metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­aqua­zinc(II)]-μ-4,4′-(methyl­ene­dioxy)­dibenzoato]

aCollege of Urban and Environmental Sciences, Northeast Normal University, Changchun 130024, People's Republic of China, and bSchool of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
*Correspondence e-mail: yuanx@nenu.edu.cn

(Received 23 February 2009; accepted 25 February 2009; online 6 March 2009)

In the title complex, [Zn(C15H10O6)(H2O)2]n, the ZnII atom is located on a twofold rotation axis and exhibits a distorted tetrahedral coordination environment defined by two O atoms from two 4,4′-(methyl­enedioxy)­dibenzoate ligands and two O atoms from two coordinated water mol­ecules. In the crystal structure, mol­ecules are linked into a three-dimensional framework by O—H⋯O hydrogen bonds and C—H⋯π inter­actions.

Related literature

For the potential properties and structural topologies of metal-organic complexes involving polycarboxyl­ate ligands, see: Chen & Liu (2002[Chen, X.-M. & Liu, G.-F. (2002). Chem. Eur. J. 8, 4811-4817.]); Han et al. (2009[Han, L., Zhou, Y., Zhao, W.-N., Li, X. & Liang, Y.-X. (2009). Cryst. Growth Des. 9, 660-662.]); Li et al. (2007[Li, X.-M., Dong, Y.-H., Wang, Q.-W. & Liu, B. (2007). Acta Cryst. E63, m1839-m1840.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C15H10O6)(H2O)2]

  • Mr = 387.63

  • Monoclinic, P 2/c

  • a = 13.496 (1) Å

  • b = 4.931 (1) Å

  • c = 12.357 (1) Å

  • β = 113.352 (1)°

  • V = 755.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.67 mm−1

  • T = 293 K

  • 0.21 × 0.19 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.707, Tmax = 0.780

  • 4318 measured reflections

  • 1696 independent reflections

  • 1461 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.075

  • S = 1.06

  • 1696 reflections

  • 118 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—O1 1.9582 (18)
Zn1—O4 1.975 (2)
O1—Zn1—O1i 102.26 (11)
O1—Zn1—O4 99.87 (9)
O1i—Zn1—O4 132.40 (8)
O4—Zn1—O4i 95.27 (13)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1⋯O1ii 0.74 (3) 2.13 (3) 2.851 (3) 167 (3)
O4—H2⋯O2iii 0.88 (4) 1.78 (4) 2.657 (3) 177 (4)
C8—H8ACg3iv 0.97 2.97 3.741 (3) 137
C8—H8BCg3v 0.97 2.97 3.741 (3) 137
Symmetry codes: (ii) x, y-1, z; (iii) [x, -y, z-{\script{1\over 2}}]; (iv) x, y+1, z; (v) [-x+1, y+1, -z+{\script{3\over 2}}]. Cg3 is the centroid of the C2–C7 benzene ring.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, the area of metal-organic framework materials has become one of the intense research activity for their fascinating structural diversities and potential applications in catalysis, nonlinear optics and molecular sensing. As an important family of multidentate O-donor ligands, organic aromatic polycarboxylate ligands have been extensively employed in the preparation of metal-organic complexes because of their potential properties and intriguing structural topologies (Han et al., 2009; Li et al., 2007; Chen et al., 2002). Herein, we report the structure of the title complex with bis(4-benzoateoxyl)methane and zinc, [Zn(C15H10O6)(H2O)2] (I).

Single-crystal X-ray diffraction analyses revealed Zn(II) is tetra-coordinated and exhibits tetrahedral coordination environment supplied by two bis(4-benzoateoxyl)methane O atoms and two water molecules (Fig. 1). The Zn—O bond lengthes are in the normal range (Table 1). The bis(4-benzoateoxyl)methane ligand adopts bidentate coordinated modes and bond with two zinc ions to form a chain. Adjacent chains are linked by O—H···O hydrogen bonds and C—H···π interactions into a three-dimensional supramolecular network structure (Fig. 2, Table 2).

Related literature top

For the potential properties and structural topologies of metal-organic complexes involving polycarboxylate ligands, see: Chen & Liu (2002); Han et al. (2009); Li et al. (2007). Cg3 is the centroid of the C2–C7 benzene ring.

Experimental top

Zinc(II) acetate dihydrate (0.066 g, 0.3 mol), bis(4-benzoateoxyl)methane (0.058 g, 0.2 mmol), sodium hydroxide (0.016 g, 0.4 mmol) and water (14 ml) were placed in a 23 ml Teflon-lined autoclave, and the autoclave was heated at 423 K for 3 d. After cooling slowly to room temperature at a rate of 10 K h-1, colourless crystals of (I) were obtained.

Refinement top

C-bound H atoms were treated as riding, with C—H = 0.93 and 0.97Å and Uiso(H) = 1.2 times Ueq(C). O-bound H atoms were located in a difference Fourier map and refined as riding in their as-found relative positions; Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the local coordination of Zn(II) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram for the three-dimensional supramolecular framework via O—H···O interactions. The view direction is parallel to the a axis. Hydrogen bonds are indicated by dashed lines.
catena-Poly[[diaquazinc(II)]-µ-4,4'-(methylenedioxy)dibenzoato] top
Crystal data top
[Zn(C15H10O6)(H2O)2]F(000) = 396
Mr = 387.63Dx = 1.705 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ycCell parameters from 3185 reflections
a = 13.496 (1) Åθ = 2.1–27.4°
b = 4.931 (1) ŵ = 1.67 mm1
c = 12.357 (1) ÅT = 293 K
β = 113.352 (1)°Block, colourless
V = 755.0 (2) Å30.21 × 0.19 × 0.15 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1696 independent reflections
Radiation source: fine-focus sealed tube1461 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 3.3°
ω scansh = 1017
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 65
Tmin = 0.707, Tmax = 0.780l = 1515
4318 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0304P)2 + 0.2993P]
where P = (Fo2 + 2Fc2)/3
1696 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Zn(C15H10O6)(H2O)2]V = 755.0 (2) Å3
Mr = 387.63Z = 2
Monoclinic, P2/cMo Kα radiation
a = 13.496 (1) ŵ = 1.67 mm1
b = 4.931 (1) ÅT = 293 K
c = 12.357 (1) Å0.21 × 0.19 × 0.15 mm
β = 113.352 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1696 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1461 reflections with I > 2σ(I)
Tmin = 0.707, Tmax = 0.780Rint = 0.027
4318 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.25 e Å3
1696 reflectionsΔρmin = 0.30 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.00000.02532 (7)0.25000.03611 (14)
O30.48509 (13)1.0388 (3)0.65056 (14)0.0430 (4)
O40.06484 (17)0.2446 (4)0.17945 (17)0.0484 (5)
O20.07014 (13)0.2515 (3)0.46679 (14)0.0420 (4)
O10.12200 (13)0.2746 (3)0.31887 (13)0.0406 (4)
C50.39531 (18)0.8759 (5)0.60267 (19)0.0351 (5)
C70.22564 (18)0.6856 (4)0.58165 (19)0.0356 (5)
H70.16850.67540.60550.043*
C10.13275 (18)0.3401 (4)0.42419 (18)0.0331 (5)
C80.50001.1980 (7)0.75000.0451 (8)
H8A0.43751.31380.73300.054*0.50
H8B0.56251.31380.76700.054*0.50
C20.22362 (18)0.5269 (4)0.48823 (19)0.0328 (5)
C60.31099 (19)0.8591 (5)0.6403 (2)0.0379 (5)
H60.31190.96240.70370.046*
C30.3096 (2)0.5481 (5)0.4528 (2)0.0434 (6)
H30.30920.44530.38960.052*
C40.3942 (2)0.7180 (5)0.5100 (2)0.0447 (6)
H40.45150.72730.48630.054*
H20.069 (3)0.244 (7)0.110 (3)0.100 (13)*
H10.085 (2)0.374 (6)0.210 (2)0.046 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0455 (2)0.0276 (2)0.0380 (2)0.0000.01943 (18)0.000
O30.0416 (9)0.0491 (10)0.0364 (9)0.0115 (8)0.0132 (7)0.0005 (7)
O40.0832 (14)0.0311 (10)0.0397 (10)0.0128 (9)0.0338 (10)0.0040 (8)
O20.0471 (9)0.0448 (9)0.0359 (9)0.0096 (8)0.0183 (7)0.0003 (7)
O10.0538 (10)0.0371 (9)0.0338 (9)0.0057 (8)0.0205 (8)0.0074 (7)
C50.0361 (12)0.0332 (11)0.0337 (12)0.0026 (10)0.0114 (10)0.0052 (10)
C70.0367 (12)0.0370 (12)0.0370 (12)0.0021 (10)0.0189 (10)0.0009 (10)
C10.0404 (12)0.0269 (10)0.0293 (11)0.0039 (9)0.0110 (10)0.0010 (9)
C80.045 (2)0.0317 (17)0.051 (2)0.0000.0109 (16)0.000
C20.0379 (12)0.0304 (11)0.0301 (11)0.0009 (9)0.0135 (9)0.0015 (9)
C60.0445 (13)0.0378 (12)0.0338 (12)0.0033 (10)0.0179 (11)0.0055 (10)
C30.0488 (14)0.0483 (14)0.0398 (13)0.0055 (12)0.0246 (12)0.0078 (11)
C40.0447 (14)0.0506 (14)0.0483 (14)0.0037 (12)0.0285 (12)0.0033 (12)
Geometric parameters (Å, º) top
Zn1—O11.9582 (18)C7—C21.386 (3)
Zn1—O1i1.9582 (18)C7—C61.387 (3)
Zn1—O41.975 (2)C7—H70.9300
Zn1—O4i1.975 (2)C1—C21.487 (3)
O3—C51.377 (3)C8—O3ii1.404 (2)
O3—C81.404 (2)C8—H8A0.9700
O4—H20.88 (4)C8—H8B0.9700
O4—H10.74 (3)C2—C31.396 (3)
O2—C11.239 (3)C6—H60.9300
O1—C11.292 (3)C3—C41.366 (3)
C5—C41.380 (3)C3—H30.9300
C5—C61.392 (3)C4—H40.9300
O1—Zn1—O1i102.26 (11)O1—C1—C2115.52 (19)
O1—Zn1—O499.87 (9)O3—C8—O3ii112.0 (3)
O1i—Zn1—O4132.40 (8)O3—C8—H8A109.2
O1—Zn1—O4i132.40 (8)O3ii—C8—H8A109.2
O1i—Zn1—O4i99.87 (9)O3—C8—H8B109.2
O4—Zn1—O4i95.27 (13)O3ii—C8—H8B109.2
C5—O3—C8119.93 (16)H8A—C8—H8B107.9
Zn1—O4—H2130 (2)C7—C2—C3118.3 (2)
Zn1—O4—H1119 (2)C7—C2—C1122.2 (2)
H2—O4—H1111 (3)C3—C2—C1119.5 (2)
C1—O1—Zn1109.52 (14)C7—C6—C5118.8 (2)
O3—C5—C4113.8 (2)C7—C6—H6120.6
O3—C5—C6126.0 (2)C5—C6—H6120.6
C4—C5—C6120.2 (2)C4—C3—C2120.8 (2)
C2—C7—C6121.5 (2)C4—C3—H3119.6
C2—C7—H7119.3C2—C3—H3119.6
C6—C7—H7119.3C3—C4—C5120.4 (2)
O2—C1—O1121.1 (2)C3—C4—H4119.8
O2—C1—C2123.4 (2)C5—C4—H4119.8
O1i—Zn1—O1—C186.84 (14)O1—C1—C2—C7158.0 (2)
O4—Zn1—O1—C1135.58 (15)O2—C1—C2—C3159.3 (2)
O4i—Zn1—O1—C129.01 (18)O1—C1—C2—C321.1 (3)
C8—O3—C5—C4176.2 (2)C2—C7—C6—C51.0 (3)
C8—O3—C5—C63.1 (3)O3—C5—C6—C7179.5 (2)
Zn1—O1—C1—O21.0 (3)C4—C5—C6—C71.2 (3)
Zn1—O1—C1—C2179.28 (14)C7—C2—C3—C40.9 (4)
C5—O3—C8—O3ii64.94 (16)C1—C2—C3—C4180.0 (2)
C6—C7—C2—C30.9 (3)C2—C3—C4—C51.2 (4)
C6—C7—C2—C1179.9 (2)O3—C5—C4—C3179.3 (2)
O2—C1—C2—C721.7 (3)C6—C5—C4—C31.3 (4)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1···O1iii0.74 (3)2.13 (3)2.851 (3)167 (3)
O4—H2···O2iv0.88 (4)1.78 (4)2.657 (3)177 (4)
C8—H8A···Cg3v0.972.973.741 (3)137
C8—H8B···Cg3vi0.972.973.741 (3)137
Symmetry codes: (iii) x, y1, z; (iv) x, y, z1/2; (v) x, y+1, z; (vi) x+1, y+1, z+3/2.

Experimental details

Crystal data
Chemical formula[Zn(C15H10O6)(H2O)2]
Mr387.63
Crystal system, space groupMonoclinic, P2/c
Temperature (K)293
a, b, c (Å)13.496 (1), 4.931 (1), 12.357 (1)
β (°) 113.352 (1)
V3)755.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.67
Crystal size (mm)0.21 × 0.19 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.707, 0.780
No. of measured, independent and
observed [I > 2σ(I)] reflections
4318, 1696, 1461
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.075, 1.06
No. of reflections1696
No. of parameters118
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.30

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—O11.9582 (18)Zn1—O41.975 (2)
O1—Zn1—O1i102.26 (11)O1i—Zn1—O4132.40 (8)
O1—Zn1—O499.87 (9)O4—Zn1—O4i95.27 (13)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1···O1ii0.74 (3)2.13 (3)2.851 (3)167 (3)
O4—H2···O2iii0.88 (4)1.78 (4)2.657 (3)177 (4)
C8—H8A···Cg3iv0.972.973.741 (3)137
C8—H8B···Cg3v0.972.973.741 (3)137
Symmetry codes: (ii) x, y1, z; (iii) x, y, z1/2; (iv) x, y+1, z; (v) x+1, y+1, z+3/2.
 

Acknowledgements

The authors thank the the National Natural Science Foundation of China (No. 50878041) and the Analysis and Testing Foundation of Northeast Normal University for financial support.

References

First citationChen, X.-M. & Liu, G.-F. (2002). Chem. Eur. J. 8, 4811-4817.  CrossRef PubMed CAS Google Scholar
First citationHan, L., Zhou, Y., Zhao, W.-N., Li, X. & Liang, Y.-X. (2009). Cryst. Growth Des. 9, 660-662.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, X.-M., Dong, Y.-H., Wang, Q.-W. & Liu, B. (2007). Acta Cryst. E63, m1839–m1840.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds