature by 12 h with catalytic amount of 4-dimethylaminopyridine (DMAP). The crude product was dissolved in small amount of anhydrous methanol to obtain single crystals suitable for X-ray analysis by slow evaporation of methanol solution at 298 K.
All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic, and with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl groups.
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. CgA, CgB and CgC denote the ring centroids. | |
Fig. 2. The arrangement of the molecules in the crystal structure viewed approximately along a axis. The C—H···O interactions are represented by dashed lines. H atoms not involved in the interactions have been omitted. [Symmetry codes: (i) 2 - x, 1 - y, 1 - z; (ii) -1 - x, -1/2 + y, 1/2 - z.] | |
Fig. 3. The arrangement of the molecules in the crystal structure viewed approximately along a axis. The C—H···O and C—O···π interactions are represented by dashed lines and the π–π interactions are represented by dotted lines. H atoms not involved in the interactions have been omitted. [Symmetry codes: (iii) 1 + x, y, z.] |
C16H12O5 | F(000) = 592.0 |
Mr = 284.26 | Dx = 1.404 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2126 reflections |
a = 4.7709 (4) Å | θ = 3.0–25.0° |
b = 10.5375 (8) Å | µ = 0.11 mm−1 |
c = 26.7854 (19) Å | T = 295 K |
β = 93.266 (7)° | Needle, white |
V = 1344.40 (18) Å3 | 0.2 × 0.04 × 0.04 mm |
Z = 4 |
Oxford Diffraction Ruby CCD diffractometer | 2366 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1051 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.086 |
Detector resolution: 10.4002 pixels mm-1 | θmax = 25.0°, θmin = 3.0° |
ω scans | h = −5→5 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | k = −12→12 |
Tmin = 0.994, Tmax = 0.997 | l = −31→31 |
23842 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 0.81 | w = 1/[σ2(Fo2) + (0.0471P)2] where P = (Fo2 + 2Fc2)/3 |
2366 reflections | (Δ/σ)max = 0.001 |
193 parameters | Δρmax = 0.13 e Å−3 |
0 restraints | Δρmin = −0.14 e Å−3 |
C16H12O5 | V = 1344.40 (18) Å3 |
Mr = 284.26 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 4.7709 (4) Å | µ = 0.11 mm−1 |
b = 10.5375 (8) Å | T = 295 K |
c = 26.7854 (19) Å | 0.2 × 0.04 × 0.04 mm |
β = 93.266 (7)° |
Oxford Diffraction Ruby CCD diffractometer | 2366 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | 1051 reflections with I > 2σ(I) |
Tmin = 0.994, Tmax = 0.997 | Rint = 0.086 |
23842 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 0.81 | Δρmax = 0.13 e Å−3 |
2366 reflections | Δρmin = −0.14 e Å−3 |
193 parameters |
Experimental. CrysAlis RED, Version 1.171.32.15 (Oxford Diffraction Ltd., 2008) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4869 (4) | 0.3741 (2) | 0.37390 (8) | 0.0507 (6) | |
H1 | 0.4950 | 0.4005 | 0.3409 | 0.061* | |
C2 | 0.6568 (4) | 0.4321 (2) | 0.41017 (8) | 0.0531 (6) | |
C3 | 0.6434 (5) | 0.3912 (2) | 0.45962 (9) | 0.0678 (7) | |
H3 | 0.7584 | 0.4289 | 0.4846 | 0.081* | |
C4 | 0.4634 (5) | 0.2964 (3) | 0.47187 (9) | 0.0735 (7) | |
H4 | 0.4548 | 0.2703 | 0.5049 | 0.088* | |
C5 | −0.2272 (5) | −0.0083 (2) | 0.43087 (9) | 0.0742 (7) | |
H5 | −0.2221 | −0.0287 | 0.4647 | 0.089* | |
C6 | −0.4064 (5) | −0.0705 (2) | 0.39752 (9) | 0.0723 (7) | |
H6 | −0.5229 | −0.1337 | 0.4089 | 0.087* | |
C7 | −0.4169 (4) | −0.0408 (2) | 0.34712 (9) | 0.0570 (6) | |
C8 | −0.2448 (4) | 0.0520 (2) | 0.33022 (8) | 0.0506 (6) | |
H8 | −0.2514 | 0.0723 | 0.2964 | 0.061* | |
C9 | 0.1240 (4) | 0.2157 (2) | 0.34601 (8) | 0.0485 (5) | |
O10 | 0.1221 (3) | 0.14529 (15) | 0.44927 (5) | 0.0685 (5) | |
C11 | 0.3026 (4) | 0.2770 (2) | 0.38514 (7) | 0.0469 (5) | |
C12 | 0.2945 (4) | 0.2399 (2) | 0.43445 (8) | 0.0567 (6) | |
C13 | −0.0592 (4) | 0.1163 (2) | 0.36375 (7) | 0.0459 (5) | |
C14 | −0.0538 (4) | 0.0853 (2) | 0.41369 (8) | 0.0567 (6) | |
C15 | 0.8493 (5) | 0.5368 (2) | 0.39863 (10) | 0.0616 (6) | |
O16 | 0.9949 (4) | 0.59309 (17) | 0.42912 (7) | 0.0897 (6) | |
O17 | 0.8478 (3) | 0.56064 (15) | 0.34987 (6) | 0.0748 (5) | |
C18 | 1.0307 (5) | 0.6610 (2) | 0.33454 (10) | 0.0877 (8) | |
H18A | 0.9931 | 0.6783 | 0.2996 | 0.132* | |
H18B | 1.2228 | 0.6352 | 0.3403 | 0.132* | |
H18C | 0.9978 | 0.7362 | 0.3536 | 0.132* | |
O19 | −0.6050 (3) | −0.10926 (15) | 0.31785 (6) | 0.0734 (5) | |
C20 | −0.6235 (5) | −0.0814 (3) | 0.26581 (9) | 0.0837 (8) | |
H20A | −0.7623 | −0.1351 | 0.2493 | 0.126* | |
H20B | −0.4446 | −0.0962 | 0.2522 | 0.126* | |
H20C | −0.6760 | 0.0058 | 0.2609 | 0.126* | |
O21 | 0.1291 (3) | 0.24526 (14) | 0.30176 (5) | 0.0657 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0541 (13) | 0.0547 (16) | 0.0427 (13) | 0.0009 (12) | −0.0024 (11) | −0.0013 (11) |
C2 | 0.0517 (13) | 0.0553 (16) | 0.0518 (15) | −0.0049 (11) | −0.0025 (11) | −0.0058 (12) |
C3 | 0.0741 (15) | 0.0794 (19) | 0.0481 (16) | −0.0117 (14) | −0.0139 (11) | −0.0116 (14) |
C4 | 0.0851 (17) | 0.087 (2) | 0.0471 (14) | −0.0246 (16) | −0.0071 (13) | 0.0017 (14) |
C5 | 0.0855 (16) | 0.084 (2) | 0.0519 (15) | −0.0292 (15) | −0.0047 (13) | 0.0166 (14) |
C6 | 0.0777 (16) | 0.0703 (19) | 0.0681 (19) | −0.0229 (14) | −0.0016 (14) | 0.0133 (15) |
C7 | 0.0565 (13) | 0.0599 (16) | 0.0535 (15) | −0.0049 (13) | −0.0053 (11) | 0.0004 (13) |
C8 | 0.0532 (12) | 0.0517 (15) | 0.0464 (13) | −0.0031 (11) | −0.0022 (11) | −0.0001 (11) |
C9 | 0.0491 (13) | 0.0508 (15) | 0.0449 (14) | 0.0006 (11) | −0.0036 (11) | 0.0031 (12) |
O10 | 0.0800 (10) | 0.0808 (13) | 0.0429 (9) | −0.0254 (9) | −0.0104 (8) | 0.0102 (8) |
C11 | 0.0475 (12) | 0.0498 (15) | 0.0427 (13) | −0.0023 (11) | −0.0027 (10) | 0.0012 (11) |
C12 | 0.0584 (13) | 0.0629 (17) | 0.0476 (14) | −0.0139 (13) | −0.0063 (11) | 0.0007 (12) |
C13 | 0.0470 (12) | 0.0466 (14) | 0.0436 (14) | 0.0005 (11) | −0.0022 (10) | 0.0020 (11) |
C14 | 0.0617 (14) | 0.0596 (17) | 0.0473 (15) | −0.0124 (12) | −0.0087 (11) | 0.0037 (12) |
C15 | 0.0620 (15) | 0.0620 (18) | 0.0598 (17) | −0.0037 (13) | −0.0044 (12) | −0.0063 (15) |
O16 | 0.1020 (13) | 0.0906 (14) | 0.0742 (12) | −0.0367 (11) | −0.0143 (10) | −0.0106 (11) |
O17 | 0.0865 (11) | 0.0729 (13) | 0.0641 (12) | −0.0294 (10) | −0.0039 (9) | 0.0052 (9) |
C18 | 0.0935 (18) | 0.078 (2) | 0.092 (2) | −0.0274 (16) | 0.0074 (15) | 0.0129 (16) |
O19 | 0.0772 (10) | 0.0744 (12) | 0.0671 (12) | −0.0265 (9) | −0.0081 (8) | −0.0049 (9) |
C20 | 0.0931 (18) | 0.102 (2) | 0.0549 (17) | −0.0282 (16) | −0.0058 (13) | −0.0135 (15) |
O21 | 0.0744 (10) | 0.0781 (12) | 0.0432 (9) | −0.0200 (8) | −0.0084 (7) | 0.0105 (8) |
C1—C2 | 1.373 (3) | C9—O21 | 1.227 (2) |
C1—C11 | 1.394 (3) | C9—C13 | 1.461 (3) |
C1—H1 | 0.9300 | C9—C11 | 1.462 (3) |
C2—C3 | 1.398 (3) | O10—C12 | 1.366 (2) |
C2—C15 | 1.480 (3) | O10—C14 | 1.386 (2) |
C3—C4 | 1.369 (3) | C11—C12 | 1.380 (3) |
C3—H3 | 0.9300 | C13—C14 | 1.376 (3) |
C4—C12 | 1.384 (3) | C15—O16 | 1.199 (2) |
C4—H4 | 0.9300 | C15—O17 | 1.330 (3) |
C5—C6 | 1.368 (3) | O17—C18 | 1.446 (3) |
C5—C14 | 1.383 (3) | C18—H18A | 0.9600 |
C5—H5 | 0.9300 | C18—H18B | 0.9600 |
C6—C7 | 1.384 (3) | C18—H18C | 0.9600 |
C6—H6 | 0.9300 | O19—C20 | 1.422 (3) |
C7—O19 | 1.364 (2) | C20—H20A | 0.9600 |
C7—C8 | 1.370 (3) | C20—H20B | 0.9600 |
C8—C13 | 1.400 (3) | C20—H20C | 0.9600 |
C8—H8 | 0.9300 | ||
C2—C1—C11 | 121.9 (2) | C12—C11—C9 | 120.9 (2) |
C2—C1—H1 | 119.1 | C1—C11—C9 | 121.22 (19) |
C11—C1—H1 | 119.1 | O10—C12—C11 | 122.33 (19) |
C1—C2—C3 | 118.4 (2) | O10—C12—C4 | 116.0 (2) |
C1—C2—C15 | 122.2 (2) | C11—C12—C4 | 121.6 (2) |
C3—C2—C15 | 119.4 (2) | C14—C13—C8 | 119.0 (2) |
C4—C3—C2 | 121.0 (2) | C14—C13—C9 | 120.5 (2) |
C4—C3—H3 | 119.5 | C8—C13—C9 | 120.44 (19) |
C2—C3—H3 | 119.5 | C13—C14—C5 | 121.0 (2) |
C3—C4—C12 | 119.2 (2) | C13—C14—O10 | 122.5 (2) |
C3—C4—H4 | 120.4 | C5—C14—O10 | 116.5 (2) |
C12—C4—H4 | 120.4 | O16—C15—O17 | 123.1 (2) |
C6—C5—C14 | 119.2 (2) | O16—C15—C2 | 124.7 (2) |
C6—C5—H5 | 120.4 | O17—C15—C2 | 112.2 (2) |
C14—C5—H5 | 120.4 | C15—O17—C18 | 116.59 (19) |
C5—C6—C7 | 121.0 (2) | O17—C18—H18A | 109.5 |
C5—C6—H6 | 119.5 | O17—C18—H18B | 109.5 |
C7—C6—H6 | 119.5 | H18A—C18—H18B | 109.5 |
O19—C7—C8 | 125.1 (2) | O17—C18—H18C | 109.5 |
O19—C7—C6 | 115.3 (2) | H18A—C18—H18C | 109.5 |
C8—C7—C6 | 119.6 (2) | H18B—C18—H18C | 109.5 |
C7—C8—C13 | 120.2 (2) | C7—O19—C20 | 117.16 (17) |
C7—C8—H8 | 119.9 | O19—C20—H20A | 109.5 |
C13—C8—H8 | 119.9 | O19—C20—H20B | 109.5 |
O21—C9—C13 | 122.78 (19) | H20A—C20—H20B | 109.5 |
O21—C9—C11 | 122.5 (2) | O19—C20—H20C | 109.5 |
C13—C9—C11 | 114.73 (19) | H20A—C20—H20C | 109.5 |
C12—O10—C14 | 118.97 (16) | H20B—C20—H20C | 109.5 |
C12—C11—C1 | 117.8 (2) | ||
C11—C1—C2—C3 | 0.3 (3) | C3—C4—C12—C11 | −0.1 (4) |
C11—C1—C2—C15 | −178.91 (19) | C7—C8—C13—C14 | −0.3 (3) |
C1—C2—C3—C4 | −0.6 (3) | C7—C8—C13—C9 | −179.76 (19) |
C15—C2—C3—C4 | 178.6 (2) | O21—C9—C13—C14 | 178.94 (19) |
C2—C3—C4—C12 | 0.6 (4) | C11—C9—C13—C14 | −0.7 (3) |
C14—C5—C6—C7 | −0.2 (4) | O21—C9—C13—C8 | −1.6 (3) |
C5—C6—C7—O19 | −179.7 (2) | C11—C9—C13—C8 | 178.67 (18) |
C5—C6—C7—C8 | 0.2 (4) | C8—C13—C14—C5 | 0.3 (3) |
O19—C7—C8—C13 | −179.99 (19) | C9—C13—C14—C5 | 179.7 (2) |
C6—C7—C8—C13 | 0.1 (3) | C8—C13—C14—O10 | −179.42 (18) |
C2—C1—C11—C12 | 0.1 (3) | C9—C13—C14—O10 | 0.0 (3) |
C2—C1—C11—C9 | −179.66 (19) | C6—C5—C14—C13 | −0.1 (4) |
O21—C9—C11—C12 | −179.0 (2) | C6—C5—C14—O10 | 179.7 (2) |
C13—C9—C11—C12 | 0.7 (3) | C12—O10—C14—C13 | 0.8 (3) |
O21—C9—C11—C1 | 0.8 (3) | C12—O10—C14—C5 | −178.9 (2) |
C13—C9—C11—C1 | −179.53 (17) | C1—C2—C15—O16 | 177.5 (2) |
C14—O10—C12—C11 | −0.8 (3) | C3—C2—C15—O16 | −1.7 (4) |
C14—O10—C12—C4 | 179.6 (2) | C1—C2—C15—O17 | −3.8 (3) |
C1—C11—C12—O10 | −179.70 (17) | C3—C2—C15—O17 | 177.05 (19) |
C9—C11—C12—O10 | 0.1 (3) | O16—C15—O17—C18 | −0.8 (3) |
C1—C11—C12—C4 | −0.2 (3) | C2—C15—O17—C18 | −179.59 (18) |
C9—C11—C12—C4 | 179.6 (2) | C8—C7—O19—C20 | −0.2 (3) |
C3—C4—C12—O10 | 179.4 (2) | C6—C7—O19—C20 | 179.7 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O16i | 0.93 | 2.54 | 3.362 (3) | 147 |
C20—H20A···O21ii | 0.96 | 2.50 | 3.454 (3) | 173 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x−1, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C16H12O5 |
Mr | 284.26 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 4.7709 (4), 10.5375 (8), 26.7854 (19) |
β (°) | 93.266 (7) |
V (Å3) | 1344.40 (18) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.2 × 0.04 × 0.04 |
Data collection | |
Diffractometer | Oxford Diffraction Ruby CCD diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2008) |
Tmin, Tmax | 0.994, 0.997 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 23842, 2366, 1051 |
Rint | 0.086 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.092, 0.81 |
No. of reflections | 2366 |
No. of parameters | 193 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.13, −0.14 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEPII (Johnson, 1976), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O16i | 0.93 | 2.54 | 3.362 (3) | 147 |
C20—H20A···O21ii | 0.96 | 2.50 | 3.454 (3) | 173 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x−1, y−1/2, −z+1/2. |
CgI | CgJ | Cg···Cg | Dihedral angle | Interplanar distance | Offset |
A | Ciii | 3.549 (1) | 0.8 | 3.420 (1) | 1.068 (1) |
B | Aiii | 3.583 (1) | 0.1 | 3.454 (1) | 0.953 (1) |
B | Ciii | 3.772 (1) | 0.8 | 3.455 (1) | 1.525 (1) |
Symmetry code: (iii) 1 + x, y, z. CgA, CgB and CgC are the centroids of the C9/O10/C11–C14, C1–C4/C12/C11 and C5–C8/C13/C14 rings, respectively. The dihedral angle is that between the planes of the rings CgI and CgJ. The interplanar distance is the perpendicular distance of CgI from ring J. The offset is the perpendicular distance of ring I from ring J. |
X | I | J | I···J | X···J | X-I···J |
C15 | O16 | CgBiii | 3.564 (2) | 3.689 (2) | 86.4 (1) |
Symmetry codes: (iii) 1 + x, y, z. Notes: CgB is the centroid of the C1–C4/C12/C11 ring. |
Acknowledgements
This work was supported by Funds for Science in 2008 as a Research Project (No. BW-8000-5-0453-8).
References
Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559–568. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Chen, I. J., Liou, S. J., Liou, S. S. & Lin, C. N. (1993). Gen. Pharmacol. 24, 1425–1433. CrossRef CAS PubMed Web of Science Google Scholar
Denisova-Dyatlova, O. A. & Glyzin, V. I. (1982). Russ. Chem. Rev. 51, 1753–1774. CrossRef CAS Google Scholar
Evans, I. R., Howard, J. A. K., Šavikin-Fodulović, K. & Menković, N. (2004). Acta Cryst. E60, o1557–o1559. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fukai, T., Oku, Y., Hou, A. J., Yonekawa, Y. M. & Terada, S. (2005). Phytomedicine, 12, 510–513. Web of Science CrossRef PubMed CAS Google Scholar
Geertsema, E. M., Hoen, R., Meetsma, A. & Feringa, B. L. (2006). Eur. J. Org. Chem. 16, 3596–3605. Web of Science CSD CrossRef Google Scholar
Gopalakrishnan, G., Banumathi, B. & Suresh, G. (1997). J. Nat. Prod. 60, 519–524. CrossRef CAS PubMed Web of Science Google Scholar
Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525–5534. CrossRef CAS Web of Science Google Scholar
Ignatushchenko, M. V., Winter, R. W. & Riscoe, M. (2000). Am. J. Trop. Med. Hyg. 62, 2000, 77–81. Google Scholar
Ito, C., Itoigawa, M., Takakura, T., Ruangrungsi, N., Enjo, F., Tokuda, H., Nishino, H. & Furukawa, H. (2003). J. Nat. Prod. 66, 200–205. Web of Science CrossRef PubMed CAS Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Librowski, T., Czarnecki, R., Czekaj, T. & Marona, H. (2005). Medicina (Kaunas), 41, 54–58. PubMed Google Scholar
Macias, M., Gamboa, A., Ulloa, M., Toscano, R. A. & Mata, R. (2001). Phytochemistry, 58, 751–758. Web of Science CSD CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Pfister, J. R., Ferraresi, R. W., Harrison, I. T., Rooks, W. H., Roszkowski, A. P., Van Horn, A. & Fried, J. H. (1972). J. Med. Chem. 15, 1032–1035. CrossRef CAS PubMed Web of Science Google Scholar
Pfister, J. R., Weymann, W. E., Mahoney, J. M. & Waterbury, L. D. (1980). J. Med. Chem. 23, 1264–1267. CrossRef CAS PubMed Web of Science Google Scholar
Santos-Contreras, R. J., Martínez-Martínez, F. J., García-Báez, E. V., Padilla-Martínez, I. I., Peraza, A. L. & Höpfl, H. (2007). Acta Cryst. C63, o239–o242. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shi, G.-F., Lu, R.-H., Yang, Y.-S., Li, C.-L., Yang, A.-M. & Cai, L.-X. (2004). Acta Cryst. E60, o878–o880. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steiner, T. (1999). Chem. Commun. pp. 313–314. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Xanthones represent a structurally diverse group of natural products with a broad range of biological activities. The unsubstituted xanthones have not been discovered in nature but its numerous derivatives have been isolated from representatives of higher plants, lichens, and lower fungi (Denisova-Dyatlova & Glyzin, 1982). Many naturally occurring xanthones as well as their synthetic derivatives described in numerous scientific publications exploit wide spectrum of biological activities: anti-allergic (Pfister et al., 1972), anti-inflammatory (Librowski et al., 2005), antitumor (Ito et al., 2003), antimicrobial (Fukai et al., 2005), cardiovascular (Chen et al., 1993), antimalarial (Gopalakrishnan et al., 1997) and antifungal activity (Ignatushchenko et al., 2000). The biological activity and the features responsible for the activity of xanthones largely depends on their structures. It is know that the 7-substituted xanthone-2-carboxylic acids and their esters show anti-allergic activity, which depends on the substituted groups (Pfister et al., 1980).
In the molecule of the title compound (Fig. 1) the bond lengths and angles characterizing the geometry of the xanthone skeleton are typical for this group compounds (Evans et al., 2004; Shi et al., 2004; Macias et al., 2001).
With respective average deviations from planarity of 0.003 (2) and 0.002 (1) Å, the xanthone and ester fragment are oriented at 2.8 (2)° to each other. The methoxy group lies nearly in the mean plane of the xanthone skeleton; the dihedral angles between the mean planes xanthone skeleton and delineated by atoms C7/O19/C20 are equal 0.7 (2)°. The mean planes of the xanthone skeleton lie either parallel or are inclined at an angle of 85.5 (2)° in the lattice.
In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1, Fig. 2) link the molecules, forming layers. The central ring A and the lateral rings B and C are involved in multidirectional π–π interactions and link layers between themselves (Table 2, Fig. 3). The O16(carboxyl) atom is involved in weak C—O···π interactions directed toward the lateral aromatic ring (ring B) (Table 3, Fig. 3).
All the interactions demonstrated were found by PLATON (Spek, 2003). The C—H···O (Bianchi et al., 2004; Steiner, 1999) interactions exhibit a hydrogen-bond-type nature. The C—O(carbonyl)···π interactions (Santos-Contreras et al., 2007), and also π–π interactions (Hunter & Sanders, 1990) should be of an attractive nature.