organic compounds
3,3-Ethylenedithio-3,3a,4,5,10,10b-hexahydro-2H-furo[2,3-a]carbazole
aDepartment of Chemistry, Faculty of Technical Education, Mersin University, 33500 Mersin, Turkey, bDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and cDepartment of Chemistry Education, Faculty of Education, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr
The title compound, C16H17NOS2, consists of a carbazole skeleton with tetrahydrofuran and dithiolane rings. In the indole ring system, the benzene and pyrrole rings are nearly coplanar, forming a dihedral angle of 1.57 (15)°. The cyclohexenone and tetrahydrofuran rings have envelope conformations, while the dithiolane ring adopts a twist conformation. In the pairs of weak intermolecular N—H⋯S hydrogen bonds link the molecules into centrosymmetric dimers with R22(16) ring motifs. Weak C—H⋯π interactions may further stabilize the structure.
Related literature
For general background, see: Phillipson & Zenk (1980); Saxton (1983); Abraham (1975). For related structures, see: Hökelek et al. (1994, 1998, 1999, 2004, 2006); Patır et al. (1997); Hökelek & Patır (1999,2002); Çaylak et al. (2007). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995)
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809006035/xu2478sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809006035/xu2478Isup2.hkl
For the preparation of the title compound, (I), sodium borohydride (5.00 g, 132.00 mmol) was added to a solution of ethyl 2-(1-oxo-2,3,4,9-tetrahydro-1H -carbazol-2yl)-1,3-dithiolane-2-carboxylate (5.00 g, 13.83 mmol) in THF (50 ml), and stirred at room temperature for 3 h. Then, the reaction mixture was poured into HCl (15%, 100 ml). The crude product was filtered and recrystallized from acetone (yield; 3.2 g, 77%, m.p. 468 K).
H10 atom (for NH) was located in difference synthesis and refined isotropically [N—H = 0.81 (3) Å and Uiso(H) = 0.043 (15) Å2]. The remaining H atoms were positioned geometrically, with C—H = 0.93, 0.98 and 0.97 Å for aromatic, methine and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. |
C16H17NOS2 | F(000) = 1280 |
Mr = 303.43 | Dx = 1.433 Mg m−3 |
Orthorhombic, Pbcn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2n 2ab | Cell parameters from 25 reflections |
a = 21.7617 (5) Å | θ = 9.3–16.7° |
b = 8.4992 (2) Å | µ = 0.37 mm−1 |
c = 15.2115 (3) Å | T = 294 K |
V = 2813.47 (11) Å3 | Prism, colorless |
Z = 8 | 0.35 × 0.20 × 0.15 mm |
Enraf–Nonius TurboCAD-4 diffractometer | 1105 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.149 |
Graphite monochromator | θmax = 24.3°, θmin = 2.6° |
Non–profiled ω scans | h = −25→25 |
Absorption correction: ψ scan (North et al., 1968) | k = −9→9 |
Tmin = 0.913, Tmax = 0.944 | l = −17→0 |
8196 measured reflections | 3 standard reflections every 120 min |
2289 independent reflections | intensity decay: 1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.108 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.98 | w = 1/[σ2(Fo2) + (0.0328P)2 + 1.8766P] where P = (Fo2 + 2Fc2)/3 |
2289 reflections | (Δ/σ)max < 0.001 |
185 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
C16H17NOS2 | V = 2813.47 (11) Å3 |
Mr = 303.43 | Z = 8 |
Orthorhombic, Pbcn | Mo Kα radiation |
a = 21.7617 (5) Å | µ = 0.37 mm−1 |
b = 8.4992 (2) Å | T = 294 K |
c = 15.2115 (3) Å | 0.35 × 0.20 × 0.15 mm |
Enraf–Nonius TurboCAD-4 diffractometer | 1105 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.149 |
Tmin = 0.913, Tmax = 0.944 | 3 standard reflections every 120 min |
8196 measured reflections | intensity decay: 1% |
2289 independent reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.108 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.98 | Δρmax = 0.24 e Å−3 |
2289 reflections | Δρmin = −0.23 e Å−3 |
185 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.32178 (5) | 0.10773 (14) | 0.23756 (8) | 0.0538 (4) | |
S2 | 0.33505 (5) | −0.00621 (14) | 0.05706 (9) | 0.0538 (3) | |
O1 | 0.48005 (12) | 0.0372 (3) | 0.1141 (2) | 0.0597 (9) | |
C2 | 0.43301 (17) | −0.0004 (5) | 0.1754 (3) | 0.0499 (12) | |
H2A | 0.4450 | 0.0310 | 0.2343 | 0.060* | |
H2B | 0.4250 | −0.1126 | 0.1753 | 0.060* | |
C3 | 0.37602 (18) | 0.0902 (5) | 0.1461 (3) | 0.0394 (11) | |
C3A | 0.40456 (17) | 0.2447 (4) | 0.1109 (3) | 0.0391 (11) | |
H3A | 0.3786 | 0.2865 | 0.0637 | 0.047* | |
C4 | 0.41256 (17) | 0.3698 (4) | 0.1817 (3) | 0.0402 (11) | |
H4A | 0.3724 | 0.4058 | 0.2008 | 0.048* | |
H4B | 0.4332 | 0.3238 | 0.2320 | 0.048* | |
C5 | 0.44962 (17) | 0.5095 (5) | 0.1485 (3) | 0.0423 (11) | |
H5A | 0.4272 | 0.5632 | 0.1023 | 0.051* | |
H5B | 0.4566 | 0.5834 | 0.1961 | 0.051* | |
C5A | 0.50957 (18) | 0.4512 (4) | 0.1140 (3) | 0.0375 (10) | |
C5B | 0.56863 (19) | 0.5223 (5) | 0.1102 (3) | 0.0402 (11) | |
C6 | 0.5923 (2) | 0.6705 (5) | 0.1333 (3) | 0.0487 (12) | |
H6 | 0.5664 | 0.7483 | 0.1552 | 0.058* | |
C7 | 0.6542 (2) | 0.6994 (6) | 0.1233 (3) | 0.0582 (14) | |
H7 | 0.6700 | 0.7973 | 0.1384 | 0.070* | |
C8 | 0.6930 (2) | 0.5844 (7) | 0.0909 (3) | 0.0608 (14) | |
H8 | 0.7347 | 0.6070 | 0.0850 | 0.073* | |
C9 | 0.6721 (2) | 0.4373 (5) | 0.0671 (3) | 0.0562 (13) | |
H9 | 0.6985 | 0.3607 | 0.0454 | 0.067* | |
C9A | 0.60977 (19) | 0.4090 (5) | 0.0771 (3) | 0.0426 (11) | |
C10A | 0.51613 (17) | 0.3010 (5) | 0.0837 (3) | 0.0365 (11) | |
C10B | 0.46569 (17) | 0.1854 (4) | 0.0715 (3) | 0.0401 (11) | |
H10B | 0.4600 | 0.1667 | 0.0085 | 0.048* | |
N10 | 0.57621 (16) | 0.2746 (5) | 0.0610 (3) | 0.0469 (10) | |
H10 | 0.5901 (17) | 0.196 (4) | 0.038 (3) | 0.043 (15)* | |
C11 | 0.2649 (2) | −0.0299 (5) | 0.1985 (3) | 0.0658 (14) | |
H11A | 0.2507 | −0.0947 | 0.2469 | 0.079* | |
H11B | 0.2299 | 0.0269 | 0.1750 | 0.079* | |
C12 | 0.2921 (2) | −0.1318 (5) | 0.1286 (3) | 0.0646 (14) | |
H12A | 0.2599 | −0.1851 | 0.0961 | 0.078* | |
H12B | 0.3188 | −0.2106 | 0.1545 | 0.078* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0516 (7) | 0.0527 (7) | 0.0570 (8) | −0.0052 (6) | 0.0097 (7) | −0.0042 (7) |
S2 | 0.0541 (7) | 0.0516 (7) | 0.0558 (7) | −0.0125 (7) | −0.0012 (6) | −0.0103 (7) |
O1 | 0.0462 (19) | 0.040 (2) | 0.093 (3) | 0.0094 (14) | 0.0183 (18) | 0.0122 (18) |
C2 | 0.042 (2) | 0.042 (2) | 0.065 (3) | 0.001 (2) | 0.001 (2) | 0.008 (3) |
C3 | 0.039 (3) | 0.036 (2) | 0.042 (3) | −0.003 (2) | −0.001 (2) | −0.001 (2) |
C3A | 0.038 (2) | 0.035 (2) | 0.045 (3) | 0.0018 (19) | −0.002 (2) | 0.000 (2) |
C4 | 0.034 (2) | 0.041 (3) | 0.047 (3) | 0.000 (2) | 0.004 (2) | −0.007 (2) |
C5 | 0.048 (3) | 0.036 (2) | 0.043 (3) | 0.001 (2) | −0.001 (2) | −0.004 (2) |
C5A | 0.040 (3) | 0.040 (3) | 0.033 (3) | 0.000 (2) | 0.002 (2) | −0.001 (2) |
C5B | 0.050 (3) | 0.042 (3) | 0.029 (2) | −0.003 (2) | −0.001 (2) | 0.001 (2) |
C6 | 0.059 (3) | 0.049 (3) | 0.038 (3) | −0.005 (2) | 0.002 (2) | 0.002 (2) |
C7 | 0.067 (3) | 0.061 (3) | 0.046 (3) | −0.025 (3) | −0.002 (3) | 0.006 (3) |
C8 | 0.047 (3) | 0.082 (4) | 0.054 (3) | −0.017 (3) | 0.000 (2) | 0.009 (3) |
C9 | 0.049 (3) | 0.059 (3) | 0.061 (3) | −0.003 (3) | 0.007 (3) | 0.005 (3) |
C9A | 0.044 (3) | 0.046 (3) | 0.038 (3) | −0.007 (2) | −0.001 (2) | 0.003 (2) |
C10A | 0.034 (3) | 0.040 (3) | 0.036 (3) | 0.002 (2) | −0.002 (2) | 0.002 (2) |
C10B | 0.042 (3) | 0.034 (2) | 0.045 (3) | −0.004 (2) | 0.004 (2) | 0.000 (2) |
N10 | 0.042 (2) | 0.040 (2) | 0.059 (3) | 0.004 (2) | 0.011 (2) | −0.006 (2) |
C11 | 0.051 (3) | 0.066 (4) | 0.080 (4) | −0.017 (3) | 0.005 (3) | 0.002 (3) |
C12 | 0.070 (3) | 0.048 (3) | 0.076 (4) | −0.020 (3) | 0.004 (3) | −0.007 (3) |
S1—C3 | 1.830 (4) | C5B—C6 | 1.405 (5) |
S1—C11 | 1.803 (4) | C6—H6 | 0.9300 |
S2—C3 | 1.817 (4) | C7—C6 | 1.377 (5) |
S2—C12 | 1.788 (4) | C7—C8 | 1.383 (6) |
O1—C2 | 1.421 (5) | C7—H7 | 0.9300 |
O1—C10B | 1.450 (4) | C8—H8 | 0.9300 |
C2—H2A | 0.9700 | C9—C8 | 1.379 (6) |
C2—H2B | 0.9700 | C9—H9 | 0.9300 |
C3—C2 | 1.526 (5) | C9A—C9 | 1.385 (5) |
C3A—C3 | 1.548 (5) | C9A—C5B | 1.408 (5) |
C3A—C4 | 1.523 (5) | C10A—C10B | 1.485 (5) |
C3A—C10B | 1.544 (5) | C10B—H10B | 0.9800 |
C3A—H3A | 0.9800 | N10—C10A | 1.371 (5) |
C4—C5 | 1.522 (5) | N10—C9A | 1.378 (5) |
C4—H4A | 0.9700 | N10—H10 | 0.81 (3) |
C4—H4B | 0.9700 | C11—H11A | 0.9700 |
C5—H5A | 0.9700 | C11—H11B | 0.9700 |
C5—H5B | 0.9700 | C12—C11 | 1.495 (6) |
C5A—C5 | 1.491 (5) | C12—H12A | 0.9700 |
C5A—C10A | 1.365 (5) | C12—H12B | 0.9700 |
C5B—C5A | 1.421 (5) | ||
C11—S1—C3 | 98.0 (2) | C5B—C6—H6 | 120.3 |
C12—S2—C3 | 94.1 (2) | C7—C6—C5B | 119.3 (4) |
C2—O1—C10B | 109.5 (3) | C7—C6—H6 | 120.3 |
O1—C2—C3 | 106.3 (3) | C6—C7—C8 | 120.8 (4) |
O1—C2—H2A | 110.5 | C6—C7—H7 | 119.6 |
O1—C2—H2B | 110.5 | C8—C7—H7 | 119.6 |
C3—C2—H2A | 110.5 | C9—C8—C7 | 122.1 (4) |
C3—C2—H2B | 110.5 | C9—C8—H8 | 119.0 |
H2A—C2—H2B | 108.7 | C7—C8—H8 | 119.0 |
S2—C3—S1 | 106.7 (2) | C8—C9—C9A | 116.9 (4) |
C2—C3—S1 | 110.1 (3) | C8—C9—H9 | 121.5 |
C2—C3—S2 | 112.9 (3) | C9A—C9—H9 | 121.5 |
C2—C3—C3A | 101.7 (3) | C9—C9A—C5B | 122.9 (4) |
C3A—C3—S1 | 116.9 (3) | N10—C9A—C9 | 130.1 (4) |
C3A—C3—S2 | 108.7 (3) | N10—C9A—C5B | 107.1 (4) |
C3—C3A—H3A | 109.3 | O1—C10B—C3A | 107.2 (3) |
C4—C3A—C3 | 113.2 (3) | O1—C10B—C10A | 111.1 (3) |
C4—C3A—H3A | 109.3 | O1—C10B—H10B | 108.9 |
C4—C3A—C10B | 113.8 (3) | N10—C10A—C10B | 124.4 (4) |
C10B—C3A—C3 | 101.7 (3) | C3A—C10B—H10B | 108.9 |
C10B—C3A—H3A | 109.3 | C5A—C10A—N10 | 109.8 (4) |
C3A—C4—H4A | 109.3 | C5A—C10A—C10B | 125.7 (4) |
C3A—C4—H4B | 109.3 | C10A—C10B—C3A | 111.9 (3) |
C5—C4—C3A | 111.8 (3) | C10A—C10B—H10B | 108.9 |
C5—C4—H4A | 109.3 | C9A—N10—H10 | 124 (3) |
C5—C4—H4B | 109.3 | C10A—N10—C9A | 109.0 (4) |
H4A—C4—H4B | 107.9 | C10A—N10—H10 | 127 (3) |
C4—C5—H5A | 109.9 | S1—C11—H11A | 109.7 |
C4—C5—H5B | 109.9 | S1—C11—H11B | 109.7 |
C5A—C5—C4 | 108.7 (3) | C12—C11—S1 | 109.8 (3) |
C5A—C5—H5A | 109.9 | C12—C11—H11A | 109.7 |
C5A—C5—H5B | 109.9 | C12—C11—H11B | 109.7 |
H5A—C5—H5B | 108.3 | H11A—C11—H11B | 108.2 |
C5B—C5A—C5 | 131.6 (4) | S2—C12—H12A | 110.3 |
C10A—C5A—C5 | 121.4 (4) | S2—C12—H12B | 110.3 |
C10A—C5A—C5B | 106.8 (4) | C11—C12—S2 | 107.1 (3) |
C6—C5B—C5A | 134.6 (4) | C11—C12—H12A | 110.3 |
C6—C5B—C9A | 118.0 (4) | C11—C12—H12B | 110.3 |
C9A—C5B—C5A | 107.4 (4) | H12A—C12—H12B | 108.6 |
C11—S1—C3—S2 | 15.4 (3) | C5A—C5B—C6—C7 | 177.8 (4) |
C11—S1—C3—C2 | −107.4 (3) | C9A—C5B—C6—C7 | −0.2 (6) |
C11—S1—C3—C3A | 137.2 (3) | C5—C5A—C10A—N10 | −176.3 (4) |
C3—S1—C11—C12 | 17.0 (4) | C5—C5A—C10A—C10B | 7.2 (6) |
C12—S2—C3—S1 | −36.2 (2) | C5B—C5A—C10A—N10 | −0.1 (5) |
C12—S2—C3—C2 | 84.9 (3) | C5B—C5A—C10A—C10B | −176.6 (4) |
C12—S2—C3—C3A | −163.1 (3) | C6—C5B—C5A—C5 | −2.7 (8) |
C3—S2—C12—C11 | 49.5 (4) | C6—C5B—C5A—C10A | −178.4 (5) |
C10B—O1—C2—C3 | 22.4 (4) | C9A—C5B—C5A—C5 | 175.4 (4) |
C2—O1—C10B—C3A | 0.5 (4) | C9A—C5B—C5A—C10A | −0.2 (4) |
C2—O1—C10B—C10A | 123.0 (4) | C8—C7—C6—C5B | −0.1 (7) |
C4—C3A—C3—S1 | 31.6 (4) | C6—C7—C8—C9 | 0.2 (7) |
C4—C3A—C3—S2 | 152.4 (3) | C9A—C9—C8—C7 | 0.0 (7) |
C4—C3A—C3—C2 | −88.3 (4) | N10—C9A—C5B—C5A | 0.5 (4) |
C10B—C3A—C3—S1 | 154.1 (3) | N10—C9A—C5B—C6 | 179.0 (4) |
C10B—C3A—C3—S2 | −85.1 (3) | C9—C9A—C5B—C5A | −178.1 (4) |
C10B—C3A—C3—C2 | 34.2 (4) | C9—C9A—C5B—C6 | 0.4 (6) |
C3—C3A—C4—C5 | 171.0 (3) | N10—C9A—C9—C8 | −178.5 (4) |
C10B—C3A—C4—C5 | 55.6 (4) | C5B—C9A—C9—C8 | −0.3 (6) |
C4—C3A—C10B—O1 | 99.6 (4) | N10—C10A—C10B—O1 | 55.3 (5) |
C3—C3A—C10B—O1 | −22.4 (4) | N10—C10A—C10B—C3A | 175.1 (4) |
C4—C3A—C10B—C10A | −22.4 (5) | C5A—C10A—C10B—O1 | −128.7 (4) |
C3—C3A—C10B—C10A | −144.4 (3) | C5A—C10A—C10B—C3A | −9.0 (6) |
S1—C3—C2—O1 | −160.3 (3) | C9A—N10—C10A—C5A | 0.4 (5) |
S2—C3—C2—O1 | 80.6 (4) | C9A—N10—C10A—C10B | 176.9 (4) |
C3A—C3—C2—O1 | −35.7 (4) | C10A—N10—C9A—C5B | −0.5 (5) |
C3A—C4—C5—C5A | −55.3 (4) | C10A—N10—C9A—C9 | 177.8 (4) |
C5B—C5A—C5—C4 | −149.7 (4) | S2—C12—C11—S1 | −44.2 (4) |
C10A—C5A—C5—C4 | 25.4 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N10—H10···S2i | 0.81 (4) | 2.71 (4) | 3.487 (4) | 161 (4) |
C3A—H3A···Cg2ii | 0.98 | 2.85 | 3.725 (4) | 149 |
C4—H4B···Cg1iii | 0.97 | 2.79 | 3.556 (5) | 136 |
C5—H5A···Cg1ii | 0.97 | 2.96 | 3.714 (5) | 135 |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x, −y+2, −z; (iii) −x, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C16H17NOS2 |
Mr | 303.43 |
Crystal system, space group | Orthorhombic, Pbcn |
Temperature (K) | 294 |
a, b, c (Å) | 21.7617 (5), 8.4992 (2), 15.2115 (3) |
V (Å3) | 2813.47 (11) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.37 |
Crystal size (mm) | 0.35 × 0.20 × 0.15 |
Data collection | |
Diffractometer | Enraf–Nonius TurboCAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.913, 0.944 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8196, 2289, 1105 |
Rint | 0.149 |
(sin θ/λ)max (Å−1) | 0.579 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.108, 0.98 |
No. of reflections | 2289 |
No. of parameters | 185 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.24, −0.23 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
C10B—O1—C2—C3 | 22.4 (4) | C3A—C3—C2—O1 | −35.7 (4) |
C2—O1—C10B—C3A | 0.5 (4) | C3A—C4—C5—C5A | −55.3 (4) |
C10B—C3A—C3—C2 | 34.2 (4) | C10A—C5A—C5—C4 | 25.4 (5) |
C10B—C3A—C4—C5 | 55.6 (4) | C5—C5A—C10A—C10B | 7.2 (6) |
C3—C3A—C10B—O1 | −22.4 (4) | C5A—C10A—C10B—C3A | −9.0 (6) |
C4—C3A—C10B—C10A | −22.4 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N10—H10···S2i | 0.81 (4) | 2.71 (4) | 3.487 (4) | 161 (4) |
C3A—H3A···Cg2ii | 0.98 | 2.85 | 3.725 (4) | 149 |
C4—H4B···Cg1iii | 0.97 | 2.79 | 3.556 (5) | 136 |
C5—H5A···Cg1ii | 0.97 | 2.96 | 3.714 (5) | 135 |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x, −y+2, −z; (iii) −x, y, −z+1/2. |
Acknowledgements
The authors acknowledge the purchase of the CAD-4 diffractometer under grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.
References
Abraham, D. J. (1975). The Catharanthus Alkaloids, edited by W. I. Taylor & N. R. Fransworth, ch. 7 and 8. New York: Marcel Decker. Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Çaylak, N., Hökelek, T., Uludağ, N. & Patır, S. (2007). Acta Cryst. E63, o3913–o3914. Web of Science CSD CrossRef IUCr Journals Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Hökelek, T., Gündüz, H., Patir, S. & Uludaug, N. (1998). Acta Cryst. C54, 1297–1299. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T. & Patir, S. (1999). Acta Cryst. C55, 675–677. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T. & Patır, S. (2002). Acta Cryst. E58, o374–o376. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T., Patır, S., Gülce, A. & Okay, G. (1994). Acta Cryst. C50, 450–453. CSD CrossRef Web of Science IUCr Journals Google Scholar
Hökelek, T., Patir, S. & Uludauğ, N. (1999). Acta Cryst. C55, 114–116. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T., Uludağ, N. & Patır, S. (2004). Acta Cryst. E60, o25–o27. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T., Uludağ, N. & Patır, S. (2006). Acta Cryst. E62, o791–o793. Web of Science CSD CrossRef IUCr Journals Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Patır, S., Okay, G., Gülce, A., Salih, B. & Hökelek, T. (1997). J. Heterocycl. Chem. 34, 1239–1242. CAS Google Scholar
Phillipson, J. D. & Zenk, M. H. (1980). Indole and Biogenetically Related Alkaloids, ch 3. New York: Academic Press. Google Scholar
Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, ch 8 and 11. New York: Wiley. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Tetrahydrocarbazole systems are present in the framework of a number of indole-type alkaloids of biological interest (Phillipson & Zenk, 1980; Saxton, 1983; Abraham, 1975). The structures of tricyclic, tetracyclic and pentacyclic ring systems with dithiolane and other substituents of the tetrahydrocarbazole core, have been the subject of much interest in our laboratory. These include 1,2,3,4-tetrahydrocarbazole-1-spiro-2'-[1,3]dithiolane, (II) (Hökelek et al., 1994), N-(2-methoxyethyl)-N-{2,3,4,9-tetrahydrospiro[1H-carbazole-1, 2-(1,3)dithiolane]-4-yl}benzene-sulfonamide, (III) (Patır et al., 1997), spiro[carbazole-1(2H),2'-[1,3]-dithiolan]-4(3H)-one, (IV) (Hökelek et al., 1998), 9-acetonyl-3-ethylidene-1,2,3,4-tetrahydrospiro[carbazole-1,2'-[1,3] dithiolan]-4-one, (V) (Hökelek et al., 1999), N-(2,2-dimethoxyethyl)-N -{9-methoxymethyl-1,2,3,4-tetrahydrospiro[carbazole-1,2'-[1,3]dithiolan] -4-yl}benzamide, (VI) (Hökelek & Patır, 1999), 3a,4,10,10b-tetrahydro-2H -furo[2,3-a]carbazol-5(3H)-one, (VII) (Çaylak et al., 2007); also the pentacyclic compounds 6-ethyl-4-(2-methoxyethyl)-2,6-methano-5-oxo-hexahydro- pyrrolo(2,3 - d)carbazole-1-spiro-2'-(1,3)dithiolane, (VIII) (Hökelek & Patır, 2002), N-(2-benzyloxyethyl)-4,7-dimethyl-6-(1,3-dithiolan-2-yl)-1,2, 3,4,5,6-hexahydro-1,5-methano-2-azocino[4,3-b]indol-2-one, (IX) (Hökelek et al., 2004) and 4-ethyl-6,6-ethylenedithio-2-(2-methoxyethyl)-7-methoxy- methylene-2,3,4,5,6,7-hexahydro-1,5-methano-1H-azocino[4,3-b]indol-3-one, (X) (Hökelek et al., 2006). The title compound, (I), may be considered as a synthetic precursor of tetracyclic indole alkaloids of biological interests. The present study was undertaken to ascertain its crystal structure.
In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. It consists of a carbazole skeleton with tetrahydrofuran and dithiolane rings. The bonds N10—C9a [1.378 (5) Å] and N10—C10a [1.371 (5) Å] generally agree with those in compounds (II)-(X). In all structures atom N10 is substituted.
An examination of the deviations from the least-squares planes through individual rings shows that rings A (C5b/C6—C9/C9a) and B (C5a/C5b/C9a/N10/C10a) are planar. They are also nearly coplanar with a dihedral angle of A/B = 1.57 (15)°. Rings C (C3a/C4/C5/C5a/C10a/C10b), D (O1/C2/C3/C3a/C10b) and E (S1/S2/C3/C11/C12) are not planar. Rings C and D have envelope conformations with atoms C4 and C3 displaced by -0.677 (4) Å (for ring C) and 0.568 (4) Å (for ring D) from the planes of the other ring atoms, respectively. Ring E adopts twisted conformation. Rings C and D have pseudo mirror planes running through atoms C10a and C4 (for ring C) and running through atom C3 and midpoint of O1—C10b bond (for ring D), as can be deduced from the torsion angles (Table 1).
In the crystal structure, intermolecular N—H···S hydrogen bonds (Table 2) link the molecules into centrosymmetric dimers (Fig. 2) by forming the R22(16) ring motifs (Bernstein et al., 1995), in which they may be effective in the stabilization of the structure. The weak C—H···π interactions (Table 1) may further stabilize the structure.