organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Cyclo­pentane-1,1-di­yl)di­methanol

aLudwig-Maximilians Universität, Department Chemie und Biochemie, Butenandtstrasse 5–13 (Haus D), 81377 München, Germany
*Correspondence e-mail: kluef@cup.uni-muenchen.de

(Received 17 December 2008; accepted 12 January 2009; online 6 February 2009)

In the title compound, C7H14O2, co-operative eight-membered homodromic rings of O—H⋯O hydrogen bonds connect the mol­ecules into strands along [100]. According to graph-set analysis, the descriptor of these cycles is R44(8). The cyclo­pentane-ring adopts an envelope conformation (C4E).

Related literature

The compound was synthesized according to a published procedure (Domin et al., 2005[Domin, D., Benito-Garagorri, D., Mereiter, K., Froehlich, J. & Kirchner, K. (2005). Organometallics, 24, 3957-3965.]). For the influence of chelation to (semi-)metals on the geometry of bifunctional alcohols, see: Klüfers & Vogler (2007[Klüfers, P. & Vogler, C. (2007). Z. Anorg. Allg. Chem. 633, 908-912.]). For the structure of a related compound, see Wender et al. (1999[Wender, P. A., Glorius, F., Husfeld, C. O., Langkopf, E. & Love, J. A. (1999). J. Am. Chem. Soc. 121, 5348-5349.]). For details on graph-set analysis of hydrogen bonds, see Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For details of puckering analysis, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C7H14O2

  • Mr = 130.18

  • Monoclinic, P 21 /n

  • a = 5.8614 (16) Å

  • b = 10.631 (3) Å

  • c = 11.917 (3) Å

  • β = 98.33 (2)°

  • V = 734.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 200 (2) K

  • 0.20 × 0.17 × 0.06 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: none

  • 4224 measured reflections

  • 1692 independent reflections

  • 924 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.149

  • S = 1.01

  • 1692 reflections

  • 85 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.84 1.91 2.720 (2) 163
O2—H2⋯O1ii 0.84 1.88 2.691 (2) 161
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In a program focused on the influence of chelation to (semi-)metals on the geometry of bifunctional alcohols (Klüfers & Vogler, 2007), the structure of 1,1-bis(hydroxymethyl)cyclopentane was elucidated.

Neglecting the hydrogen atoms of the hydroxy groups, the molecule would show non-crystallographic C2 symmetry (Fig. 1).

According to a conformational analysis (Cremer & Pople, 1975), the cyclopentane-moiety adopts an envelope conformation C4E (Q2 = 0.404 (3) Å), which is slightly distorted towards a twist conformation C4TC3 (ϕ2 = 280 (4)°).

In the crystals structure, hydrogen bonds furnish the formation of cooperative eight-membered homodromic rings (Fig. 2). These connect the molecules to strands along [1 0 0]. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for this pattern is R44(8).

The molecular packing of the compound is shown in Figure 3.

Related literature top

The compound was synthesized according to a published procedure (Domin et al., 2005). For the influence of chelation to (semi-)metals on the geometry of bifunctional alcohols, see: Klüfers & Vogler (2007). For the structure of a related compound, see Wender et al. (1999). For details on graph-set analysis of hydrogen bonds, see Etter et al. (1990); Bernstein et al. (1995). For details of puckering analysis, see Cremer & Pople (1975).

Experimental top

The compound was prepared upon reacting 1,4-dibromobutane with malonic acid diethylester under basic conditions according to a published procedure (Domin et al., 2005). Crystals suitable for X-ray analysis were obtained upon recrystallization of the crude reaction product from a boiling mixture of ethyl acetate - light petrol ether (1:1).

Refinement top

All H-atoms were placed in calculated positions (C—H 0.99 Å and O—H 0.84 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C) for methylene groups and U(H) set to 1.5Ueq(O). Hydroxyl H atoms were allowed to rotate with a fixed angle around the C-O bond to best fit the experimental electron density (HFIX 147 in the SHELX program suite (Sheldrick, 2008)).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.
[Figure 2] Fig. 2. Hydrogen bonds in the crystal structure of the title compound, viewed along [0 1 0]. Symmetry operators: ix - 1, y, z; ii -x + 1, -y + 1, -z; iiix + 1, y, z.
[Figure 3] Fig. 3. The packing of the title compound, viewed along [-1 0 0].
(Cyclopentane-1,1-diyl)dimethanol top
Crystal data top
C7H14O2Z = 4
Mr = 130.18F(000) = 288
Monoclinic, P21/nDx = 1.177 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 5.8614 (16) Åθ = 4.6–27.5°
b = 10.631 (3) ŵ = 0.08 mm1
c = 11.917 (3) ÅT = 200 K
β = 98.33 (2)°Platelet, colourless
V = 734.7 (3) Å30.20 × 0.17 × 0.06 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
924 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.067
Graphite monochromatorθmax = 27.5°, θmin = 4.6°
ω scansh = 74
4224 measured reflectionsk = 1313
1692 independent reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0527P)2]
where P = (Fo2 + 2Fc2)/3
1692 reflections(Δ/σ)max < 0.001
85 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C7H14O2V = 734.7 (3) Å3
Mr = 130.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.8614 (16) ŵ = 0.08 mm1
b = 10.631 (3) ÅT = 200 K
c = 11.917 (3) Å0.20 × 0.17 × 0.06 mm
β = 98.33 (2)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
924 reflections with I > 2σ(I)
4224 measured reflectionsRint = 0.067
1692 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.01Δρmax = 0.19 e Å3
1692 reflectionsΔρmin = 0.17 e Å3
85 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2142 (2)0.49721 (17)0.14033 (13)0.0473 (5)
H10.25220.50900.07580.071*
O20.7532 (3)0.48406 (16)0.08445 (12)0.0431 (5)
H20.88930.49840.11460.065*
C10.5747 (4)0.41846 (19)0.24878 (17)0.0299 (5)
C20.7724 (4)0.4594 (2)0.34277 (18)0.0381 (6)
H210.92040.46380.31220.046*
H220.73930.54320.37290.046*
C30.7843 (5)0.3602 (2)0.4357 (2)0.0562 (8)
H310.89060.29120.42230.067*
H320.83610.39750.51120.067*
C40.5393 (6)0.3131 (3)0.4270 (2)0.0586 (8)
H410.44130.37330.46190.070*
H420.53300.23020.46410.070*
C50.4640 (4)0.3034 (2)0.2995 (2)0.0475 (7)
H510.29390.30640.28120.057*
H520.51980.22400.26960.057*
C60.4039 (4)0.5258 (2)0.22489 (19)0.0363 (6)
H610.34470.54810.29600.044*
H620.48530.60020.20040.044*
C70.6631 (4)0.3799 (2)0.14014 (19)0.0388 (6)
H710.78560.31580.15810.047*
H720.53560.34100.08800.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0243 (8)0.0853 (13)0.0320 (8)0.0014 (8)0.0036 (7)0.0073 (9)
O20.0276 (8)0.0721 (12)0.0303 (8)0.0023 (9)0.0060 (7)0.0062 (8)
C10.0290 (11)0.0332 (11)0.0274 (11)0.0025 (10)0.0043 (9)0.0028 (9)
C20.0331 (12)0.0496 (14)0.0308 (11)0.0007 (11)0.0018 (10)0.0010 (10)
C30.074 (2)0.0586 (17)0.0326 (13)0.0067 (16)0.0032 (14)0.0047 (12)
C40.093 (2)0.0465 (15)0.0408 (14)0.0035 (16)0.0266 (15)0.0052 (12)
C50.0526 (16)0.0417 (14)0.0500 (15)0.0048 (13)0.0139 (13)0.0066 (12)
C60.0288 (11)0.0470 (14)0.0330 (11)0.0021 (11)0.0039 (10)0.0001 (10)
C70.0348 (12)0.0454 (13)0.0370 (13)0.0008 (11)0.0074 (11)0.0068 (11)
Geometric parameters (Å, º) top
O1—C61.421 (3)C3—H310.9900
O1—H10.8400C3—H320.9900
O2—C71.431 (3)C4—C51.523 (4)
O2—H20.8400C4—H410.9900
C1—C61.517 (3)C4—H420.9900
C1—C71.519 (3)C5—H510.9900
C1—C51.548 (3)C5—H520.9900
C1—C21.553 (3)C6—H610.9900
C2—C31.524 (3)C6—H620.9900
C2—H210.9900C7—H710.9900
C2—H220.9900C7—H720.9900
C3—C41.510 (4)
C6—O1—H1109.5C5—C4—H41111.2
C7—O2—H2109.5C3—C4—H42111.2
C6—C1—C7109.90 (18)C5—C4—H42111.2
C6—C1—C5111.40 (18)H41—C4—H42109.1
C7—C1—C5109.48 (18)C4—C5—C1104.99 (19)
C6—C1—C2109.13 (17)C4—C5—H51110.7
C7—C1—C2112.31 (17)C1—C5—H51110.7
C5—C1—C2104.54 (18)C4—C5—H52110.7
C3—C2—C1106.30 (19)C1—C5—H52110.7
C3—C2—H21110.5H51—C5—H52108.8
C1—C2—H21110.5O1—C6—C1113.57 (18)
C3—C2—H22110.5O1—C6—H61108.9
C1—C2—H22110.5C1—C6—H61108.9
H21—C2—H22108.7O1—C6—H62108.9
C4—C3—C2103.7 (2)C1—C6—H62108.9
C4—C3—H31111.0H61—C6—H62107.7
C2—C3—H31111.0O2—C7—C1112.37 (18)
C4—C3—H32111.0O2—C7—H71109.1
C2—C3—H32111.0C1—C7—H71109.1
H31—C3—H32109.0O2—C7—H72109.1
C3—C4—C5103.1 (2)C1—C7—H72109.1
C3—C4—H41111.2H71—C7—H72107.9
C6—C1—C2—C3125.3 (2)C2—C1—C5—C419.5 (2)
C7—C1—C2—C3112.5 (2)C7—C1—C6—O157.0 (2)
C5—C1—C2—C36.1 (2)C5—C1—C6—O164.6 (2)
C1—C2—C3—C429.5 (2)C2—C1—C6—O1179.48 (17)
C2—C3—C4—C541.6 (3)C6—C1—C7—O253.2 (2)
C3—C4—C5—C138.0 (3)C5—C1—C7—O2175.88 (19)
C6—C1—C5—C498.3 (2)C2—C1—C7—O268.5 (2)
C7—C1—C5—C4140.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.912.720 (2)163
O2—H2···O1ii0.841.882.691 (2)161
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC7H14O2
Mr130.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)5.8614 (16), 10.631 (3), 11.917 (3)
β (°) 98.33 (2)
V3)734.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.17 × 0.06
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4224, 1692, 924
Rint0.067
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.149, 1.01
No. of reflections1692
No. of parameters85
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: CrysAlis CCD (Oxford Diffraction, 2005), CrysAlis RED (Oxford Diffraction, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.912.720 (2)162.6
O2—H2···O1ii0.841.882.691 (2)160.5
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.
 

Acknowledgements

The authors thank Professor Klapötke for generous allocation of diffractometer time and Sandra Albrecht for professional support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDomin, D., Benito-Garagorri, D., Mereiter, K., Froehlich, J. & Kirchner, K. (2005). Organometallics, 24, 3957–3965.  Web of Science CSD CrossRef CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKlüfers, P. & Vogler, C. (2007). Z. Anorg. Allg. Chem. 633, 908–912.  Google Scholar
First citationOxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWender, P. A., Glorius, F., Husfeld, C. O., Langkopf, E. & Love, J. A. (1999). J. Am. Chem. Soc. 121, 5348–5349.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds