organic compounds
2-(3-Chloro-1,2-dihydropyrazin-2-ylidene)malononitrile
aUniversity of Gdańsk, Faculty of Chemistry, Sobieskiego 18/19, 80-952 Gdańsk, Poland
*Correspondence e-mail: art@chem.univ.gda.pl
In the 7H3ClN4, neighbouring molecules are linked via pairs of N—H⋯N hydrogen bonds into inversion dimers, thereby forming an R22(12) ring motif. With respective average deviations from planarity of 0.009 (1) and 0.006 (1) Å, the pyrazine skeleton and the malononitrile fragment are oriented at an angle of 6.0 (1)° with respect to each other. The mean planes of the pyrazine ring lie either parallel or are inclined at an angle of 68.5 (1)° in the crystal structure.
of the title compound, CRelated literature
For applications of this class of compounds, see: Daniel et al. (1947); Dutcher (1947, 1958); Matter et al. (2005); Kaliszan et al. (1985); Lampen & Jones (1946); Petrusewicz et al. (1993, 1995); White (1940); White & Hill (1943). For related structures, see: Vishweshwar et al. (2000); Wardell et al. (2006). For the synthesis, see: Pilarski & Foks (1981, 1982). For the analysis of intermolecular interactions, see: Spek (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809006783/xu2486sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809006783/xu2486Isup2.hkl
2-[3-Chloropyrazin-2(1H)-ylidene)malononitrile was obtained by the aromatic nucleophilic substitution of chlorine in 2,3-dichloropyrazine with malononitrile (Pilarski & Foks, 1981 and 1982). A mixture of 2,3-dichloropyrazine, malononitrile and potassium carbonate was dissolved in DMSO. The mixture was stirred for 4 h in 333 K to give an orange solution. After cooling the reaction mixture to room temperature, water was added. Then mixture was acidified with hydrochloric acid. Single crystals suitable for X-ray analysis were grown in methanol solution [m.p. = 436 K].
All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 Å and Uiso(H) = 1.2Ueq(C) and N–H = 0.86 Å and Uiso(H) = 1.2Ueq(N).
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C7H3ClN4 | F(000) = 360 |
Mr = 178.58 | Dx = 1.561 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 1335 reflections |
a = 5.7612 (2) Å | θ = 3.0–25.0° |
b = 8.1457 (2) Å | µ = 0.44 mm−1 |
c = 16.2296 (5) Å | T = 295 K |
β = 94.116 (3)° | Needle, orange |
V = 759.67 (4) Å3 | 0.40 × 0.10 × 0.08 mm |
Z = 4 |
Oxford Diffraction Ruby CCD diffractometer | 1335 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1060 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
Detector resolution: 10.4002 pixels mm-1 | θmax = 25.0°, θmin = 3.6° |
ω scans | h = −6→6 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | k = −9→9 |
Tmin = 0.946, Tmax = 0.967 | l = −18→19 |
6880 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.084 | w = 1/[σ2(Fo2) + (0.0481P)2 + 0.0305P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
1335 reflections | Δρmax = 0.15 e Å−3 |
109 parameters | Δρmin = −0.19 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008) |
Primary atom site location: structure-invariant direct methods |
C7H3ClN4 | V = 759.67 (4) Å3 |
Mr = 178.58 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 5.7612 (2) Å | µ = 0.44 mm−1 |
b = 8.1457 (2) Å | T = 295 K |
c = 16.2296 (5) Å | 0.40 × 0.10 × 0.08 mm |
β = 94.116 (3)° |
Oxford Diffraction Ruby CCD diffractometer | 1335 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | 1060 reflections with I > 2σ(I) |
Tmin = 0.946, Tmax = 0.967 | Rint = 0.026 |
6880 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.084 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.15 e Å−3 |
1335 reflections | Δρmin = −0.19 e Å−3 |
109 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.6636 (3) | 0.11965 (16) | 0.38343 (8) | 0.0365 (4) | |
H1 | 0.7797 | 0.0722 | 0.4098 | 0.044* | |
C2 | 0.5179 (3) | 0.20873 (19) | 0.42756 (10) | 0.0313 (4) | |
C3 | 0.3266 (3) | 0.2760 (2) | 0.37691 (10) | 0.0373 (4) | |
N4 | 0.2971 (3) | 0.25960 (19) | 0.29792 (10) | 0.0523 (5) | |
C5 | 0.4568 (4) | 0.1719 (3) | 0.25856 (12) | 0.0611 (6) | |
H5 | 0.4395 | 0.1613 | 0.2014 | 0.073* | |
C6 | 0.6386 (4) | 0.1004 (2) | 0.30035 (11) | 0.0508 (5) | |
H6 | 0.7452 | 0.0389 | 0.2730 | 0.061* | |
C7 | 0.5634 (3) | 0.22285 (19) | 0.51338 (9) | 0.0327 (4) | |
C8 | 0.7584 (3) | 0.13941 (19) | 0.55144 (10) | 0.0343 (4) | |
N9 | 0.9152 (3) | 0.0691 (2) | 0.58089 (9) | 0.0467 (4) | |
C10 | 0.4414 (3) | 0.3217 (2) | 0.56834 (11) | 0.0383 (4) | |
N11 | 0.3624 (3) | 0.3981 (2) | 0.61843 (11) | 0.0568 (5) | |
Cl12 | 0.11485 (8) | 0.38509 (6) | 0.42290 (3) | 0.0490 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0352 (9) | 0.0416 (8) | 0.0323 (8) | 0.0067 (7) | 0.0001 (6) | 0.0014 (6) |
C2 | 0.0292 (9) | 0.0286 (8) | 0.0364 (9) | −0.0016 (7) | 0.0034 (7) | 0.0010 (7) |
C3 | 0.0358 (10) | 0.0344 (9) | 0.0413 (10) | 0.0015 (8) | −0.0009 (8) | 0.0016 (7) |
N4 | 0.0591 (12) | 0.0544 (10) | 0.0416 (9) | 0.0133 (9) | −0.0099 (8) | −0.0002 (7) |
C5 | 0.0793 (17) | 0.0700 (14) | 0.0324 (10) | 0.0224 (13) | −0.0072 (11) | −0.0037 (9) |
C6 | 0.0608 (14) | 0.0565 (11) | 0.0351 (10) | 0.0137 (10) | 0.0041 (9) | −0.0041 (8) |
C7 | 0.0303 (10) | 0.0330 (8) | 0.0348 (9) | 0.0012 (7) | 0.0017 (7) | 0.0013 (7) |
C8 | 0.0379 (11) | 0.0348 (9) | 0.0302 (9) | −0.0012 (8) | 0.0037 (8) | −0.0034 (7) |
N9 | 0.0460 (11) | 0.0536 (9) | 0.0397 (9) | 0.0108 (8) | −0.0029 (8) | −0.0034 (7) |
C10 | 0.0341 (11) | 0.0440 (10) | 0.0366 (10) | 0.0007 (8) | 0.0016 (8) | 0.0025 (8) |
N11 | 0.0539 (11) | 0.0717 (11) | 0.0456 (10) | 0.0135 (9) | 0.0088 (8) | −0.0075 (8) |
Cl12 | 0.0368 (3) | 0.0530 (3) | 0.0568 (3) | 0.0114 (2) | 0.0017 (2) | 0.0011 (2) |
N1—C2 | 1.353 (2) | C5—C6 | 1.339 (3) |
N1—C6 | 1.355 (2) | C5—H5 | 0.9300 |
N1—H1 | 0.8600 | C6—H6 | 0.9300 |
C2—C7 | 1.403 (2) | C7—C8 | 1.416 (2) |
C2—C3 | 1.436 (2) | C7—C10 | 1.424 (2) |
C3—N4 | 1.288 (2) | C8—N9 | 1.145 (2) |
C3—Cl12 | 1.7219 (18) | C10—N11 | 1.144 (2) |
N4—C5 | 1.360 (3) | ||
C2—N1—C6 | 124.28 (15) | C6—C5—H5 | 119.3 |
C2—N1—H1 | 117.9 | N4—C5—H5 | 119.3 |
C6—N1—H1 | 117.9 | C5—C6—N1 | 118.50 (18) |
N1—C2—C7 | 119.36 (15) | C5—C6—H6 | 120.8 |
N1—C2—C3 | 112.43 (15) | N1—C6—H6 | 120.8 |
C7—C2—C3 | 128.20 (16) | C2—C7—C8 | 118.66 (14) |
N4—C3—C2 | 124.83 (17) | C2—C7—C10 | 127.03 (15) |
N4—C3—Cl12 | 116.00 (14) | C8—C7—C10 | 114.20 (14) |
C2—C3—Cl12 | 119.16 (13) | N9—C8—C7 | 178.40 (18) |
C3—N4—C5 | 118.48 (16) | N11—C10—C7 | 172.83 (19) |
C6—C5—N4 | 121.43 (18) | ||
C6—N1—C2—C7 | −178.76 (16) | C3—N4—C5—C6 | 1.5 (3) |
C6—N1—C2—C3 | 2.4 (2) | N4—C5—C6—N1 | −1.2 (3) |
N1—C2—C3—N4 | −2.1 (3) | C2—N1—C6—C5 | −0.9 (3) |
C7—C2—C3—N4 | 179.14 (17) | N1—C2—C7—C8 | −1.6 (2) |
N1—C2—C3—Cl12 | 176.92 (11) | C3—C2—C7—C8 | 177.09 (16) |
C7—C2—C3—Cl12 | −1.8 (3) | N1—C2—C7—C10 | 174.39 (16) |
C2—C3—N4—C5 | 0.3 (3) | C3—C2—C7—C10 | −6.9 (3) |
Cl12—C3—N4—C5 | −178.77 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N9i | 0.86 | 2.10 | 2.896 (2) | 154 |
Symmetry code: (i) −x+2, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C7H3ClN4 |
Mr | 178.58 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 295 |
a, b, c (Å) | 5.7612 (2), 8.1457 (2), 16.2296 (5) |
β (°) | 94.116 (3) |
V (Å3) | 759.67 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.44 |
Crystal size (mm) | 0.40 × 0.10 × 0.08 |
Data collection | |
Diffractometer | Oxford Diffraction Ruby CCD diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2008) |
Tmin, Tmax | 0.946, 0.967 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6880, 1335, 1060 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.084, 1.10 |
No. of reflections | 1335 |
No. of parameters | 109 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.15, −0.19 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEPII (Johnson, 1976), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N9i | 0.86 | 2.10 | 2.896 (2) | 154 |
Symmetry code: (i) −x+2, −y, −z+1. |
Acknowledgements
This scientific work has been supported by Funds for Science in Year 2009 as a research project (DS/8410–4–0139–9).
References
Daniel, L. J., Norris, L. C. & Scott, K. L. (1947). J. Biol. Chem. 169, 689–697. CAS PubMed Google Scholar
Dutcher, J. D. (1947). J. Biol. Chem. 171, 321–339. CAS Google Scholar
Dutcher, J. D. (1958). J. Biol Chem. 232, 785–795. PubMed CAS Web of Science Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Kaliszan, R., Pilarski, B., Ośmiałowski, K., Strzałkowska-Grad, H. & Hać, E. (1985). Pharm. Weekbl Sci. 7, 141–145. CrossRef CAS PubMed Web of Science Google Scholar
Lampen, J. O. & Jones, M. J. (1946). J. Biol. Chem. 166, 435–448. CAS PubMed Google Scholar
Matter, H., Kumar, H. S. A., Fedorov, R., Frey, A., Kotsonis, P., Hartmann, E., Frohlich, L. G., Reif, A., Pfleiderer, W., Scheurer, P., Ghosh, D. K., Schlichting, I. & Schmidt, H. H. W. (2005). J. Med. Chem. 48, 4783–4792. Web of Science CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Petrusewicz, J., Gami-Yilinkou, R., Kaliszan, R., Pilarski, B. & Foks, H. (1993). Gen. Pharmacol. 24, 17–22. CrossRef CAS PubMed Web of Science Google Scholar
Petrusewicz, J., Turowski, M., Foks, H., Pilarski, B. & Kaliszan, R. (1995). Life Sci. 56, 667–677. CrossRef CAS PubMed Web of Science Google Scholar
Pilarski, B. & Foks, H. (1981). Polish Patent P-232409. Google Scholar
Pilarski, B. & Foks, H. (1982). Polish Patent P-234716. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vishweshwar, P., Nangia, A. & Lynch, V. M. (2000). Acta Cryst. C56, 1512–1514. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Wardell, S. M. S. V., de Souza, M. V. N., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. E62, o3765–o3767. Web of Science CSD CrossRef IUCr Journals Google Scholar
White, E. C. (1940). Science, 92, 127. CrossRef PubMed Google Scholar
White, E. C. & Hill, J. H. (1943). J. Bacteriol. 45, 433–443. PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The pyrazine ring is found in many physiologically active compounds, including natural products such as folic acid (Lampen & Jones, 1946), aspergillic acid (Dutcher, 1947), pterins (Daniel et al., 1947; Matter et al., 2005). Important group of natural compounds are derivatives which posses antibiotic activities, for examples aspegillic acid isolated from Aspergillus flavus (Dutcher, 1958; White, 1940; White & Hill, 1943). Some of pyrazine-acetonitrile compounds also posses biological activities. Some of them show anti-inflammatory (Petrusewicz et al., 1995) and analgesic activities (Kaliszan et al., 1985; Petrusewicz et al., 1993). We decided to synthesis some of this derivatives. 2-(3-Chloropyrazin-2(1H)-ylidene)malononitrile belongs to pyrazine-acetonitrile derivatives. We report here crystal structure of the title compound, 2-(3-chloropyrazin-2(1H)-ylidene)malononitrile.
In the molecule of the title compound (Fig. 1) the bond lengths and angles characterizing the geometry of the pyrazines skeleton are typical for this group compounds (Vishweshwar et al., 2000; Wardell et al., 2006). With respective average deviations from planarity of 0.009 (1) and 0.006 (1) Å, the pyrazine skeleton and malononitrile fragment are oriented at an angle 6.0 (1)° to each other. The mean planes of the pyrazine skeleton lie either parallel or are inclined at an angle of 68.5 (1)° in the lattice. One of the nitrile fragment (delineated by C7, C8 and N9 atoms) is nearly in the plane of the heterocyclic ring (the angle between the mean planes of the pyrazine skeleton and nitrile fragment is equal 178.4 (2)°) while the other (involving C7, C10 and N11 atoms) is out of plane the pyrazine skeleton (the angle between the mean planes of the pyrazine skeleton and nitrile fragment is equal 172.8 (2)°).
In the crystal structure, neighbouring molecules are linked through N–H···N hydrogen bond forming R22(12) ring motif (Table 1 and Fig. 2). The interactions demonstrated were found by PLATON (Spek, 2009).