organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Azido-2-chloro-6-methyl­quinoline

aDepartment of Physics, Madurai Kamaraj University, Madurai 625 021, India, bOrganic Chemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, India, cDepartment of Physics, The Madura College, Madurai 625 011, India, and dDepartment of Food Science and Technology, Faculty of Agriculture, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: nilanthalakshman@yahoo.co.uk

(Received 24 February 2009; accepted 25 February 2009; online 6 March 2009)

In the title compound, C10H7ClN4, the quinoline ring system is planar [maximum deviation 0.0035 (10) Å]. The crystal structure is stabilized by van der Waals and ππ stacking inter­actions [centroid–centroid distance 3.6456 (17) Å].

Related literature

For quinoline derivatives as anti-tuberculosis agents, see: Jain et al. (2005[Jain, R., Singh, P. P., Jain, M., Sachdeva, S., Misra, V., Kaul, C. L., Kaur, S., Vaitilingam, B., Nayyar, A. & Bhaskar, P. P. (2005). Indian Patent Appl. IN 2002DE00628.]).

[Scheme 1]

Experimental

Crystal data
  • C10H7ClN4

  • Mr = 218.65

  • Triclinic, [P \overline 1]

  • a = 6.9517 (4) Å

  • b = 7.6078 (6) Å

  • c = 10.0191 (9) Å

  • α = 75.694 (7)°

  • β = 82.147 (8)°

  • γ = 76.532 (7)°

  • V = 497.57 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 293 K

  • 0.19 × 0.17 × 0.14 mm

Data collection
  • Nonius MACH-3 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.935, Tmax = 0.952

  • 2209 measured reflections

  • 1743 independent reflections

  • 1206 reflections with I > 2σ(I)

  • Rint = 0.019

  • 2 standard reflections frequency: 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.180

  • S = 1.08

  • 1743 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 .

Supporting information


Comment top

Quinoline derivatives are a class of important materials as anti-tuberculosis agents (Jain et al., 2005). In the title molecule (Fig. 1), all non-H atoms of the molecule, except atoms Cl1, C10, N2, N3 and N4 are coplanar within 0.0035 (10) Å. Due to 4-azida substitution within the pyridine ring: C2 C3 bond is longer and the C3—C4 bond is shorter than standard values for CC (1.334 Å) and Csp2—Csp2 (1.455 Å) bond lengths respectively. The dihedral angle between the C3/N2-N4 and C2/C1/N1/C5 rings is 6.16 (11)°.

There is a weak π···π interaction observed between the centres of N1/C1—C5 rings related through the symmetry operator –x, 1-y, 1-z, with centroids separation of 3.6456 (17) Å.

Related literature top

For quinoline derivatives as anti-tuberculosis agents, see: Jain et al. (2005).

Experimental top

A mixture of 2,4-dichloroquinoline (2.12 g, 10 mmol) and sodium azide (0.650 g, 10 mmol) in DMF (20 ml) was refluxed for 2 h. The progress of the reaction was monitored by TLC. After conforming that the reaction got completed, the reaction mixture was cooled and poured on to the crushed ice with stirring. The solid settled was filtered to dryness and purified over a column of silica gel (60–120 mesh; 50 g) eluting with Petroleum Ether–ethyl acetate (4.5:1.5) to give 4-azido-2-chloro- 6-methylquinoline. The product was re-crystallized from 100% chloroform [mp: 429–430 K, yield: 20%].

Refinement top

The H atoms were placed in calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.96 Å and with Uiso = 1.2Ueq(C) for CH and Uiso = 1.5Ueq(C) for CH3 groups.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
4-Azido-2-chloro-6-methylquinoline top
Crystal data top
C10H7ClN4Z = 2
Mr = 218.65F(000) = 224
Triclinic, P1Dx = 1.459 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9517 (4) ÅCell parameters from 25 reflections
b = 7.6078 (6) Åθ = 2–25°
c = 10.0191 (9) ŵ = 0.35 mm1
α = 75.694 (7)°T = 293 K
β = 82.147 (8)°Block, colourless
γ = 76.532 (7)°0.19 × 0.17 × 0.14 mm
V = 497.57 (7) Å3
Data collection top
Nonius MACH-3
diffractometer
1206 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
ω–2θ scansh = 18
Absorption correction: ψ scan
(North et al., 1968)
k = 89
Tmin = 0.935, Tmax = 0.952l = 1111
2209 measured reflections2 standard reflections every 60 min
1743 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.1143P)2 + 0.0878P]
where P = (Fo2 + 2Fc2)/3
1743 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C10H7ClN4γ = 76.532 (7)°
Mr = 218.65V = 497.57 (7) Å3
Triclinic, P1Z = 2
a = 6.9517 (4) ÅMo Kα radiation
b = 7.6078 (6) ŵ = 0.35 mm1
c = 10.0191 (9) ÅT = 293 K
α = 75.694 (7)°0.19 × 0.17 × 0.14 mm
β = 82.147 (8)°
Data collection top
Nonius MACH-3
diffractometer
1206 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.019
Tmin = 0.935, Tmax = 0.9522 standard reflections every 60 min
2209 measured reflections intensity decay: none
1743 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.180H-atom parameters constrained
S = 1.08Δρmax = 0.36 e Å3
1743 reflectionsΔρmin = 0.35 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1775 (5)0.7084 (4)0.2969 (3)0.0365 (8)
C20.2459 (4)0.5180 (3)0.3035 (3)0.0334 (7)
H20.26560.47020.22460.040*
C30.2820 (4)0.4060 (3)0.4303 (3)0.0294 (7)
C40.2518 (4)0.4825 (4)0.5495 (3)0.0291 (7)
C50.1836 (4)0.6769 (4)0.5274 (3)0.0328 (7)
C60.1508 (5)0.7579 (4)0.6436 (3)0.0432 (8)
H60.10470.88530.63200.052*
C70.1857 (5)0.6525 (4)0.7709 (3)0.0448 (9)
H70.16360.70940.84540.054*
C80.2548 (5)0.4583 (5)0.7950 (3)0.0407 (8)
C90.2849 (4)0.3774 (4)0.6839 (3)0.0354 (7)
H90.32830.24950.69780.043*
C100.2945 (6)0.3461 (6)0.9386 (3)0.0581 (10)
H10A0.17640.36620.99960.087*
H10B0.39940.38360.97060.087*
H10C0.33310.21690.93710.087*
Cl10.13068 (16)0.85050 (11)0.13412 (9)0.0604 (4)
N10.1475 (4)0.7888 (3)0.4003 (3)0.0395 (7)
N20.3501 (4)0.2108 (3)0.4540 (3)0.0396 (7)
N30.3912 (4)0.1499 (3)0.3461 (3)0.0418 (7)
N40.4337 (5)0.0798 (4)0.2571 (3)0.0614 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0458 (19)0.0243 (14)0.0406 (16)0.0080 (13)0.0078 (14)0.0063 (12)
C20.0435 (19)0.0236 (15)0.0374 (16)0.0062 (13)0.0066 (14)0.0138 (12)
C30.0317 (16)0.0202 (13)0.0404 (16)0.0029 (12)0.0044 (13)0.0160 (12)
C40.0304 (16)0.0214 (14)0.0388 (16)0.0021 (11)0.0035 (12)0.0158 (12)
C50.0359 (18)0.0227 (14)0.0432 (16)0.0032 (12)0.0034 (13)0.0165 (12)
C60.055 (2)0.0272 (16)0.053 (2)0.0039 (14)0.0025 (16)0.0249 (14)
C70.056 (2)0.0417 (18)0.0452 (19)0.0095 (16)0.0017 (16)0.0291 (15)
C80.044 (2)0.0449 (18)0.0385 (17)0.0112 (15)0.0041 (14)0.0171 (14)
C90.0400 (19)0.0255 (14)0.0426 (17)0.0018 (13)0.0064 (14)0.0139 (13)
C100.075 (3)0.062 (2)0.041 (2)0.013 (2)0.0078 (18)0.0161 (17)
Cl10.0950 (9)0.0351 (5)0.0482 (6)0.0092 (5)0.0201 (5)0.0002 (4)
N10.0535 (18)0.0188 (12)0.0460 (15)0.0010 (11)0.0058 (12)0.0121 (11)
N20.0572 (18)0.0208 (12)0.0413 (14)0.0034 (12)0.0084 (12)0.0164 (11)
N30.0582 (19)0.0204 (12)0.0487 (16)0.0013 (12)0.0104 (13)0.0146 (12)
N40.105 (3)0.0314 (14)0.0503 (17)0.0002 (16)0.0140 (17)0.0239 (13)
Geometric parameters (Å, º) top
C1—N11.298 (4)C6—H60.9300
C1—C21.403 (4)C7—C81.413 (4)
C1—Cl11.745 (3)C7—H70.9300
C2—C31.362 (4)C8—C91.371 (4)
C2—H20.9300C8—C101.505 (5)
C3—N21.419 (3)C9—H90.9300
C3—C41.424 (3)C10—H10A0.9600
C4—C91.404 (4)C10—H10B0.9600
C4—C51.415 (4)C10—H10C0.9600
C5—N11.364 (4)N2—N31.251 (3)
C5—C61.416 (4)N3—N41.121 (3)
C6—C71.348 (4)
N1—C1—C2126.1 (3)C6—C7—C8122.2 (3)
N1—C1—Cl1117.0 (2)C6—C7—H7118.9
C2—C1—Cl1116.9 (2)C8—C7—H7118.9
C3—C2—C1117.2 (2)C9—C8—C7117.8 (3)
C3—C2—H2121.4C9—C8—C10121.7 (3)
C1—C2—H2121.4C7—C8—C10120.5 (3)
C2—C3—N2124.0 (2)C8—C9—C4121.8 (3)
C2—C3—C4120.3 (2)C8—C9—H9119.1
N2—C3—C4115.7 (2)C4—C9—H9119.1
C9—C4—C5119.6 (2)C8—C10—H10A109.5
C9—C4—C3124.1 (2)C8—C10—H10B109.5
C5—C4—C3116.3 (3)H10A—C10—H10B109.5
N1—C5—C4123.2 (2)C8—C10—H10C109.5
N1—C5—C6118.8 (2)H10A—C10—H10C109.5
C4—C5—C6117.9 (3)H10B—C10—H10C109.5
C7—C6—C5120.7 (3)C1—N1—C5116.7 (2)
C7—C6—H6119.6N3—N2—C3114.1 (2)
C5—C6—H6119.6N4—N3—N2173.6 (3)
N1—C1—C2—C30.9 (5)C5—C6—C7—C80.4 (5)
Cl1—C1—C2—C3179.7 (2)C6—C7—C8—C90.5 (5)
C1—C2—C3—N2179.5 (3)C6—C7—C8—C10179.2 (3)
C1—C2—C3—C40.4 (4)C7—C8—C9—C41.0 (5)
C2—C3—C4—C9179.8 (3)C10—C8—C9—C4178.6 (3)
N2—C3—C4—C90.1 (4)C5—C4—C9—C80.7 (4)
C2—C3—C4—C50.0 (4)C3—C4—C9—C8179.5 (3)
N2—C3—C4—C5179.9 (3)C2—C1—N1—C50.9 (5)
C9—C4—C5—N1179.9 (3)Cl1—C1—N1—C5179.7 (2)
C3—C4—C5—N10.0 (4)C4—C5—N1—C10.4 (5)
C9—C4—C5—C60.1 (4)C6—C5—N1—C1179.3 (3)
C3—C4—C5—C6179.7 (3)C2—C3—N2—N35.8 (4)
N1—C5—C6—C7179.6 (3)C4—C3—N2—N3174.3 (3)
C4—C5—C6—C70.7 (5)C3—N2—N3—N4176 (3)

Experimental details

Crystal data
Chemical formulaC10H7ClN4
Mr218.65
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.9517 (4), 7.6078 (6), 10.0191 (9)
α, β, γ (°)75.694 (7), 82.147 (8), 76.532 (7)
V3)497.57 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.19 × 0.17 × 0.14
Data collection
DiffractometerNonius MACH-3
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.935, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
2209, 1743, 1206
Rint0.019
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.180, 1.08
No. of reflections1743
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.35

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

SN thanks the DST for the FIST programme.

References

First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJain, R., Singh, P. P., Jain, M., Sachdeva, S., Misra, V., Kaul, C. L., Kaur, S., Vaitilingam, B., Nayyar, A. & Bhaskar, P. P. (2005). Indian Patent Appl. IN 2002DE00628.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds