organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Propyl 2-(5-bromo-3-methyl­sulfinyl-1-benzo­furan-2-yl)acetate

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 8 December 2008; accepted 8 February 2009; online 13 February 2009)

In the title compound, C14H15BrO4S, the S atom has a distorted trigonal–pyramidal coordination. The O atom and the methyl group of the methyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran fragment. The mol­ecules form slightly slipped π-stacked inversion-symmetric dimers by inter­molecular aromatic ππ inter­actions, with a centroid-to-centroid distance of 3.695 (4) Å between the benzene rings of neighbouring mol­ecules. The crystal packing is further stabilized by inter­molecular C—H⋯π inter­actions between the methyl­ene H atoms of the propyl group towards the benzene and furan rings of neighbouring mol­ecules, respectively. Additionally, the crystal structure exhibits weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the crystal structures of similar alkyl 2-(5-bromo-3-methyl­sulfinyl-1-benzofuran-2-yl)acetate derivatives, see: Choi et al. (2008a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o2250.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o2397.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15BrO4S

  • Mr = 359.23

  • Triclinic, [P \overline 1]

  • a = 8.4538 (6) Å

  • b = 9.8823 (7) Å

  • c = 10.3231 (7) Å

  • α = 72.358 (1)°

  • β = 81.200 (1)°

  • γ = 65.443 (1)°

  • V = 747.16 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.90 mm−1

  • T = 298 K

  • 0.60 × 0.50 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.187, Tmax = 0.556

  • 3932 measured reflections

  • 2593 independent reflections

  • 2359 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.097

  • S = 1.07

  • 2593 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11BCg1i 0.97 3.02 3.720 (3) 130
C12—H12BCg2i 0.97 2.90 3.826 (3) 161
C3—H3⋯O4ii 0.93 2.54 3.424 (3) 159
C5—H5⋯O3iii 0.93 2.58 3.430 (4) 152
C9—H9B⋯O4iv 0.97 2.37 3.321 (3) 167
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z+2; (iii) -x+1, -y+1, -z+1; (iv) -x, -y+1, -z+2. Cg1 and Cg2 are the centroids of the C2–C7 benzene ring and the C1/C2/C7/O1/C8 furan ring, respectively.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our ongoing research on the synthesis and structure of alkyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate analogues, we have recently described the crystal structures of isopropyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2008a) and methyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2008b). Here we report the crystal structure of the title compound, propyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.013 (2) Å from the least-squares plane defined by the nine constituent atoms. The molecular packing (Fig. 2) is stabilized by intermolecular ππ stacking interactions between the benzene rings of neighbouring molecules. Via this interaction the molecules form slightly slipped π-stacked inversion symmetric dimers, with a centroid–centroid distance Cg1···Cg1iii of 3.695 (4) Å between the benzene rings of neighbouring molecules. (Cg is the centroid of the C2–C7 benzene ring, symmetry code as in Fig. 2). The molecular packing is further stabilized by C—H···π interactions; one between the hydrogen of the C11-methylene group and the benzene ring of the benzofuran unit, with a C11—H11B···Cg1i separation of 3.02 Å, and a second between the hydrogen of the C12-methylene group and the furan ring of the benzofuran unit, with a C12—H12B···Cg2i separation of 2.90 Å (Table 1 and Fig. 2; Cg1 and Cg2 are the centroids of the C2–C7 benzene ring and the C1/C2/C7/O1/C8 furan ring, respectively, symmetry code as in Fig. 2). In addition, three weak intermolecular C—H···O hydrogen bonds in the structure were observed (Table 1 and Fig. 3); one between the hydrogen on benzene ring and the oxygen of the SO unit (C3—H3···O4ii), a second between the hydrogen on benzene ring and the oxygen of the CO unit (C5—H5···O3iii), and a third between the hydrogen of the C9–methylene group and the SO unit (C9—H9B···O4iv), respectively.

Related literature top

For the crystal structures of similar alkyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate derivatives, see: Choi et al. (2008a,b).

Experimental top

77% 3-chloroperoxybenzoic acid (179 mg, 0.8 mmol) was added in small portions to a stirred solution of propyl 2-(5-bromo-3-methylsulfanyl-1-benzofuran-2-yl)acetate (629 mg, 0.75 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 3 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane–ethyl acetate, 1:2 v/v) to afford the title compound as a colorless solid [yield 81%, m.p. 413–413.5 K; Rf = 0.55 (hexane–ethyl acetate, 1:2 v/v)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in benzene at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 0.94 (t, J = 7.32 Hz, 3H), 1.63–1.72 (m, 2H), 3.07 (s, 3H), 4.05 (s, 2H), 4.11 (t, J = 6.96 Hz, 2H), 7.40 (d, J = 8.76 Hz, 1H), 7.48 (dd, J = 8.76 Hz and J = 1.84 Hz, 1H), 8.09 (d, J = 1.84 Hz, 1H); EI-MS 360 [M+2], 358 [M+].

Refinement top

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.93 Å for the aryl, 0.97 Å for the methylene, and 0.96 Å for the methyl H atoms. Uiso(H) = 1.2Ueq(C) for the ary and methylene H atoms, and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. ππ and C—H···π interactions (dotted lines) in the title compound. Cg denotes the ring centroids. [Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y, -z+1.]
[Figure 3] Fig. 3. Intermolecular C—H···O hydrogen bonds (dotted lines) in the title compound. [Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z+2.]
Propyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate top
Crystal data top
C14H15BrO4SZ = 2
Mr = 359.23F(000) = 364
Triclinic, P1Dx = 1.597 Mg m3
Hall symbol: -p_1Mo Kα radiation, λ = 0.71073 Å
a = 8.4538 (6) ÅCell parameters from 2872 reflections
b = 9.8823 (7) Åθ = 2.7–28.0°
c = 10.3231 (7) ŵ = 2.90 mm1
α = 72.358 (1)°T = 298 K
β = 81.200 (1)°Block, colourless
γ = 65.443 (1)°0.60 × 0.50 × 0.20 mm
V = 747.16 (9) Å3
Data collection top
Bruker SMART CCD
diffractometer
2593 independent reflections
Radiation source: fine-focus sealed tube2359 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Detector resolution: 10.0 pixels mm-1θmax = 25.0°, θmin = 2.4°
ϕ and ω scansh = 910
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
k = 1011
Tmin = 0.187, Tmax = 0.556l = 1210
3932 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: difference Fourier map
wR(F2) = 0.097H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0598P)2 + 0.3564P]
where P = (Fo2 + 2Fc2)/3
2593 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C14H15BrO4Sγ = 65.443 (1)°
Mr = 359.23V = 747.16 (9) Å3
Triclinic, P1Z = 2
a = 8.4538 (6) ÅMo Kα radiation
b = 9.8823 (7) ŵ = 2.90 mm1
c = 10.3231 (7) ÅT = 298 K
α = 72.358 (1)°0.60 × 0.50 × 0.20 mm
β = 81.200 (1)°
Data collection top
Bruker SMART CCD
diffractometer
2593 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
2359 reflections with I > 2σ(I)
Tmin = 0.187, Tmax = 0.556Rint = 0.014
3932 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.07Δρmax = 0.62 e Å3
2593 reflectionsΔρmin = 0.38 e Å3
182 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.68856 (4)0.78591 (4)0.61232 (4)0.06138 (16)
S0.26099 (9)0.40306 (8)0.96326 (6)0.04277 (19)
O10.1656 (2)0.5416 (2)0.57292 (17)0.0389 (4)
O20.0410 (3)0.1435 (2)0.7276 (3)0.0651 (6)
O30.2856 (3)0.1366 (3)0.7909 (3)0.0628 (6)
O40.2583 (3)0.5257 (3)1.0205 (2)0.0565 (5)
C10.2557 (3)0.4773 (3)0.7850 (2)0.0355 (5)
C20.3457 (3)0.5694 (3)0.6968 (2)0.0345 (5)
C30.4701 (3)0.6215 (3)0.7124 (3)0.0390 (6)
H30.51660.59700.79650.047*
C40.5206 (3)0.7106 (3)0.5974 (3)0.0411 (6)
C50.4525 (4)0.7510 (3)0.4691 (3)0.0448 (6)
H50.48820.81440.39490.054*
C60.3327 (3)0.6968 (3)0.4533 (3)0.0421 (6)
H60.28770.71990.36890.051*
C70.2826 (3)0.6069 (3)0.5677 (3)0.0367 (5)
C80.1513 (3)0.4645 (3)0.7068 (3)0.0368 (5)
C90.0363 (3)0.3784 (3)0.7351 (3)0.0408 (6)
H9A0.04120.41780.66000.049*
H9B0.03470.39560.81640.049*
C100.1380 (4)0.2072 (3)0.7546 (3)0.0448 (6)
C110.1221 (5)0.0227 (4)0.7402 (6)0.0860 (14)
H11A0.18430.07690.82420.103*
H11B0.20400.04340.66480.103*
C120.0195 (6)0.0757 (5)0.7394 (6)0.0900 (14)
H12A0.08000.01960.65480.108*
H12B0.03290.18420.74180.108*
C130.1468 (9)0.0548 (7)0.8527 (6)0.122 (2)
H13A0.20190.05270.85010.147*
H13B0.08890.11220.93720.147*
H13C0.23320.09130.84520.147*
C140.4798 (4)0.2618 (4)0.9755 (3)0.0575 (8)
H14A0.55920.31280.94650.086*
H14B0.49650.19590.91850.086*
H14C0.50110.20101.06810.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0581 (2)0.0617 (2)0.0766 (3)0.03898 (17)0.00471 (16)0.01173 (17)
S0.0443 (4)0.0525 (4)0.0332 (3)0.0238 (3)0.0022 (3)0.0064 (3)
O10.0385 (9)0.0443 (10)0.0356 (9)0.0182 (8)0.0059 (7)0.0078 (8)
O20.0436 (11)0.0429 (11)0.114 (2)0.0170 (9)0.0113 (12)0.0243 (12)
O30.0443 (12)0.0509 (12)0.0865 (16)0.0157 (10)0.0153 (11)0.0066 (11)
O40.0607 (13)0.0705 (14)0.0457 (11)0.0259 (11)0.0001 (10)0.0262 (10)
C10.0360 (12)0.0366 (12)0.0339 (12)0.0145 (10)0.0016 (10)0.0087 (10)
C20.0341 (12)0.0333 (12)0.0356 (12)0.0117 (10)0.0021 (10)0.0102 (10)
C30.0394 (13)0.0395 (13)0.0412 (14)0.0160 (11)0.0047 (10)0.0123 (11)
C40.0376 (13)0.0365 (13)0.0513 (16)0.0157 (11)0.0002 (11)0.0137 (11)
C50.0430 (14)0.0394 (14)0.0465 (15)0.0165 (12)0.0019 (12)0.0049 (12)
C60.0429 (14)0.0438 (14)0.0348 (13)0.0143 (12)0.0048 (11)0.0060 (11)
C70.0335 (12)0.0342 (12)0.0409 (14)0.0108 (10)0.0047 (10)0.0097 (10)
C80.0340 (12)0.0382 (13)0.0373 (13)0.0142 (10)0.0016 (10)0.0084 (10)
C90.0366 (13)0.0446 (14)0.0449 (14)0.0186 (11)0.0029 (11)0.0123 (11)
C100.0401 (14)0.0463 (15)0.0491 (15)0.0210 (12)0.0001 (12)0.0089 (12)
C110.055 (2)0.0450 (19)0.158 (4)0.0120 (16)0.004 (2)0.039 (2)
C120.075 (3)0.047 (2)0.151 (4)0.0233 (18)0.005 (3)0.032 (2)
C130.138 (5)0.095 (4)0.140 (5)0.073 (4)0.050 (4)0.026 (3)
C140.0550 (18)0.0543 (18)0.0555 (18)0.0142 (15)0.0160 (14)0.0075 (14)
Geometric parameters (Å, º) top
Br—C41.899 (3)C6—C71.374 (4)
S—O41.492 (2)C6—H60.9300
S—C11.763 (3)C8—C91.486 (4)
S—C141.790 (3)C9—C101.509 (4)
O1—C81.375 (3)C9—H9A0.9700
O1—C71.375 (3)C9—H9B0.9700
O2—C101.323 (4)C11—C121.494 (6)
O2—C111.465 (4)C11—H11A0.9700
O3—C101.202 (4)C11—H11B0.9700
C1—C81.349 (4)C12—C131.465 (7)
C1—C21.448 (4)C12—H12A0.9700
C2—C31.396 (4)C12—H12B0.9700
C2—C71.397 (3)C13—H13A0.9600
C3—C41.376 (4)C13—H13B0.9600
C3—H30.9300C13—H13C0.9600
C4—C51.402 (4)C14—H14A0.9600
C5—C61.377 (4)C14—H14B0.9600
C5—H50.9300C14—H14C0.9600
O4—S—C1107.01 (13)C10—C9—H9A109.2
O4—S—C14106.32 (14)C8—C9—H9B109.2
C1—S—C1498.46 (14)C10—C9—H9B109.2
C8—O1—C7106.53 (19)H9A—C9—H9B107.9
C10—O2—C11117.2 (2)O3—C10—O2124.0 (3)
C8—C1—C2107.4 (2)O3—C10—C9125.6 (3)
C8—C1—S123.4 (2)O2—C10—C9110.4 (2)
C2—C1—S129.00 (19)O2—C11—C12107.7 (3)
C3—C2—C7119.3 (2)O2—C11—H11A110.2
C3—C2—C1136.1 (2)C12—C11—H11A110.2
C7—C2—C1104.6 (2)O2—C11—H11B110.2
C4—C3—C2116.8 (2)C12—C11—H11B110.2
C4—C3—H3121.6H11A—C11—H11B108.5
C2—C3—H3121.6C13—C12—C11114.4 (5)
C3—C4—C5123.3 (3)C13—C12—H12A108.7
C3—C4—Br118.7 (2)C11—C12—H12A108.7
C5—C4—Br117.9 (2)C13—C12—H12B108.7
C6—C5—C4119.8 (3)C11—C12—H12B108.7
C6—C5—H5120.1H12A—C12—H12B107.6
C4—C5—H5120.1C12—C13—H13A109.5
C7—C6—C5117.1 (2)C12—C13—H13B109.5
C7—C6—H6121.5H13A—C13—H13B109.5
C5—C6—H6121.5C12—C13—H13C109.5
O1—C7—C6125.9 (2)H13A—C13—H13C109.5
O1—C7—C2110.5 (2)H13B—C13—H13C109.5
C6—C7—C2123.6 (2)S—C14—H14A109.5
C1—C8—O1111.0 (2)S—C14—H14B109.5
C1—C8—C9133.2 (2)H14A—C14—H14B109.5
O1—C8—C9115.7 (2)S—C14—H14C109.5
C8—C9—C10112.2 (2)H14A—C14—H14C109.5
C8—C9—H9A109.2H14B—C14—H14C109.5
O4—S—C1—C8134.5 (2)C3—C2—C7—O1178.3 (2)
C14—S—C1—C8115.5 (2)C1—C2—C7—O11.2 (3)
O4—S—C1—C240.5 (3)C3—C2—C7—C61.8 (4)
C14—S—C1—C269.5 (3)C1—C2—C7—C6178.8 (2)
C8—C1—C2—C3178.6 (3)C2—C1—C8—O10.0 (3)
S—C1—C2—C35.7 (4)S—C1—C8—O1175.96 (17)
C8—C1—C2—C70.7 (3)C2—C1—C8—C9175.7 (3)
S—C1—C2—C7174.95 (19)S—C1—C8—C98.3 (4)
C7—C2—C3—C41.3 (4)C7—O1—C8—C10.7 (3)
C1—C2—C3—C4179.5 (3)C7—O1—C8—C9177.3 (2)
C2—C3—C4—C50.6 (4)C1—C8—C9—C1073.6 (4)
C2—C3—C4—Br179.65 (18)O1—C8—C9—C10102.0 (3)
C3—C4—C5—C62.0 (4)C11—O2—C10—O31.5 (5)
Br—C4—C5—C6178.9 (2)C11—O2—C10—C9179.2 (3)
C4—C5—C6—C71.5 (4)C8—C9—C10—O324.7 (4)
C8—O1—C7—C6178.8 (2)C8—C9—C10—O2156.0 (2)
C8—O1—C7—C21.2 (3)C10—O2—C11—C12166.2 (4)
C5—C6—C7—O1179.7 (2)O2—C11—C12—C1362.0 (6)
C5—C6—C7—C20.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···Cg1i0.973.023.720 (3)130
C12—H12B···Cg2i0.972.903.826 (3)161
C3—H3···O4ii0.932.543.424 (3)159
C5—H5···O3iii0.932.583.430 (4)152
C9—H9B···O4iv0.972.373.321 (3)167
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+2; (iii) x+1, y+1, z+1; (iv) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC14H15BrO4S
Mr359.23
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.4538 (6), 9.8823 (7), 10.3231 (7)
α, β, γ (°)72.358 (1), 81.200 (1), 65.443 (1)
V3)747.16 (9)
Z2
Radiation typeMo Kα
µ (mm1)2.90
Crystal size (mm)0.60 × 0.50 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.187, 0.556
No. of measured, independent and
observed [I > 2σ(I)] reflections
3932, 2593, 2359
Rint0.014
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.097, 1.07
No. of reflections2593
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.38

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···Cg1i0.973.023.720 (3)130.0
C12—H12B···Cg2i0.972.903.826 (3)161.1
C3—H3···O4ii0.932.543.424 (3)158.7
C5—H5···O3iii0.932.583.430 (4)152.1
C9—H9B···O4iv0.972.373.321 (3)167.1
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+2; (iii) x+1, y+1, z+1; (iv) x, y+1, z+2.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o2250.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o2397.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds