metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,2-Di­chloro­vinyl)ferrocene

aInstitut UTINAM UMR CNRS 6213, Université de Franche-Comté, 16 Route de Gray, La Bouloie, 25030 Besançon, France, and bTechnische Universität Dortmund, Anorganische Chemie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
*Correspondence e-mail: mail@carsten-strohmann.de

(Received 17 February 2009; accepted 19 February 2009; online 28 February 2009)

The title compound, [Fe(C5H5)(C7H5Cl2)], represents a versatile building block for the preparation of π-conjugated redox-active compounds or polymetallic organometallic systems due to the presence of the electrochemically active ferrocenyl unit. It is therefore a potential starting material for the preperation of the corresponding alkyne. In the crystal, the alkenyl unit and the cyclo­penta­dienide ring are almost parallel, with an angle between the best planes of only 10.6 (4)°.

Related literature

The title compound was first prepared in 1963, see: Schloegl et al. (1963[Schloegl, K. & Egger, H. (1963). Monatsh. Chem. 94, 376-392.]). For an alternative synthesis using a Corey–Fuchs route, see: Luo et al. (2000[Luo, S.-J., Liu, Y.-H., Liu, C.-M., Liang, Y.-M. & Ma, Y.-X. (2000). Synth. Commun. 30, 1569-1572.]). For the preparation of some other halo-vinyl ferrocenes, see: Naskar et al. (2000[Naskar, D., Das, S. K., Giribabu, L., Maiya, B. G. & Roy, S. (2000). Organometallics, 19, 1464-1469.]). For related functionalized ferrocenes, see: Clément et al. (2007a[Clément, S., Guyard, L., Knorr, M., Villafañe, F., Strohmann, C. & Kubicki, M. M. (2007a). Eur. J. Inorg. Chem. pp. 5052-5061.]) and for [2.2]paracyclo­phanes, see: Clément et al. (2007b[Clément, S., Guyard, L., Knorr, M., Dilsky, S., Strohmann, C. & Arroyo, M. (2007b). J. Organomet. Chem. 692, 839-850.]). For the parent compound, ethenylferrocene, see: McAdam et al. (2008[McAdam, C. J., Robinson, B. H. & Simpson, J. (2008). Inorg. Chim. Acta, 361, 2172-2175.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C7H5Cl2)]

  • Mr = 280.95

  • Monoclinic, P 21 /c

  • a = 14.340 (3) Å

  • b = 7.4370 (15) Å

  • c = 10.932 (2) Å

  • β = 108.48 (3)°

  • V = 1105.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.81 mm−1

  • T = 173 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.594, Tmax = 0.694

  • 3293 measured reflections

  • 1908 independent reflections

  • 1372 reflections with I > 2σ(I)

  • Rint = 0.05

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.174

  • S = 1.02

  • 1908 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 1.04 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS90 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

π-Conjugated ligands are widely applied in coordination chemistry, catalysis or polymer sciences. Among them, ethynylferrocene and its derivatives have gained special interest due to their use as building blocks for the synthesis of di- and polymetallic organometallic systems and advanced materials. In the context of our research into developing novel π-conjugated ligands such as functionalized ferrocenes (Clément et al., 2007a) and [2.2]paracyclophanes (Clément et al., 2007b) for potential applications in coordination chemistry, we have recently reported dehalobromation of (2,2-dibromovinyl)ferrocene and dibromovinyl[2.2]paracyclophane as a convenient route to the synthesis of the corresponding alkynes.

In order to take a closer glance on the influence of the halide leaving group in the starting materials {[Cl2C=C(H)—Fc] versus [Br2C=C(H)—Fc] (Fc = ferrocenyl)}, we prepared the title compound (2) according to a slightly modified literature procedure (Luo et al., 2000) under Corey-Fuchs conditions by treatment of ferrocenecarbaldehyde (1) with CCl4 in the presence of zinc dust and triphenyl phosphane (Figure 3).

The molecular structure of 2 is shown in Figure 1. (2,2-Dichlorovinyl)ferrocene (2) crystallizes in the monoclinic crystal system, space group P21/c. The two cyclopentadienyl rings are almost eclipsed with a mean cyclopentadienyl twist angle of 6.17°. The dihedral angle between the Cp ring planes is 0.1 (5)°. The bond distance of the vinylic double bond between C(1) and C(2) of 1.321 (9) Å is almost identical with that of (2,2-dibromovinyl)ferrocene [1.318 (4) Å]. The alkenyl unit and the cyclopentadienido ring are fairly coplanar with an angle between the two best planes [(C1 C2 Cl1 Cl2) and (C3 C4 C5 C6 C7)] of only 10.6 (4)°. This value determined for 2 is comparable to that determined for (2,2-dibromovinyl)ferrocene (10.43°) (Clément et al., 2007a). Cl1 is involved in week C–H···Cl interactions (H8···Cl1i: 2.901 Å and C8–H8···Cl1i 166.8°; symmetry operator i: x,-y+1/2,+z-1/2). Overall, it seems that the influence of the halide on the molecular geometry is negligeable. In contrast to the parent compound ethenylferrocene (McAdam et al., 2008), where intermolecular C–H···π interactions are present in the solid state, no significant intermolecular interactions are observed in the packing of (2) (Figure 2).

Related literature top

The title compound was first prepared in 1963, see: Schloegl et al. (1963). For an alternative synthesis using a Corey–Fuchs route, see: Luo et al. (2000). For the preparation of some other halo-vinyl ferrocenes, see: Naskar et al. (2000). For related functionalized ferrocenes, see: Clément et al. (2007a) and for [2.2]paracyclophanes, see: Clément et al. (2007b). For the parent compound ethenylferrocene, see: McAdam et al. (2008).

Experimental top

(2,2-Dichlorovinyl)ferrocene (2): Triphenyl phosphane (2.40 g, 8.5 mmol), CCl4 (0.82 ml, 8.5 mmol) and zinc dust (0.55 g, 8.5 mmol) were placed in a Schlenk tube and 25 ml CH2Cl2 were slowly added. After stirring at room temperature for 28 h, ferrocenecarbaldehyde (1) (1.00 g, 4.24 mmol), dissolved in CH2Cl2 (10 ml), was added and stirring was continued for further 2 h. The reaction mixture was extracted with three 50 ml portions of pentane and CH2Cl2 was added when the reaction mixture became too viscous for further extractions. The extracts were filtered and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel with CH2Cl2/petroleum ether (1:1). Slow evaporation yielded red crystals of 2 (Yield: 91%). Characterization data have been previously described in the literature. (Luo et al., 2000)

Refinement top

All H atoms were refined using a riding model in their ideal geometric positions. Uiso(H) = -1.2Ueq(C) was used for CH with C—H distances of 1.00 Å for the cyclopentadienyl H atoms and 0.95Å for the alkenyl hydrogen.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS90 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP presentation of (2) at the 30% probability level.
[Figure 2] Fig. 2. Packing diagramm of (2).
[Figure 3] Fig. 3. Synthesis of (2,2-Dichlorovinyl)ferrocene (2) under COREY-FUCHS reaction conditions.
(2,2-Dichlorovinyl)ferrocene top
Crystal data top
[Fe(C5H5)(C7H5Cl2)]F(000) = 568
Mr = 280.95Dx = 1.688 Mg m3
Monoclinic, P21/cMelting point: 382 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.340 (3) ÅCell parameters from 1338 reflections
b = 7.4370 (15) Åθ = 1.5–25.0°
c = 10.932 (2) ŵ = 1.81 mm1
β = 108.48 (3)°T = 173 K
V = 1105.8 (4) Å3Irregular, red
Z = 40.3 × 0.2 × 0.2 mm
Data collection top
Bruker APEX CCD
diffractometer
1908 independent reflections
Radiation source: fine-focus sealed tube1372 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.05
ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1017
Tmin = 0.594, Tmax = 0.694k = 87
3293 measured reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0967P)2 + 0.0275P]
where P = (Fo2 + 2Fc2)/3
1908 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 1.04 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Fe(C5H5)(C7H5Cl2)]V = 1105.8 (4) Å3
Mr = 280.95Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.340 (3) ŵ = 1.81 mm1
b = 7.4370 (15) ÅT = 173 K
c = 10.932 (2) Å0.3 × 0.2 × 0.2 mm
β = 108.48 (3)°
Data collection top
Bruker APEX CCD
diffractometer
1908 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
1372 reflections with I > 2σ(I)
Tmin = 0.594, Tmax = 0.694Rint = 0.05
3293 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.02Δρmax = 1.04 e Å3
1908 reflectionsΔρmin = 0.46 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3941 (5)0.1149 (9)1.0606 (6)0.0309 (16)
C20.3017 (5)0.0654 (9)1.0059 (6)0.0286 (16)
H20.28120.03261.04680.034*
C30.2268 (5)0.1356 (9)0.8940 (6)0.0262 (15)
C40.2322 (5)0.2584 (8)0.7962 (6)0.0297 (16)
H40.29320.31820.79050.036*
C50.1361 (6)0.2818 (9)0.7090 (7)0.0339 (17)
H50.11770.36020.63060.041*
C60.0706 (5)0.1740 (10)0.7506 (7)0.0350 (18)
H60.00180.16290.70670.042*
C70.1254 (5)0.0827 (10)0.8631 (6)0.0319 (17)
H70.09850.00390.91330.038*
C80.2636 (6)0.0694 (10)0.6107 (7)0.0389 (19)
H80.320.00110.59810.047*
C90.2703 (6)0.1880 (10)0.7137 (8)0.0372 (18)
H90.33170.21980.78470.045*
C100.1753 (5)0.2558 (9)0.6980 (7)0.0320 (17)
H100.15760.3430.75670.038*
C110.1090 (5)0.1753 (9)0.5874 (7)0.0327 (17)
H110.03650.19690.55290.039*
C120.1664 (5)0.0579 (11)0.5309 (6)0.0366 (19)
H120.14080.01660.45110.044*
Cl10.45229 (14)0.2850 (3)1.00576 (19)0.0410 (5)
Cl20.46791 (14)0.0177 (3)1.20093 (18)0.0452 (6)
Fe10.17755 (7)0.01793 (12)0.71562 (9)0.0219 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.031 (4)0.032 (4)0.022 (4)0.001 (3)0.002 (3)0.003 (3)
C20.030 (4)0.029 (4)0.026 (4)0.001 (3)0.007 (3)0.000 (3)
C30.030 (4)0.023 (4)0.021 (3)0.001 (3)0.002 (3)0.005 (3)
C40.034 (4)0.024 (4)0.023 (3)0.003 (3)0.003 (3)0.001 (3)
C50.039 (4)0.024 (4)0.029 (4)0.007 (3)0.002 (3)0.006 (3)
C60.030 (4)0.039 (5)0.034 (4)0.008 (3)0.007 (3)0.005 (3)
C70.036 (4)0.036 (4)0.023 (4)0.003 (3)0.009 (3)0.007 (3)
C80.043 (5)0.037 (4)0.041 (5)0.004 (4)0.021 (4)0.011 (3)
C90.029 (4)0.034 (4)0.047 (5)0.011 (3)0.008 (4)0.002 (3)
C100.035 (4)0.022 (4)0.041 (4)0.002 (3)0.015 (4)0.009 (3)
C110.025 (4)0.036 (4)0.035 (4)0.008 (3)0.006 (3)0.016 (3)
C120.034 (4)0.054 (5)0.020 (4)0.012 (4)0.006 (3)0.011 (3)
Cl10.0320 (10)0.0469 (12)0.0410 (10)0.0091 (9)0.0072 (8)0.0002 (9)
Cl20.0374 (12)0.0488 (13)0.0356 (10)0.0041 (9)0.0081 (9)0.0021 (8)
Fe10.0202 (5)0.0199 (6)0.0227 (5)0.0013 (4)0.0026 (4)0.0025 (4)
Geometric parameters (Å, º) top
C1—C21.321 (9)C7—Fe12.038 (7)
C1—Cl11.725 (7)C7—H71
C1—Cl21.723 (7)C8—C121.393 (10)
C2—C31.446 (9)C8—C91.410 (10)
C2—H20.95C8—Fe12.040 (7)
C3—C41.427 (9)C8—H81
C3—C71.438 (10)C9—C101.412 (10)
C3—Fe12.048 (6)C9—Fe12.033 (7)
C4—C51.416 (10)C9—H91
C4—Fe12.038 (6)C10—C111.412 (10)
C4—H41C10—Fe12.044 (6)
C5—C61.415 (10)C10—H101
C5—Fe12.045 (7)C11—C121.465 (10)
C5—H51C11—Fe12.030 (7)
C6—C71.407 (9)C11—H111
C6—Fe12.054 (7)C12—Fe12.054 (6)
C6—H61C12—H121
C2—C1—Cl1125.0 (6)C12—C11—Fe169.8 (4)
C2—C1—Cl2122.1 (6)C10—C11—H11126.3
Cl1—C1—Cl2112.9 (4)C12—C11—H11126.3
C1—C2—C3130.7 (7)Fe1—C11—H11126.3
C1—C2—H2114.6C8—C12—C11106.5 (7)
C3—C2—H2114.6C8—C12—Fe169.6 (4)
C4—C3—C2131.5 (7)C11—C12—Fe168.1 (4)
C4—C3—C7106.8 (6)C8—C12—H12126.8
C2—C3—C7121.7 (6)C11—C12—H12126.7
C4—C3—Fe169.2 (4)Fe1—C12—H12126.7
C2—C3—Fe1126.2 (5)C11—Fe1—C968.6 (3)
C7—C3—Fe169.0 (4)C11—Fe1—C4162.8 (3)
C5—C4—C3108.1 (6)C9—Fe1—C4120.2 (3)
C5—C4—Fe170.0 (4)C11—Fe1—C1040.6 (3)
C3—C4—Fe169.9 (4)C9—Fe1—C1040.5 (3)
C5—C4—H4125.9C4—Fe1—C10155.2 (3)
C3—C4—H4126C11—Fe1—C7119.6 (3)
Fe1—C4—H4126C9—Fe1—C7126.3 (3)
C6—C5—C4108.5 (6)C4—Fe1—C768.8 (3)
C6—C5—Fe170.1 (4)C10—Fe1—C7108.1 (3)
C4—C5—Fe169.4 (4)C11—Fe1—C868.5 (3)
C6—C5—H5125.7C9—Fe1—C840.5 (3)
C4—C5—H5125.7C4—Fe1—C8107.7 (3)
Fe1—C5—H5125.7C10—Fe1—C867.9 (3)
C5—C6—C7108.1 (6)C7—Fe1—C8163.6 (3)
C5—C6—Fe169.5 (4)C11—Fe1—C1242.0 (3)
C7—C6—Fe169.3 (4)C9—Fe1—C1268.3 (3)
C5—C6—H6126C4—Fe1—C12124.4 (3)
C7—C6—H6126C10—Fe1—C1268.9 (3)
Fe1—C6—H6126C7—Fe1—C12155.4 (3)
C6—C7—C3108.5 (6)C8—Fe1—C1239.8 (3)
C6—C7—Fe170.5 (4)C11—Fe1—C5125.7 (3)
C3—C7—Fe169.8 (4)C9—Fe1—C5155.0 (3)
C6—C7—H7125.8C4—Fe1—C540.6 (3)
C3—C7—H7125.8C10—Fe1—C5163.0 (3)
Fe1—C7—H7125.8C7—Fe1—C568.0 (3)
C12—C8—C9109.8 (7)C8—Fe1—C5120.4 (3)
C12—C8—Fe170.6 (4)C12—Fe1—C5107.3 (3)
C9—C8—Fe169.5 (4)C11—Fe1—C3154.8 (3)
C12—C8—H8125.1C9—Fe1—C3107.6 (3)
C9—C8—H8125.1C4—Fe1—C340.9 (3)
Fe1—C8—H8125.1C10—Fe1—C3120.4 (3)
C8—C9—C10108.0 (7)C7—Fe1—C341.2 (3)
C8—C9—Fe170.0 (4)C8—Fe1—C3125.8 (3)
C10—C9—Fe170.2 (4)C12—Fe1—C3161.7 (3)
C8—C9—H9126C5—Fe1—C368.4 (3)
C10—C9—H9126C11—Fe1—C6107.6 (3)
Fe1—C9—H9126C9—Fe1—C6163.2 (3)
C9—C10—C11108.3 (7)C4—Fe1—C668.3 (3)
C9—C10—Fe169.3 (4)C10—Fe1—C6126.1 (3)
C11—C10—Fe169.2 (4)C7—Fe1—C640.2 (3)
C9—C10—H10125.8C8—Fe1—C6154.9 (3)
C11—C10—H10125.8C12—Fe1—C6120.5 (3)
Fe1—C10—H10125.8C5—Fe1—C640.4 (3)
C10—C11—C12107.4 (6)C3—Fe1—C668.5 (3)
C10—C11—Fe170.2 (4)

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C7H5Cl2)]
Mr280.95
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)14.340 (3), 7.4370 (15), 10.932 (2)
β (°) 108.48 (3)
V3)1105.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.81
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.594, 0.694
No. of measured, independent and
observed [I > 2σ(I)] reflections
3293, 1908, 1372
Rint0.05
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.174, 1.02
No. of reflections1908
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.04, 0.46

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 1999), SHELXS90 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

We are grateful to the French Ministere de la Recherche et Technologie for a PhD grant for SC. We also thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support and the award of a scholarship (VHG).

References

First citationBruker (1999). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClément, S., Guyard, L., Knorr, M., Dilsky, S., Strohmann, C. & Arroyo, M. (2007b). J. Organomet. Chem. 692, 839–850.  Google Scholar
First citationClément, S., Guyard, L., Knorr, M., Villafañe, F., Strohmann, C. & Kubicki, M. M. (2007a). Eur. J. Inorg. Chem. pp. 5052–5061.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLuo, S.-J., Liu, Y.-H., Liu, C.-M., Liang, Y.-M. & Ma, Y.-X. (2000). Synth. Commun. 30, 1569–1572.  Web of Science CrossRef CAS Google Scholar
First citationMcAdam, C. J., Robinson, B. H. & Simpson, J. (2008). Inorg. Chim. Acta, 361, 2172–2175.  Web of Science CSD CrossRef CAS Google Scholar
First citationNaskar, D., Das, S. K., Giribabu, L., Maiya, B. G. & Roy, S. (2000). Organometallics, 19, 1464–1469.  Web of Science CrossRef CAS Google Scholar
First citationSchloegl, K. & Egger, H. (1963). Monatsh. Chem. 94, 376-392.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds