metal-organic compounds
(2,2-Dichlorovinyl)ferrocene
aInstitut UTINAM UMR CNRS 6213, Université de Franche-Comté, 16 Route de Gray, La Bouloie, 25030 Besançon, France, and bTechnische Universität Dortmund, Anorganische Chemie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
*Correspondence e-mail: mail@carsten-strohmann.de
The title compound, [Fe(C5H5)(C7H5Cl2)], represents a versatile building block for the preparation of π-conjugated redox-active compounds or polymetallic organometallic systems due to the presence of the electrochemically active ferrocenyl unit. It is therefore a potential starting material for the preperation of the corresponding alkyne. In the crystal, the alkenyl unit and the cyclopentadienide ring are almost parallel, with an angle between the best planes of only 10.6 (4)°.
Related literature
The title compound was first prepared in 1963, see: Schloegl et al. (1963). For an alternative synthesis using a Corey–Fuchs route, see: Luo et al. (2000). For the preparation of some other halo-vinyl ferrocenes, see: Naskar et al. (2000). For related functionalized ferrocenes, see: Clément et al. (2007a) and for [2.2]paracyclophanes, see: Clément et al. (2007b). For the parent compound, ethenylferrocene, see: McAdam et al. (2008).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2001); cell SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS90 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809006102/zl2181sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809006102/zl2181Isup2.hkl
(2,2-Dichlorovinyl)ferrocene (2): Triphenyl phosphane (2.40 g, 8.5 mmol), CCl4 (0.82 ml, 8.5 mmol) and zinc dust (0.55 g, 8.5 mmol) were placed in a Schlenk tube and 25 ml CH2Cl2 were slowly added. After stirring at room temperature for 28 h, ferrocenecarbaldehyde (1) (1.00 g, 4.24 mmol), dissolved in CH2Cl2 (10 ml), was added and stirring was continued for further 2 h. The reaction mixture was extracted with three 50 ml portions of pentane and CH2Cl2 was added when the reaction mixture became too viscous for further extractions. The extracts were filtered and evaporated under reduced pressure. The crude product was purified by
on silica gel with CH2Cl2/petroleum ether (1:1). Slow evaporation yielded red crystals of 2 (Yield: 91%). Characterization data have been previously described in the literature. (Luo et al., 2000)All H atoms were refined using a riding model in their ideal geometric positions. Uiso(H) = -1.2Ueq(C) was used for CH with C—H distances of 1.00 Å for the cyclopentadienyl H atoms and 0.95Å for the alkenyl hydrogen.
Data collection: SMART (Bruker, 2001); cell
SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS90 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. ORTEP presentation of (2) at the 30% probability level. | |
Fig. 2. Packing diagramm of (2). | |
Fig. 3. Synthesis of (2,2-Dichlorovinyl)ferrocene (2) under COREY-FUCHS reaction conditions. |
[Fe(C5H5)(C7H5Cl2)] | F(000) = 568 |
Mr = 280.95 | Dx = 1.688 Mg m−3 |
Monoclinic, P21/c | Melting point: 382 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 14.340 (3) Å | Cell parameters from 1338 reflections |
b = 7.4370 (15) Å | θ = 1.5–25.0° |
c = 10.932 (2) Å | µ = 1.81 mm−1 |
β = 108.48 (3)° | T = 173 K |
V = 1105.8 (4) Å3 | Irregular, red |
Z = 4 | 0.3 × 0.2 × 0.2 mm |
Bruker APEX CCD diffractometer | 1908 independent reflections |
Radiation source: fine-focus sealed tube | 1372 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.05 |
ω scans | θmax = 25.0°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | h = −10→17 |
Tmin = 0.594, Tmax = 0.694 | k = −8→7 |
3293 measured reflections | l = −12→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.063 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.174 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0967P)2 + 0.0275P] where P = (Fo2 + 2Fc2)/3 |
1908 reflections | (Δ/σ)max < 0.001 |
136 parameters | Δρmax = 1.04 e Å−3 |
0 restraints | Δρmin = −0.46 e Å−3 |
[Fe(C5H5)(C7H5Cl2)] | V = 1105.8 (4) Å3 |
Mr = 280.95 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 14.340 (3) Å | µ = 1.81 mm−1 |
b = 7.4370 (15) Å | T = 173 K |
c = 10.932 (2) Å | 0.3 × 0.2 × 0.2 mm |
β = 108.48 (3)° |
Bruker APEX CCD diffractometer | 1908 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | 1372 reflections with I > 2σ(I) |
Tmin = 0.594, Tmax = 0.694 | Rint = 0.05 |
3293 measured reflections |
R[F2 > 2σ(F2)] = 0.063 | 0 restraints |
wR(F2) = 0.174 | H-atom parameters constrained |
S = 1.02 | Δρmax = 1.04 e Å−3 |
1908 reflections | Δρmin = −0.46 e Å−3 |
136 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3941 (5) | 0.1149 (9) | 1.0606 (6) | 0.0309 (16) | |
C2 | 0.3017 (5) | 0.0654 (9) | 1.0059 (6) | 0.0286 (16) | |
H2 | 0.2812 | −0.0326 | 1.0468 | 0.034* | |
C3 | 0.2268 (5) | 0.1356 (9) | 0.8940 (6) | 0.0262 (15) | |
C4 | 0.2322 (5) | 0.2584 (8) | 0.7962 (6) | 0.0297 (16) | |
H4 | 0.2932 | 0.3182 | 0.7905 | 0.036* | |
C5 | 0.1361 (6) | 0.2818 (9) | 0.7090 (7) | 0.0339 (17) | |
H5 | 0.1177 | 0.3602 | 0.6306 | 0.041* | |
C6 | 0.0706 (5) | 0.1740 (10) | 0.7506 (7) | 0.0350 (18) | |
H6 | −0.0018 | 0.1629 | 0.7067 | 0.042* | |
C7 | 0.1254 (5) | 0.0827 (10) | 0.8631 (6) | 0.0319 (17) | |
H7 | 0.0985 | −0.0039 | 0.9133 | 0.038* | |
C8 | 0.2636 (6) | −0.0694 (10) | 0.6107 (7) | 0.0389 (19) | |
H8 | 0.32 | −0.0011 | 0.5981 | 0.047* | |
C9 | 0.2703 (6) | −0.1880 (10) | 0.7137 (8) | 0.0372 (18) | |
H9 | 0.3317 | −0.2198 | 0.7847 | 0.045* | |
C10 | 0.1753 (5) | −0.2558 (9) | 0.6980 (7) | 0.0320 (17) | |
H10 | 0.1576 | −0.343 | 0.7567 | 0.038* | |
C11 | 0.1090 (5) | −0.1753 (9) | 0.5874 (7) | 0.0327 (17) | |
H11 | 0.0365 | −0.1969 | 0.5529 | 0.039* | |
C12 | 0.1664 (5) | −0.0579 (11) | 0.5309 (6) | 0.0366 (19) | |
H12 | 0.1408 | 0.0166 | 0.4511 | 0.044* | |
Cl1 | 0.45229 (14) | 0.2850 (3) | 1.00576 (19) | 0.0410 (5) | |
Cl2 | 0.46791 (14) | 0.0177 (3) | 1.20093 (18) | 0.0452 (6) | |
Fe1 | 0.17755 (7) | 0.01793 (12) | 0.71562 (9) | 0.0219 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.031 (4) | 0.032 (4) | 0.022 (4) | 0.001 (3) | −0.002 (3) | −0.003 (3) |
C2 | 0.030 (4) | 0.029 (4) | 0.026 (4) | −0.001 (3) | 0.007 (3) | 0.000 (3) |
C3 | 0.030 (4) | 0.023 (4) | 0.021 (3) | 0.001 (3) | 0.002 (3) | −0.005 (3) |
C4 | 0.034 (4) | 0.024 (4) | 0.023 (3) | −0.003 (3) | −0.003 (3) | −0.001 (3) |
C5 | 0.039 (4) | 0.024 (4) | 0.029 (4) | 0.007 (3) | −0.002 (3) | −0.006 (3) |
C6 | 0.030 (4) | 0.039 (5) | 0.034 (4) | 0.008 (3) | 0.007 (3) | −0.005 (3) |
C7 | 0.036 (4) | 0.036 (4) | 0.023 (4) | −0.003 (3) | 0.009 (3) | −0.007 (3) |
C8 | 0.043 (5) | 0.037 (4) | 0.041 (5) | −0.004 (4) | 0.021 (4) | −0.011 (3) |
C9 | 0.029 (4) | 0.034 (4) | 0.047 (5) | 0.011 (3) | 0.008 (4) | −0.002 (3) |
C10 | 0.035 (4) | 0.022 (4) | 0.041 (4) | −0.002 (3) | 0.015 (4) | −0.009 (3) |
C11 | 0.025 (4) | 0.036 (4) | 0.035 (4) | −0.008 (3) | 0.006 (3) | −0.016 (3) |
C12 | 0.034 (4) | 0.054 (5) | 0.020 (4) | 0.012 (4) | 0.006 (3) | −0.011 (3) |
Cl1 | 0.0320 (10) | 0.0469 (12) | 0.0410 (10) | −0.0091 (9) | 0.0072 (8) | −0.0002 (9) |
Cl2 | 0.0374 (12) | 0.0488 (13) | 0.0356 (10) | 0.0041 (9) | −0.0081 (9) | 0.0021 (8) |
Fe1 | 0.0202 (5) | 0.0199 (6) | 0.0227 (5) | −0.0013 (4) | 0.0026 (4) | −0.0025 (4) |
C1—C2 | 1.321 (9) | C7—Fe1 | 2.038 (7) |
C1—Cl1 | 1.725 (7) | C7—H7 | 1 |
C1—Cl2 | 1.723 (7) | C8—C12 | 1.393 (10) |
C2—C3 | 1.446 (9) | C8—C9 | 1.410 (10) |
C2—H2 | 0.95 | C8—Fe1 | 2.040 (7) |
C3—C4 | 1.427 (9) | C8—H8 | 1 |
C3—C7 | 1.438 (10) | C9—C10 | 1.412 (10) |
C3—Fe1 | 2.048 (6) | C9—Fe1 | 2.033 (7) |
C4—C5 | 1.416 (10) | C9—H9 | 1 |
C4—Fe1 | 2.038 (6) | C10—C11 | 1.412 (10) |
C4—H4 | 1 | C10—Fe1 | 2.044 (6) |
C5—C6 | 1.415 (10) | C10—H10 | 1 |
C5—Fe1 | 2.045 (7) | C11—C12 | 1.465 (10) |
C5—H5 | 1 | C11—Fe1 | 2.030 (7) |
C6—C7 | 1.407 (9) | C11—H11 | 1 |
C6—Fe1 | 2.054 (7) | C12—Fe1 | 2.054 (6) |
C6—H6 | 1 | C12—H12 | 1 |
C2—C1—Cl1 | 125.0 (6) | C12—C11—Fe1 | 69.8 (4) |
C2—C1—Cl2 | 122.1 (6) | C10—C11—H11 | 126.3 |
Cl1—C1—Cl2 | 112.9 (4) | C12—C11—H11 | 126.3 |
C1—C2—C3 | 130.7 (7) | Fe1—C11—H11 | 126.3 |
C1—C2—H2 | 114.6 | C8—C12—C11 | 106.5 (7) |
C3—C2—H2 | 114.6 | C8—C12—Fe1 | 69.6 (4) |
C4—C3—C2 | 131.5 (7) | C11—C12—Fe1 | 68.1 (4) |
C4—C3—C7 | 106.8 (6) | C8—C12—H12 | 126.8 |
C2—C3—C7 | 121.7 (6) | C11—C12—H12 | 126.7 |
C4—C3—Fe1 | 69.2 (4) | Fe1—C12—H12 | 126.7 |
C2—C3—Fe1 | 126.2 (5) | C11—Fe1—C9 | 68.6 (3) |
C7—C3—Fe1 | 69.0 (4) | C11—Fe1—C4 | 162.8 (3) |
C5—C4—C3 | 108.1 (6) | C9—Fe1—C4 | 120.2 (3) |
C5—C4—Fe1 | 70.0 (4) | C11—Fe1—C10 | 40.6 (3) |
C3—C4—Fe1 | 69.9 (4) | C9—Fe1—C10 | 40.5 (3) |
C5—C4—H4 | 125.9 | C4—Fe1—C10 | 155.2 (3) |
C3—C4—H4 | 126 | C11—Fe1—C7 | 119.6 (3) |
Fe1—C4—H4 | 126 | C9—Fe1—C7 | 126.3 (3) |
C6—C5—C4 | 108.5 (6) | C4—Fe1—C7 | 68.8 (3) |
C6—C5—Fe1 | 70.1 (4) | C10—Fe1—C7 | 108.1 (3) |
C4—C5—Fe1 | 69.4 (4) | C11—Fe1—C8 | 68.5 (3) |
C6—C5—H5 | 125.7 | C9—Fe1—C8 | 40.5 (3) |
C4—C5—H5 | 125.7 | C4—Fe1—C8 | 107.7 (3) |
Fe1—C5—H5 | 125.7 | C10—Fe1—C8 | 67.9 (3) |
C5—C6—C7 | 108.1 (6) | C7—Fe1—C8 | 163.6 (3) |
C5—C6—Fe1 | 69.5 (4) | C11—Fe1—C12 | 42.0 (3) |
C7—C6—Fe1 | 69.3 (4) | C9—Fe1—C12 | 68.3 (3) |
C5—C6—H6 | 126 | C4—Fe1—C12 | 124.4 (3) |
C7—C6—H6 | 126 | C10—Fe1—C12 | 68.9 (3) |
Fe1—C6—H6 | 126 | C7—Fe1—C12 | 155.4 (3) |
C6—C7—C3 | 108.5 (6) | C8—Fe1—C12 | 39.8 (3) |
C6—C7—Fe1 | 70.5 (4) | C11—Fe1—C5 | 125.7 (3) |
C3—C7—Fe1 | 69.8 (4) | C9—Fe1—C5 | 155.0 (3) |
C6—C7—H7 | 125.8 | C4—Fe1—C5 | 40.6 (3) |
C3—C7—H7 | 125.8 | C10—Fe1—C5 | 163.0 (3) |
Fe1—C7—H7 | 125.8 | C7—Fe1—C5 | 68.0 (3) |
C12—C8—C9 | 109.8 (7) | C8—Fe1—C5 | 120.4 (3) |
C12—C8—Fe1 | 70.6 (4) | C12—Fe1—C5 | 107.3 (3) |
C9—C8—Fe1 | 69.5 (4) | C11—Fe1—C3 | 154.8 (3) |
C12—C8—H8 | 125.1 | C9—Fe1—C3 | 107.6 (3) |
C9—C8—H8 | 125.1 | C4—Fe1—C3 | 40.9 (3) |
Fe1—C8—H8 | 125.1 | C10—Fe1—C3 | 120.4 (3) |
C8—C9—C10 | 108.0 (7) | C7—Fe1—C3 | 41.2 (3) |
C8—C9—Fe1 | 70.0 (4) | C8—Fe1—C3 | 125.8 (3) |
C10—C9—Fe1 | 70.2 (4) | C12—Fe1—C3 | 161.7 (3) |
C8—C9—H9 | 126 | C5—Fe1—C3 | 68.4 (3) |
C10—C9—H9 | 126 | C11—Fe1—C6 | 107.6 (3) |
Fe1—C9—H9 | 126 | C9—Fe1—C6 | 163.2 (3) |
C9—C10—C11 | 108.3 (7) | C4—Fe1—C6 | 68.3 (3) |
C9—C10—Fe1 | 69.3 (4) | C10—Fe1—C6 | 126.1 (3) |
C11—C10—Fe1 | 69.2 (4) | C7—Fe1—C6 | 40.2 (3) |
C9—C10—H10 | 125.8 | C8—Fe1—C6 | 154.9 (3) |
C11—C10—H10 | 125.8 | C12—Fe1—C6 | 120.5 (3) |
Fe1—C10—H10 | 125.8 | C5—Fe1—C6 | 40.4 (3) |
C10—C11—C12 | 107.4 (6) | C3—Fe1—C6 | 68.5 (3) |
C10—C11—Fe1 | 70.2 (4) |
Experimental details
Crystal data | |
Chemical formula | [Fe(C5H5)(C7H5Cl2)] |
Mr | 280.95 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 173 |
a, b, c (Å) | 14.340 (3), 7.4370 (15), 10.932 (2) |
β (°) | 108.48 (3) |
V (Å3) | 1105.8 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.81 |
Crystal size (mm) | 0.3 × 0.2 × 0.2 |
Data collection | |
Diffractometer | Bruker APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1999) |
Tmin, Tmax | 0.594, 0.694 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3293, 1908, 1372 |
Rint | 0.05 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.063, 0.174, 1.02 |
No. of reflections | 1908 |
No. of parameters | 136 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.04, −0.46 |
Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 1999), SHELXS90 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).
Acknowledgements
We are grateful to the French Ministere de la Recherche et Technologie for a PhD grant for SC. We also thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support and the award of a scholarship (VHG).
References
Bruker (1999). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Clément, S., Guyard, L., Knorr, M., Dilsky, S., Strohmann, C. & Arroyo, M. (2007b). J. Organomet. Chem. 692, 839–850. Google Scholar
Clément, S., Guyard, L., Knorr, M., Villafañe, F., Strohmann, C. & Kubicki, M. M. (2007a). Eur. J. Inorg. Chem. pp. 5052–5061. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Luo, S.-J., Liu, Y.-H., Liu, C.-M., Liang, Y.-M. & Ma, Y.-X. (2000). Synth. Commun. 30, 1569–1572. Web of Science CrossRef CAS Google Scholar
McAdam, C. J., Robinson, B. H. & Simpson, J. (2008). Inorg. Chim. Acta, 361, 2172–2175. Web of Science CSD CrossRef CAS Google Scholar
Naskar, D., Das, S. K., Giribabu, L., Maiya, B. G. & Roy, S. (2000). Organometallics, 19, 1464–1469. Web of Science CrossRef CAS Google Scholar
Schloegl, K. & Egger, H. (1963). Monatsh. Chem. 94, 376-392. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
π-Conjugated ligands are widely applied in coordination chemistry, catalysis or polymer sciences. Among them, ethynylferrocene and its derivatives have gained special interest due to their use as building blocks for the synthesis of di- and polymetallic organometallic systems and advanced materials. In the context of our research into developing novel π-conjugated ligands such as functionalized ferrocenes (Clément et al., 2007a) and [2.2]paracyclophanes (Clément et al., 2007b) for potential applications in coordination chemistry, we have recently reported dehalobromation of (2,2-dibromovinyl)ferrocene and dibromovinyl[2.2]paracyclophane as a convenient route to the synthesis of the corresponding alkynes.
In order to take a closer glance on the influence of the halide leaving group in the starting materials {[Cl2C=C(H)—Fc] versus [Br2C=C(H)—Fc] (Fc = ferrocenyl)}, we prepared the title compound (2) according to a slightly modified literature procedure (Luo et al., 2000) under Corey-Fuchs conditions by treatment of ferrocenecarbaldehyde (1) with CCl4 in the presence of zinc dust and triphenyl phosphane (Figure 3).
The molecular structure of 2 is shown in Figure 1. (2,2-Dichlorovinyl)ferrocene (2) crystallizes in the monoclinic crystal system, space group P21/c. The two cyclopentadienyl rings are almost eclipsed with a mean cyclopentadienyl twist angle of 6.17°. The dihedral angle between the Cp ring planes is 0.1 (5)°. The bond distance of the vinylic double bond between C(1) and C(2) of 1.321 (9) Å is almost identical with that of (2,2-dibromovinyl)ferrocene [1.318 (4) Å]. The alkenyl unit and the cyclopentadienido ring are fairly coplanar with an angle between the two best planes [(C1 C2 Cl1 Cl2) and (C3 C4 C5 C6 C7)] of only 10.6 (4)°. This value determined for 2 is comparable to that determined for (2,2-dibromovinyl)ferrocene (10.43°) (Clément et al., 2007a). Cl1 is involved in week C–H···Cl interactions (H8···Cl1i: 2.901 Å and C8–H8···Cl1i 166.8°; symmetry operator i: x,-y+1/2,+z-1/2). Overall, it seems that the influence of the halide on the molecular geometry is negligeable. In contrast to the parent compound ethenylferrocene (McAdam et al., 2008), where intermolecular C–H···π interactions are present in the solid state, no significant intermolecular interactions are observed in the packing of (2) (Figure 2).