organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Di­hydro­spiro­[carbazole-3(4H),2′-[1,3]dioxolane]

aUniversity of Southern Denmark, Department of Physics and Chemistry, Campusvej 55, 5230 Odense M, Denmark
*Correspondence e-mail: adb@chem.sdu.dk

(Received 29 January 2009; accepted 16 February 2009; online 21 February 2009)

In the title compound, C14H15NO2, the hydrogenated six-membered ring of the carbazole unit adopts a half-chair conformation and the dioxolane ring points to one side of the carbazole plane. Neighbouring mol­ecules form edge-to-face inter­actions in which the NH group is directed towards an adjacent carbazole unit, with a shortest H⋯C contact of 2.72 Å. These inter­actions arrange the mol­ecules into one-dimensional herringbone-type motifs, which pack so that the methyl­ene groups of the dioxolane ring lie over the face of a neighbouring carbazole unit with a shortest H⋯C contact of 2.85 Å.

Related literature

For background literature and synthesis details, see: Ulven & Kostenis (2006[Ulven, T. & Kostenis, E. (2006). Curr. Top. Med. Chem. 6, 1427-1444.]); Urrutia & Rodriguez (1999[Urrutia, A. & Rodriguez, J. G. (1999). Tetrahedron, 55, 11095-11108.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15NO2

  • Mr = 229.27

  • Monoclinic, P 21

  • a = 9.3781 (6) Å

  • b = 6.1467 (4) Å

  • c = 10.5740 (7) Å

  • β = 115.232 (2)°

  • V = 551.38 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 180 K

  • 0.50 × 0.50 × 0.40 mm

Data collection
  • Bruker–Nonius X8 APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.812, Tmax = 0.964

  • 7776 measured reflections

  • 1485 independent reflections

  • 1427 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.080

  • S = 1.05

  • 1485 reflections

  • 154 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯C1i 0.88 2.72 3.527 (2) 154
C14—H14A⋯C12ii 0.99 2.85 3.518 (3) 126
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z]; (ii) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is useful as an intermediate in the synthesis of antagonists of the prostaglandin D2 receptor CRTH2 (DP2) (Ulven & Kostenis, 2006).

Related literature top

For background literature and synthesis details, see: Ulven & Kostenis (2006); Urrutia & Rodriguez (1999).

Experimental top

The compound was synthesized as described in Urrutia & Rodriguez (1999).

Refinement top

H atoms bound to C atoms were placed in idealized positions with C—H = 0.95 or 0.99 Å and refined as riding with Uiso(H) = 1.2Ueq(C). The methyl group was allowed to rotate about its local threefold axis. The H atom of the NH group was visible in a difference Fourier map but was placed geometrically and refined as riding for the final cycles of refinement with N—H = 0.88 Å and Uiso(H) = 1.2Ueq(N). In the absence of significant anomalous scattering, 1128 Friedel pairs were merged as equivalent data.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids shown at 50% probability for non-H atoms.
[Figure 2] Fig. 2. Projection along b showing interactions between carbazole units (e.g. about the origin), and between dioxolane rings and carbazole units (e.g. at the centre of the unit cell). H atoms are omitted.
1,2-Dihydrospiro[carbazole-3(4H),2'-[1,3]dioxolane] top
Crystal data top
C14H15NO2F(000) = 244
Mr = 229.27Dx = 1.381 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5883 reflections
a = 9.3781 (6) Åθ = 2.4–28.4°
b = 6.1467 (4) ŵ = 0.09 mm1
c = 10.5740 (7) ÅT = 180 K
β = 115.232 (2)°Block, colourless
V = 551.38 (6) Å30.50 × 0.50 × 0.40 mm
Z = 2
Data collection top
Bruker–Nonius X8 APEXII CCD
diffractometer
1485 independent reflections
Radiation source: fine-focus sealed tube1427 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Thin–slice ω and ϕ scansθmax = 28.4°, θmin = 3.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1212
Tmin = 0.812, Tmax = 0.964k = 88
7776 measured reflectionsl = 1114
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.0517P]
where P = (Fo2 + 2Fc2)/3
1485 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.33 e Å3
1 restraintΔρmin = 0.16 e Å3
Crystal data top
C14H15NO2V = 551.38 (6) Å3
Mr = 229.27Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.3781 (6) ŵ = 0.09 mm1
b = 6.1467 (4) ÅT = 180 K
c = 10.5740 (7) Å0.50 × 0.50 × 0.40 mm
β = 115.232 (2)°
Data collection top
Bruker–Nonius X8 APEXII CCD
diffractometer
1485 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1427 reflections with I > 2σ(I)
Tmin = 0.812, Tmax = 0.964Rint = 0.017
7776 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0291 restraint
wR(F2) = 0.080H-atom parameters constrained
S = 1.05Δρmax = 0.33 e Å3
1485 reflectionsΔρmin = 0.16 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.23032 (12)0.56670 (18)0.55448 (11)0.0256 (2)
O20.36610 (11)0.26085 (18)0.56040 (10)0.0238 (2)
N10.10724 (14)0.0286 (2)0.12685 (12)0.0259 (3)
H1A0.05790.15450.10830.031*
C10.17592 (15)0.0682 (3)0.04893 (14)0.0240 (3)
C20.18695 (18)0.0023 (3)0.07194 (15)0.0321 (3)
H2A0.14150.13620.11530.038*
C30.2665 (2)0.1299 (4)0.12652 (16)0.0373 (4)
H3A0.27520.08630.20920.045*
C40.3344 (2)0.3267 (3)0.06233 (18)0.0368 (4)
H4A0.38910.41340.10170.044*
C50.32330 (18)0.3972 (3)0.05741 (15)0.0296 (3)
H5A0.36940.53120.10000.036*
C60.24301 (15)0.2675 (3)0.11475 (13)0.0223 (3)
C70.21109 (15)0.2855 (2)0.23567 (13)0.0206 (3)
C80.25187 (17)0.4636 (2)0.34150 (14)0.0229 (3)
H8A0.18200.59000.30010.027*
H8B0.36200.51070.36870.027*
C90.23321 (15)0.3857 (2)0.47164 (14)0.0202 (3)
C100.08364 (15)0.2549 (3)0.43550 (14)0.0235 (3)
H10A0.00860.34840.38230.028*
H10B0.07750.21100.52310.028*
C110.07498 (17)0.0513 (2)0.34942 (15)0.0249 (3)
H11A0.14280.06410.41120.030*
H11B0.03470.00340.30560.030*
C120.12847 (15)0.1046 (2)0.23882 (13)0.0217 (3)
C130.39081 (17)0.6225 (3)0.63924 (16)0.0275 (3)
H13A0.40550.66710.73400.033*
H13B0.42550.74260.59650.033*
C140.48246 (17)0.4138 (3)0.64530 (17)0.0303 (3)
H14A0.56150.43930.60790.036*
H14B0.53720.36060.74270.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0236 (5)0.0230 (5)0.0319 (5)0.0007 (4)0.0134 (4)0.0055 (4)
O20.0198 (4)0.0193 (5)0.0280 (5)0.0008 (4)0.0061 (4)0.0010 (4)
N10.0248 (6)0.0226 (6)0.0263 (6)0.0051 (5)0.0071 (5)0.0031 (5)
C10.0195 (6)0.0260 (7)0.0206 (6)0.0007 (5)0.0029 (5)0.0009 (5)
C20.0297 (7)0.0371 (9)0.0223 (6)0.0005 (7)0.0042 (5)0.0049 (6)
C30.0367 (8)0.0505 (11)0.0229 (6)0.0035 (8)0.0110 (6)0.0002 (7)
C40.0379 (8)0.0461 (10)0.0293 (7)0.0009 (8)0.0171 (7)0.0055 (7)
C50.0315 (7)0.0307 (7)0.0266 (6)0.0033 (7)0.0123 (6)0.0037 (6)
C60.0200 (5)0.0221 (6)0.0209 (6)0.0013 (5)0.0049 (5)0.0021 (5)
C70.0188 (5)0.0195 (6)0.0217 (6)0.0003 (5)0.0069 (5)0.0024 (5)
C80.0271 (6)0.0168 (6)0.0263 (6)0.0022 (5)0.0130 (5)0.0012 (5)
C90.0192 (5)0.0169 (6)0.0251 (6)0.0009 (5)0.0100 (5)0.0009 (5)
C100.0191 (6)0.0245 (7)0.0283 (6)0.0021 (5)0.0113 (5)0.0002 (6)
C110.0246 (6)0.0212 (7)0.0303 (7)0.0056 (5)0.0128 (5)0.0005 (5)
C120.0186 (5)0.0195 (6)0.0239 (6)0.0004 (5)0.0062 (5)0.0009 (5)
C130.0284 (7)0.0233 (7)0.0283 (6)0.0032 (6)0.0099 (6)0.0020 (5)
C140.0227 (6)0.0304 (8)0.0323 (7)0.0011 (6)0.0065 (6)0.0065 (6)
Geometric parameters (Å, º) top
O1—C91.4234 (17)C7—C121.3639 (19)
O1—C131.4270 (17)C7—C81.4936 (19)
O2—C91.4233 (16)C8—C91.5358 (18)
O2—C141.4303 (18)C8—H8A0.990
N1—C11.3785 (19)C8—H8B0.990
N1—C121.3822 (18)C9—C101.5177 (18)
N1—H1A0.880C10—C111.529 (2)
C1—C21.395 (2)C10—H10A0.990
C1—C61.417 (2)C10—H10B0.990
C2—C31.384 (3)C11—C121.4922 (18)
C2—H2A0.950C11—H11A0.990
C3—C41.400 (3)C11—H11B0.990
C3—H3A0.950C13—C141.530 (2)
C4—C51.383 (2)C13—H13A0.990
C4—H4A0.950C13—H13B0.990
C5—C61.400 (2)C14—H14A0.990
C5—H5A0.950C14—H14B0.990
C6—C71.4364 (18)
C9—O1—C13106.42 (10)O2—C9—C10109.62 (11)
C9—O2—C14106.18 (11)O1—C9—C10108.13 (11)
C1—N1—C12108.84 (12)O2—C9—C8110.90 (10)
C1—N1—H1A125.6O1—C9—C8110.32 (11)
C12—N1—H1A125.6C10—C9—C8112.68 (11)
N1—C1—C2130.52 (15)C9—C10—C11113.10 (11)
N1—C1—C6107.60 (12)C9—C10—H10A109.0
C2—C1—C6121.87 (14)C11—C10—H10A109.0
C3—C2—C1117.59 (16)C9—C10—H10B109.0
C3—C2—H2A121.2C11—C10—H10B109.0
C1—C2—H2A121.2H10A—C10—H10B107.8
C2—C3—C4121.30 (15)C12—C11—C10109.68 (12)
C2—C3—H3A119.3C12—C11—H11A109.7
C4—C3—H3A119.3C10—C11—H11A109.7
C5—C4—C3121.20 (16)C12—C11—H11B109.7
C5—C4—H4A119.4C10—C11—H11B109.7
C3—C4—H4A119.4H11A—C11—H11B108.2
C4—C5—C6118.84 (16)C7—C12—N1109.75 (12)
C4—C5—H5A120.6C7—C12—C11125.61 (13)
C6—C5—H5A120.6N1—C12—C11124.58 (13)
C5—C6—C1119.19 (13)O1—C13—C14104.37 (12)
C5—C6—C7134.15 (14)O1—C13—H13A110.9
C1—C6—C7106.65 (12)C14—C13—H13A110.9
C12—C7—C6107.16 (13)O1—C13—H13B110.9
C12—C7—C8123.08 (12)C14—C13—H13B110.9
C6—C7—C8129.75 (12)H13A—C13—H13B108.9
C7—C8—C9110.64 (11)O2—C14—C13105.08 (11)
C7—C8—H8A109.5O2—C14—H14A110.7
C9—C8—H8A109.5C13—C14—H14A110.7
C7—C8—H8B109.5O2—C14—H14B110.7
C9—C8—H8B109.5C13—C14—H14B110.7
H8A—C8—H8B108.1H14A—C14—H14B108.8
O2—C9—O1104.87 (11)
C12—N1—C1—C2179.41 (15)C13—O1—C9—O236.02 (13)
C12—N1—C1—C60.36 (15)C13—O1—C9—C10152.93 (12)
N1—C1—C2—C3178.93 (15)C13—O1—C9—C883.44 (13)
C6—C1—C2—C30.0 (2)C7—C8—C9—O279.85 (14)
C1—C2—C3—C40.4 (3)C7—C8—C9—O1164.41 (11)
C2—C3—C4—C50.6 (3)C7—C8—C9—C1043.46 (16)
C3—C4—C5—C60.3 (3)O2—C9—C10—C1164.65 (14)
C4—C5—C6—C10.2 (2)O1—C9—C10—C11178.44 (11)
C4—C5—C6—C7178.70 (16)C8—C9—C10—C1159.37 (16)
N1—C1—C6—C5178.86 (13)C9—C10—C11—C1242.89 (16)
C2—C1—C6—C50.3 (2)C6—C7—C12—N10.49 (15)
N1—C1—C6—C70.06 (15)C8—C7—C12—N1179.18 (12)
C2—C1—C6—C7179.21 (13)C6—C7—C12—C11177.82 (13)
C5—C6—C7—C12178.94 (16)C8—C7—C12—C113.5 (2)
C1—C6—C7—C120.27 (14)C1—N1—C12—C70.54 (15)
C5—C6—C7—C82.5 (3)C1—N1—C12—C11177.90 (13)
C1—C6—C7—C8178.84 (13)C10—C11—C12—C716.12 (19)
C12—C7—C8—C916.67 (18)C10—C11—C12—N1166.94 (12)
C6—C7—C8—C9164.96 (13)C9—O1—C13—C1422.68 (15)
C14—O2—C9—O134.81 (13)C9—O2—C14—C1320.17 (14)
C14—O2—C9—C10150.69 (12)O1—C13—C14—O21.51 (16)
C14—O2—C9—C884.26 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···C1i0.882.723.527 (2)154
C14—H14A···C12ii0.992.853.518 (3)126
Symmetry codes: (i) x, y1/2, z; (ii) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC14H15NO2
Mr229.27
Crystal system, space groupMonoclinic, P21
Temperature (K)180
a, b, c (Å)9.3781 (6), 6.1467 (4), 10.5740 (7)
β (°) 115.232 (2)
V3)551.38 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.50 × 0.40
Data collection
DiffractometerBruker–Nonius X8 APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.812, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
7776, 1485, 1427
Rint0.017
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.080, 1.05
No. of reflections1485
No. of parameters154
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.16

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···C1i0.882.723.527 (2)154.1
C14—H14A···C12ii0.992.853.518 (3)125.9
Symmetry codes: (i) x, y1/2, z; (ii) x+1, y+1/2, z+1.
 

Acknowledgements

We are grateful to the Danish Natural Sciences Research Council and the Carlsberg Foundation for provision of the X-ray equipment.

References

First citationBruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUlven, T. & Kostenis, E. (2006). Curr. Top. Med. Chem. 6, 1427–1444.  Web of Science CrossRef PubMed CAS Google Scholar
First citationUrrutia, A. & Rodriguez, J. G. (1999). Tetrahedron, 55, 11095–11108.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds