organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Di­benzoyl-2,6-di­methyl-1-pentyl-4-pyridone

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, TR-55139 Samsun, Turkey, and bDepartment of Chemistry, Faculty of Arts and Sciences, Yüzüncü Yıl University TR-65080 Van, Turkey
*Correspondence e-mail: sgul@omu.edu.tr

(Received 30 January 2009; accepted 23 February 2009; online 28 February 2009)

In the crystal structure of the title compound, C26H27NO3, a one-dimensional network of C—H⋯O hydrogen bonds and π-ring inter­actions is responsible for crystal stabilization. Inter­molecular hydrogen bonds and C—H⋯ π inter­actions produce R22(10), R44(27) and R44(29) rings.

Related literature

Six-membered nitro­gen heterocycles are key units in medicinal chemistry and versatile inter­mediates in organic synthesis, see: Dong et al. (2005[Dong, D., Bi, X., Liu, Q. & Cong, F. (2005). Chem. Commun. pp. 3580-3582.]) and references therein. 4(1H)-pyridinones are of great importance for pharmacological reasons, see: Hershko et al. (1999[Hershko, C., Theanacho, E. N., Spira, D. T., Peter, H. H., Dobbin, P., Aytemir, M. D., Uzbay, T. & Erol, D. D. (1999). Arzneim. Forsch. Drug. Res. 49, 250-254.]). The reaction of primary amines with 4(1H)-pyrones to form 4(1H)-pyridinones has been known for more than 90 years (Peratoner, 1906[Peratoner, A. (1906). Gazz. Chim. Ital. 36, 52-53.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the reaction of dibenzoyl­methane with oxalyl chloride, see: Şener et al. (2007[Şener, A., Eskinoba, S., Bildirici, İ., Genç, H. & Kasımoğulları, R. (2007). J. Heterocycl. Chem. 44, 337-341.]).

[Scheme 1]

Experimental

Crystal data
  • C26H27NO3

  • Mr = 401.49

  • Orthorhombic, P 21 21 21

  • a = 7.7879 (3) Å

  • b = 12.6502 (6) Å

  • c = 23.6491 (14) Å

  • V = 2329.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.45 × 0.34 × 0.16 mm

Data collection
  • Stoe IPDS-II diffractometer

  • Absorption correction: none

  • 10674 measured reflections

  • 2632 independent reflections

  • 1239 reflections with I > 2σ(I)

  • Rint = 0.096

Refinement
  • R[F2 > 2σ(F2)] = 0.103

  • wR(F2) = 0.316

  • S = 0.97

  • 2632 reflections

  • 266 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.93 2.57 3.288 (14) 135
C2—H2⋯Cg3ii 0.93 2.95 3.759 (11) 145
C17—H17⋯Cg2iii 0.93 3.09 3.813 (9) 135
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]. Cg2 and Cg3 are the centroids of the C1–C6 and C16–C21 rings, respectively.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Six-membered nitrogen heterocycles are key units in medicinal chemistry and versatile intermediates in organic synthesis (Dong et al., 2005, and references therein). 4(1H)-pyridinones are of great importance for pharmacological reasons (Hershko et al., 1999). On the other hand, the reaction of primary amines with 4(1H)-pyrones to form 4(1H)-pyridinones have been known for more than 90 years (Peratoner, 1906). Both one step synthesis 3-acetyl-5-benzoyl-6-methyl-2-phenyl-4(1H)-pyrone derivative 1 (scheme 2) from the reaction of dibenzoylmethane with oxalyl chloride and the reactions of 1 with primary amines have been reported recently (Şener et al., 2007). These studies relieved that 1 could reacts with n-pentylamine even when it is accompanying with a rearrangement to give a pyridinone derivative 2 (Fig. 3) with symmetrical structure. Here, it has been planned to confirm this symmetrical structure of 2 by X-ray diffraction method.

The molecular structure and atom-numbering scheme is shown in Fig. 1; selected bond lengths are given in Table 1. The C7—O1, C9—O2 and C15—O3 bond lengths are indicative of a significant double-bond character, respectively (Table 1). The pyridine ring is twisted with C1- and C16-benzene rings with dihedral angles of 89.9 (3)° and 86.9 (3)°, respectively.

In the crystal structure the weak C—H···O hydrogen bonding occurs (Table 2), so forming a C(9)6 chain running parallel to the [010] direction (Fig. 2). The title compound also contains two intermolecular C—H···π interactions. The first is from C2 to the centroid of the C16ii-ring [symmetry code: (ii) 2-x,-1/2+y,3/2-z) [C2···Cg3 = 3.759 (11) Å, H2···Cg3 = 2.9516 Å, C2—H2···Cg3 = 145°]. The second C—H···π contact is from C17 to the centroid of the C1iii-ring [symmetry code: (iii) 1-x, 1/2+y, 3/2-z) [C17···Cg2 = 3.813 (9) Å, H17···Cg2= 3.0946 Å, C17—H17···Cg2 = 135°]. The combination of the C—H···π interactions along [010] generates a chain of edge-fused R44(27) rings. Intermolecular hydrogen bonds and C—H···π interactions produce R22(10) and R44(29) rings.

Related literature top

Six-membered nitrogen heterocycles are key units in medicinal chemistry and versatile intermediates in organic synthesis, see: Dong et al. (2005) and references therein. 4(1H)-pyridinones are of great importance for pharmacological reasons, see: Hershko et al. (1999). The reaction of primary amines with 4(1H)-pyrones to form 4(1H)-pyridinones has been known for more than 90 years (Peratoner, 1906). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the reaction of dibenzoylmethane with oxalyl chloride, see: Şener et al. (2007).Cg2 and Cg3 are the centroids of the C1–C6 and C16–C21 rings, respectively.

Experimental top

3-Acetyl-5-benzoyl-2-phenyl-6-methyl-4-pyrone (0.33 g, 1 mmol) and n-pentylamine derivative (0.23 ml, 2 mmol) were refluxed in ethanol for 36 h. The solvent was evaporated under reduced pressure to give an oily residue which was treated with ether and finally crystallized from ethanol. Yield 35%, mp 210°C.

Refinement top

All H atoms were placed in calculated positions and constrained to ride on their parents atoms, with C—H = 0.93–0.97 A° and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C). The absolute structure was not determined, Friedels pairs were merged.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability.
[Figure 2] Fig. 2. A part of the crystal structure of the title compound showing the R22(10) chain of rings along [010] generated by one C—H···O hydrogen bond and one C—H···π interaction.
[Figure 3] Fig. 3. Preparation of the title compound.
3,5-Dibenzoyl-2,6-dimethyl-1-pentyl-4-pyridone top
Crystal data top
C26H27NO3F(000) = 856
Mr = 401.49Dx = 1.145 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5814 reflections
a = 7.7879 (3) Åθ = 1.6–26.8°
b = 12.6502 (6) ŵ = 0.07 mm1
c = 23.6491 (14) ÅT = 296 K
V = 2329.9 (2) Å3Prism, colourless
Z = 40.45 × 0.34 × 0.16 mm
Data collection top
Stoe IPDS-II
diffractometer
1239 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.096
Graphite monochromatorθmax = 26.0°, θmin = 1.7°
Detector resolution: 6.67 pixels mm-1h = 99
ω scansk = 1514
10674 measured reflectionsl = 2729
2632 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.103Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.316H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
2632 reflections(Δ/σ)max = 0.002
266 parametersΔρmax = 0.44 e Å3
1 restraintΔρmin = 0.60 e Å3
Crystal data top
C26H27NO3V = 2329.9 (2) Å3
Mr = 401.49Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.7879 (3) ŵ = 0.07 mm1
b = 12.6502 (6) ÅT = 296 K
c = 23.6491 (14) Å0.45 × 0.34 × 0.16 mm
Data collection top
Stoe IPDS-II
diffractometer
1239 reflections with I > 2σ(I)
10674 measured reflectionsRint = 0.096
2632 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1031 restraint
wR(F2) = 0.316H-atom parameters constrained
S = 0.97Δρmax = 0.44 e Å3
2632 reflectionsΔρmin = 0.60 e Å3
266 parameters
Special details top

Experimental. Ir (KBr): (CH, aromatic) 3100, (CH, aliphatic) 2956–2928, (C=O) 1670, 1621 cm-1; 1H NMR (CDCl3): δ 7.90–7.26 (m, 10H, CH, aromatic), 3.98–3.85 (t, 2H, N—CH2–), 2.30 (s, 6H, CH3), 1.75–1.71 (m, 2H, N—CH2—CH2—CH2CH2CH3), 1.41–1.34 (m, 4H, N—CH2—CH2—CH2—CH2—CH3), 0.96–0.90 p.p.m. (t, 3H, N—CH2—CH2—CH2—CH2—CH3); 13C NMR (CDCl3): δ 198.47 (C=O, benzoyl), 175.68 (C=O, C-4), 148.58 (C-2 and C-6), 139.09, 135.44, 132.42, 131.33, 130.58, 50.20 (N—CH2–), 31.87 (CH3), 30.70 (N—CH2—CH2—CH2CH2CH3), 24.19 (N—CH2CH2—CH2—CH2CH3), 19.46 (N—CH2CH2CH2—CH2—CH3), 15.85 p.p.m. (N—CH2CH2CH2CH2—CH3). Anal. Calcd. for C26H21NO3: C, 78.97; H, 5.35; N, 3.54. Found: C, 78.91; H, 5.34; N, 3.55.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8305 (12)0.7239 (8)0.8563 (4)0.090 (3)
H10.83390.78640.87700.107*
C20.9313 (13)0.6404 (10)0.8730 (5)0.100 (3)
H21.00090.64600.90480.120*
C30.9274 (16)0.5502 (11)0.8425 (5)0.111 (4)
H30.99540.49320.85320.134*
C40.8278 (16)0.5426 (8)0.7976 (5)0.104 (3)
H40.82900.47980.77720.125*
C50.7240 (12)0.6216 (7)0.7797 (3)0.080 (2)
H50.65400.61240.74820.096*
C60.7237 (10)0.7178 (6)0.8093 (3)0.0649 (18)
C70.6137 (11)0.8055 (6)0.7925 (3)0.075 (2)
C80.5347 (9)0.8073 (5)0.7345 (3)0.0616 (17)
C90.6469 (10)0.8425 (6)0.6904 (3)0.0671 (19)
C100.5706 (11)0.8403 (6)0.6347 (4)0.077 (2)
C110.4073 (13)0.8064 (7)0.6266 (3)0.081 (2)
C120.3721 (10)0.7743 (6)0.7247 (3)0.072 (2)
C130.2594 (13)0.7343 (9)0.7728 (4)0.103 (3)
H13A0.31160.75180.80840.154*
H13B0.24720.65890.77000.154*
H13C0.14830.76680.77050.154*
C140.3253 (17)0.8085 (11)0.5670 (4)0.126 (4)
H14A0.26000.74510.56120.188*
H14B0.41420.81300.53890.188*
H14C0.25100.86880.56380.188*
C150.6801 (14)0.8736 (7)0.5869 (4)0.091 (3)
C160.6728 (10)0.9838 (6)0.5644 (3)0.071 (2)
C170.5731 (11)1.0598 (7)0.5895 (3)0.078 (2)
H170.50641.04380.62100.093*
C180.5739 (12)1.1613 (7)0.5668 (4)0.087 (2)
H180.50861.21370.58400.105*
C190.6669 (14)1.1856 (7)0.5204 (4)0.092 (3)
H190.66411.25360.50550.111*
C200.7670 (12)1.1074 (8)0.4953 (4)0.090 (3)
H200.83201.12300.46340.108*
C210.7700 (11)1.0099 (7)0.5170 (3)0.075 (2)
H210.83830.95850.50020.089*
C220.1361 (11)0.7219 (9)0.6621 (4)0.100 (3)
H22A0.06640.73200.69570.120*
H22B0.07830.75620.63080.120*
C230.1501 (16)0.6065 (10)0.6501 (6)0.130 (4)
H23A0.21910.59650.61630.156*
H23B0.20890.57240.68130.156*
C240.0144 (17)0.5563 (12)0.6419 (5)0.129
H24A0.00080.49120.66300.155*
H24B0.08770.59950.66570.155*
C250.130 (2)0.5243 (14)0.5997 (7)0.175
H25A0.05870.46640.58660.211*
H25B0.10080.58140.57410.211*
C260.281 (3)0.4911 (19)0.5675 (11)0.247 (9)
H26A0.34410.43940.58880.371*
H26B0.24520.46090.53220.371*
H26C0.35310.55120.56040.371*
N10.3069 (8)0.7731 (5)0.6710 (3)0.0749 (18)
O10.5886 (10)0.8785 (6)0.8250 (3)0.112 (2)
O20.7961 (8)0.8698 (6)0.6990 (3)0.103 (2)
O30.7820 (14)0.8093 (6)0.5670 (4)0.150 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.086 (6)0.104 (6)0.079 (5)0.018 (5)0.014 (5)0.007 (5)
C20.079 (6)0.125 (9)0.094 (7)0.009 (6)0.003 (5)0.037 (6)
C30.102 (8)0.119 (9)0.113 (9)0.021 (7)0.017 (7)0.034 (7)
C40.132 (9)0.083 (6)0.098 (7)0.016 (6)0.015 (8)0.001 (5)
C50.095 (6)0.073 (5)0.071 (5)0.008 (5)0.000 (5)0.011 (4)
C60.066 (4)0.072 (4)0.056 (4)0.008 (4)0.005 (4)0.011 (3)
C70.082 (5)0.064 (4)0.078 (5)0.001 (4)0.007 (4)0.003 (4)
C80.061 (4)0.057 (4)0.066 (4)0.001 (3)0.003 (4)0.003 (3)
C90.068 (5)0.065 (4)0.068 (5)0.004 (4)0.016 (4)0.008 (3)
C100.080 (5)0.067 (4)0.084 (5)0.003 (4)0.008 (5)0.020 (4)
C110.100 (6)0.081 (5)0.064 (4)0.022 (5)0.014 (5)0.014 (4)
C120.068 (4)0.080 (5)0.068 (4)0.009 (4)0.018 (4)0.006 (4)
C130.090 (6)0.121 (7)0.097 (6)0.032 (6)0.005 (5)0.016 (6)
C140.141 (9)0.162 (11)0.074 (6)0.009 (9)0.022 (7)0.012 (6)
C150.117 (7)0.082 (6)0.073 (5)0.019 (6)0.032 (5)0.015 (4)
C160.074 (5)0.086 (5)0.053 (4)0.002 (4)0.001 (4)0.006 (4)
C170.084 (5)0.088 (6)0.062 (4)0.007 (4)0.010 (4)0.007 (4)
C180.097 (6)0.081 (5)0.084 (6)0.009 (5)0.009 (6)0.005 (5)
C190.106 (7)0.076 (5)0.095 (6)0.003 (5)0.007 (6)0.012 (5)
C200.089 (6)0.103 (6)0.078 (5)0.016 (6)0.016 (5)0.032 (5)
C210.079 (5)0.080 (5)0.064 (4)0.001 (4)0.010 (4)0.008 (4)
C220.061 (5)0.146 (9)0.093 (6)0.005 (6)0.020 (5)0.003 (6)
C230.109 (8)0.114 (8)0.166 (11)0.020 (7)0.021 (8)0.029 (8)
C240.1280.1550.1040.031 (8)0.017 (7)0.036 (6)
C250.1750.1550.1970.001 (12)0.005 (14)0.030 (11)
C260.1800.30 (3)0.2590.146 (16)0.002 (18)0.01 (2)
N10.068 (4)0.077 (4)0.080 (4)0.004 (3)0.005 (4)0.011 (3)
O10.134 (6)0.100 (5)0.102 (4)0.018 (5)0.001 (4)0.025 (4)
O20.074 (4)0.118 (5)0.117 (5)0.020 (4)0.012 (4)0.014 (4)
O30.213 (9)0.096 (5)0.141 (6)0.055 (6)0.088 (7)0.035 (4)
Geometric parameters (Å, º) top
C1—C21.374 (14)C15—O31.230 (11)
C1—C61.389 (11)C15—C161.494 (12)
C1—H10.9300C16—C171.370 (11)
C2—C31.351 (16)C16—C211.391 (11)
C2—H20.9300C17—C181.392 (11)
C3—C41.318 (15)C17—H170.9300
C3—H30.9300C18—C191.349 (12)
C4—C51.353 (13)C18—H180.9300
C4—H40.9300C19—C201.394 (13)
C5—C61.404 (11)C19—H190.9300
C5—H50.9300C20—C211.335 (12)
C6—C71.457 (11)C20—H200.9300
C7—O11.217 (10)C21—H210.9300
C7—C81.504 (11)C22—C231.491 (17)
C8—C121.354 (11)C22—N11.494 (12)
C8—C91.432 (10)C22—H22A0.9700
C9—O21.229 (10)C22—H22B0.9700
C9—C101.445 (12)C23—C241.442 (16)
C10—C111.356 (13)C23—H23A0.9700
C10—C151.478 (12)C23—H23B0.9700
C11—N11.374 (11)C24—C251.404 (15)
C11—C141.549 (13)C24—H24A0.9700
C12—N11.368 (10)C24—H24B0.9700
C12—C131.525 (11)C25—C261.46 (2)
C13—H13A0.9600C25—H25A0.9700
C13—H13B0.9600C25—H25B0.9700
C13—H13C0.9600C26—H26A0.9600
C14—H14A0.9600C26—H26B0.9600
C14—H14B0.9600C26—H26C0.9600
C14—H14C0.9600
C2—C1—C6122.0 (9)C17—C16—C21119.4 (7)
C2—C1—H1119.0C17—C16—C15121.5 (7)
C6—C1—H1119.0C21—C16—C15119.1 (7)
C3—C2—C1118.8 (10)C16—C17—C18118.5 (8)
C3—C2—H2120.6C16—C17—H17120.8
C1—C2—H2120.6C18—C17—H17120.8
C4—C3—C2120.3 (11)C19—C18—C17121.8 (9)
C4—C3—H3119.8C19—C18—H18119.1
C2—C3—H3119.8C17—C18—H18119.1
C3—C4—C5123.4 (10)C18—C19—C20119.0 (8)
C3—C4—H4118.3C18—C19—H19120.5
C5—C4—H4118.3C20—C19—H19120.5
C4—C5—C6119.0 (8)C21—C20—C19120.1 (8)
C4—C5—H5120.5C21—C20—H20120.0
C6—C5—H5120.5C19—C20—H20120.0
C1—C6—C5116.5 (8)C20—C21—C16121.3 (8)
C1—C6—C7121.8 (7)C20—C21—H21119.4
C5—C6—C7121.6 (7)C16—C21—H21119.4
O1—C7—C6120.0 (8)C23—C22—N1112.7 (8)
O1—C7—C8119.9 (7)C23—C22—H22A109.0
C6—C7—C8120.0 (7)N1—C22—H22A109.0
C12—C8—C9122.7 (7)C23—C22—H22B109.0
C12—C8—C7122.4 (7)N1—C22—H22B109.0
C9—C8—C7114.8 (7)H22A—C22—H22B107.8
O2—C9—C8123.0 (8)C24—C23—C22113.1 (11)
O2—C9—C10123.0 (8)C24—C23—H23A109.0
C8—C9—C10114.1 (7)C22—C23—H23A109.0
C11—C10—C9121.3 (8)C24—C23—H23B109.0
C11—C10—C15121.6 (9)C22—C23—H23B109.0
C9—C10—C15117.1 (8)H23A—C23—H23B107.8
C10—C11—N1121.6 (7)C25—C24—C23142.3 (14)
C10—C11—C14120.6 (9)C25—C24—H24A101.4
N1—C11—C14117.8 (9)C23—C24—H24A101.4
C8—C12—N1120.7 (7)C25—C24—H24B101.4
C8—C12—C13120.8 (7)C23—C24—H24B101.4
N1—C12—C13118.4 (7)H24A—C24—H24B104.6
C12—C13—H13A109.5C24—C25—C26165.7 (17)
C12—C13—H13B109.5C24—C25—H25A94.5
H13A—C13—H13B109.5C26—C25—H25A94.5
C12—C13—H13C109.5C24—C25—H25B94.4
H13A—C13—H13C109.5C26—C25—H25B94.5
H13B—C13—H13C109.5H25A—C25—H25B103.2
C11—C14—H14A109.5C25—C26—H26A109.5
C11—C14—H14B109.5C25—C26—H26B109.5
H14A—C14—H14B109.5H26A—C26—H26B109.5
C11—C14—H14C109.5C25—C26—H26C109.5
H14A—C14—H14C109.5H26A—C26—H26C109.5
H14B—C14—H14C109.5H26B—C26—H26C109.5
O3—C15—C10118.5 (8)C12—N1—C11119.6 (7)
O3—C15—C16120.4 (8)C12—N1—C22117.8 (7)
C10—C15—C16121.1 (8)C11—N1—C22122.2 (7)
C6—C1—C2—C30.7 (14)C7—C8—C12—C130.7 (12)
C1—C2—C3—C40.3 (16)C11—C10—C15—O397.1 (13)
C2—C3—C4—C50.7 (17)C9—C10—C15—O381.2 (12)
C3—C4—C5—C61.4 (15)C11—C10—C15—C1685.2 (11)
C2—C1—C6—C50.1 (12)C9—C10—C15—C1696.6 (10)
C2—C1—C6—C7178.4 (8)O3—C15—C16—C17173.4 (10)
C4—C5—C6—C10.9 (12)C10—C15—C16—C174.3 (14)
C4—C5—C6—C7179.4 (8)O3—C15—C16—C216.4 (15)
C1—C6—C7—O113.8 (12)C10—C15—C16—C21175.9 (8)
C5—C6—C7—O1164.5 (8)C21—C16—C17—C180.5 (12)
C1—C6—C7—C8164.6 (7)C15—C16—C17—C18179.2 (9)
C5—C6—C7—C817.0 (11)C16—C17—C18—C191.4 (14)
O1—C7—C8—C1284.2 (10)C17—C18—C19—C201.2 (15)
C6—C7—C8—C1297.4 (9)C18—C19—C20—C210.1 (15)
O1—C7—C8—C998.2 (9)C19—C20—C21—C160.7 (14)
C6—C7—C8—C980.2 (9)C17—C16—C21—C200.5 (13)
C12—C8—C9—O2177.9 (8)C15—C16—C21—C20179.7 (9)
C7—C8—C9—O20.3 (11)N1—C22—C23—C24179.5 (10)
C12—C8—C9—C100.4 (10)C22—C23—C24—C2596 (2)
C7—C8—C9—C10178.0 (6)C23—C24—C25—C26160 (7)
O2—C9—C10—C11177.8 (8)C8—C12—N1—C110.4 (11)
C8—C9—C10—C110.5 (11)C13—C12—N1—C11178.5 (8)
O2—C9—C10—C150.5 (12)C8—C12—N1—C22171.7 (8)
C8—C9—C10—C15178.8 (7)C13—C12—N1—C226.4 (11)
C9—C10—C11—N10.2 (12)C10—C11—N1—C120.3 (12)
C15—C10—C11—N1178.4 (8)C14—C11—N1—C12177.3 (9)
C9—C10—C11—C14177.7 (9)C10—C11—N1—C22171.5 (8)
C15—C10—C11—C144.1 (13)C14—C11—N1—C2211.0 (12)
C9—C8—C12—N10.1 (12)C23—C22—N1—C1288.7 (11)
C7—C8—C12—N1177.4 (7)C23—C22—N1—C1183.2 (12)
C9—C8—C12—C13178.1 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.573.288 (14)135
C2—H2···Cg3i0.932.953.759 (11)145
C17—H17···Cg2ii0.933.093.813 (9)135
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC26H27NO3
Mr401.49
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)7.7879 (3), 12.6502 (6), 23.6491 (14)
V3)2329.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.45 × 0.34 × 0.16
Data collection
DiffractometerStoe IPDS-II
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10674, 2632, 1239
Rint0.096
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.103, 0.316, 0.97
No. of reflections2632
No. of parameters266
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.60

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
C7—O11.217 (10)C15—O31.230 (11)
C9—O21.229 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.573.288 (14)134.5
C2—H2···Cg3i0.932.953.759 (11)145
C17—H17···Cg2ii0.933.093.813 (9)135
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences of Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant No. F279 of the University Research Grant of Ondokuz Mayıs University).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDong, D., Bi, X., Liu, Q. & Cong, F. (2005). Chem. Commun. pp. 3580–3582.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHershko, C., Theanacho, E. N., Spira, D. T., Peter, H. H., Dobbin, P., Aytemir, M. D., Uzbay, T. & Erol, D. D. (1999). Arzneim. Forsch. Drug. Res. 49, 250–254.  Google Scholar
First citationPeratoner, A. (1906). Gazz. Chim. Ital. 36, 52–53.  Google Scholar
First citationŞener, A., Eskinoba, S., Bildirici, İ., Genç, H. & Kasımoğulları, R. (2007). J. Heterocycl. Chem. 44, 337–341.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds