organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o680-o681

6,6′-Dimeth­­oxy-2,2′-[p-phenyl­ene­bis­(nitrilo­methyl­­idyne)]diphenol chloro­form disolvate

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bKulliyyah of Science, International Islamic University Malaysia (IIUM), 25200 Kuantan, Pahang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: ohasnah@usm.my, hkfun@usm.my

(Received 25 February 2009; accepted 27 February 2009; online 6 March 2009)

The title compound, C22H20N2O4·2CHCl3, a new Schiff base compound, lies across a crystallographic inversion centre. An intra­molecular O—H⋯N hydrogen bond generates a six-membered ring, producing an S(6) ring motif. Inter­molecular bifurcated C—H⋯O hydrogen bonds involving the two O atoms of the Schiff base ligand and the H atom of the chloro­form solvent of crystallization, generate an R21(5) ring motif. The crystal structure is stabilized by inter­molecular C—H⋯π and ππ inter­actions [centroid to centroid distance = 3.6158 (10) Å]. In the crystal structure, mol­ecules are stacked down the c axis.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the synthesis and applications of Schiff bases see, for example: Salem & Amer (1995[Salem, I. A. & Amer, S. A. (1995). Transition Met. Chem. 20, 494-497.]); Teoh et al. (1997[Teoh, S. G., Yeap, G. Y., Loh, C. C., Foong, L. W., Teo, S. B. & Fun, H.-K. (1997). Polyhedron, 16, 2213-2221.]); Viswanathamurthi et al. (1998[Viswanathamurthi, P., Dharmaraj, N., Anuradha, S. & Natarajan, K. (1998). Transition Met. Chem. 23, 337-341.]); Cohen et al. (1964[Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041-2051.]); Kabak et al. (2000[Kabak, A., Elmalıi, A., Elerman, Y. & Durlu, T. N. (2000). J. Mol. Struct. 553, 187-192.]); Parra et al. (2007[Parra, M. R., Garcia, T., Lorenzo, E. & Pariente, F. (2007). Biosens. Bioelectron. 22, 2675-2681.]); Al-Douh et al. (2006[Al-Douh, M. H., Hamid, S. A., Osman, H., Ng, S.-L. & Fun, H.-K. (2006). Acta Cryst. E62, o3954-o3956.], 2007[Al-Douh, M. H., Hamid, S. A., Osman, H., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o3570-o3571.], 2008[Al-Douh, M. H., Hamid, S. A. & Osman, H. (2008). In Proceedings of Asian Scientific Conference on Pharmaceutical Technology, June 1-3, Batu Ferringhi, Penang, Malaysia, Poster ASC088.]); Liu et al. (2006[Liu, Y.-F., Xia, H.-T., Yang, S.-P. & Wang, D.-Q. (2006). Acta Cryst. E62, o5908-o5909.]); Shah et al. (2008[Shah, A. M., Helal, M. H. S., Al-Douh, M. H., Hamid, S. A. & Osman, H. (2008). In Proceedings of 22nd Scientific Meeting of Malaysian Society of Pharmacology and Physiology, April 5-6, Kuala Lumpur, Malaysia, Poster 58.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • C22H20N2O4·2CHCl3

  • Mr = 615.14

  • Monoclinic, P 21 /c

  • a = 10.4773 (2) Å

  • b = 21.3287 (5) Å

  • c = 6.2424 (2) Å

  • β = 105.669 (2)°

  • V = 1343.13 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.67 mm−1

  • T = 100 K

  • 0.54 × 0.18 × 0.07 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.712, Tmax = 0.958

  • 10624 measured reflections

  • 3069 independent reflections

  • 2361 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.090

  • S = 1.03

  • 3069 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.84 1.84 2.584 (2) 147
C12—H12A⋯O1i 1.00 2.21 3.120 (3) 150
C12—H12A⋯O2i 1.00 2.30 3.121 (3) 139
C3—H3ACg1ii 0.95 2.73 3.5221 (19) 142
Symmetry codes: (i) x-1, y, z; (ii) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}]. Cg1 is the centroid of the C1–C6 benzene ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supporting information


Comment top

Bis-Schiff bases are a class of important compounds used as pharmaceutical, medicinal and industrial materials. Schiff bases have also been used extensively in coordination and inorganic chemistry. Salem and Amer used H2O2 to study the kinetics of the oxidation of a manganese complex with bis-Schiff base of salicyldehyde (Salem & Amer, 1995). Many of these Schiff bases were found to form suitable inner coordination spheres between tin atom with O and N atoms as quadridentate chelates (Teoh et al., 1997). Meanwhile, ruthenium complexes of bis-Schiff bases derived from o-vanillin and salicyldehyde were shown to exhibit dibasic tetradentate chelation (Viswanathamurthi et al., 1998). The intramolecular hydrogen bonds formed between O and N atoms in Schiff bases are responsible for the formation of these metal complexes (Cohen et al., 1964). Kabak et al. (2000) prepared the derivative of another isomer of the title compound and studied the photochromic conformational properties of this derivative, while Parra et al. (2007) examined the intercalation of another derivative of bis-Schiff bases with DNA by UV spectroscopy. Recently, we reported the crystal structure of the meta-isomer of the title compound (Al-Douh et al., 2007), while the single-crystal of the second isomer in the ortho-position was obtained and the data are consistent with the reported structure (Liu et al., 2006). The proton and carbon NMR spectroscopies of the title compound and its isomers were also studied (Al-Douh et al., 2008). Our group has been actively involved in synthesizing bis-Schiff bases and investigating their DNA binding ability using spectroscopic techniques employing calf thymus DNA (Shah et al., 2008). We have synthesized the third symmetric Schiff base by the condensation of o-vanillin with p-phenylenediamine and its X-ray crystal structure is presented here.

The title compound, (Fig. 1), lies across a crystallographic inversion centre [symmetry code of unlabelled atoms -x + 1, -y, -z + 2]. The bond lengths (Allen et al., 1987) and angles are within normal ranges. An intramolecular O—H···N hydrogen bond generates a six-membered ring, producing S(6) ring motif (Bernstein et al., 1995). Intermolecular bifurcated C—H···O hydrogen bonds involving the two oxygen atoms of the Schiff base ligand and the hydrogen atom of the chloroform solvent of crystallization generate a R21(5) ring motif. There are short contacts [C1–C9 = 3.267 (3) and C2–C9 = 3.399 (3) Å] which are shorter than the sum of the van der Waals radius of carbon atom. The crystal structure is stabilized by intermolecular C—H···π interaction (Cg1 is the centroid of the C1–C6 benzene ring) (Table 1) and intermolecular π-π interaction [Cg1···Cg2i, ii, iii, iv = 3.6158 (10) Å; symmetry codes: (i) x, 1/2 - y, 1/2 + z (ii) x, y, -1 + z (iii) 1 - x, -y, 1 - z (iv) x, y, 1 + z, (Cg2 is the centroid of the benzene ring in the middle of the main molecule)]. In the crystal structure molecule are stacked down the c axis (Fig. 2).

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995). For the synthesis and applications of Schiff bases see, for example: Salem & Amer (1995); Teoh et al. (1997); Viswanathamurthi et al. (1998); Cohen et al. (1964); Kabak et al. (2000); Parra et al. (2007); Al-Douh et al. (2006, 2007, 2008); Liu et al. (2006); Shah et al. (2008). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987). Cg1 is the centroid of the C1–C6 benzene ring.

Experimental top

The synthetic method has been described earlier (Al-Douh et al., 2006, 2007). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of chloroform at room temperature.

Refinement top

H atoms of the hydroxy group was positioned by a freely rotating O—H bond and constrained with a fixed distance of 0.84 Å. The rest of the hydrogen atoms were positioned geometrically with a riding model approximation with C—H = 0.93–1.00 Å and Uiso(H) = 1.2 or 1.5 (C & O).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering [symmetry code of unlabelled atoms -x + 1, -y, -z + 2]. Intramolecular H bonds are drawn as dashed lines.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the c-axis showing stacking of molecules along the c-axis. Intermolecular hydrogen bonds are shown as dashed lines.
6,6'-Dimethoxy-2,2'-[p-phenylenebis(nitrilomethylidyne)]diphenol chloroform disolvates top
Crystal data top
C22H20N2O4·2CHCl3F(000) = 628
Mr = 615.14Dx = 1.521 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3653 reflections
a = 10.4773 (2) Åθ = 2.8–29.6°
b = 21.3287 (5) ŵ = 0.67 mm1
c = 6.2424 (2) ÅT = 100 K
β = 105.669 (2)°Plate, yellow
V = 1343.13 (6) Å30.54 × 0.18 × 0.07 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3069 independent reflections
Radiation source: fine-focus sealed tube2361 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1313
Tmin = 0.712, Tmax = 0.958k = 2727
10624 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0405P)2 + 0.6965P]
where P = (Fo2 + 2Fc2)/3
3069 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C22H20N2O4·2CHCl3V = 1343.13 (6) Å3
Mr = 615.14Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.4773 (2) ŵ = 0.67 mm1
b = 21.3287 (5) ÅT = 100 K
c = 6.2424 (2) Å0.54 × 0.18 × 0.07 mm
β = 105.669 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3069 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2361 reflections with I > 2σ(I)
Tmin = 0.712, Tmax = 0.958Rint = 0.033
10624 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.03Δρmax = 0.35 e Å3
3069 reflectionsΔρmin = 0.25 e Å3
165 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.05508 (5)0.10427 (3)0.75969 (9)0.03053 (15)
Cl20.09644 (5)0.19372 (3)0.43542 (10)0.03061 (15)
Cl30.06333 (6)0.06178 (3)0.32245 (10)0.03145 (15)
O10.71504 (12)0.11003 (6)0.4437 (2)0.0159 (3)
H10.68800.09090.54060.024*
O20.76612 (13)0.16921 (6)0.1108 (2)0.0167 (3)
N10.54474 (15)0.06871 (7)0.6416 (3)0.0131 (3)
C10.61066 (18)0.13631 (8)0.2936 (3)0.0126 (4)
C20.63590 (18)0.16924 (8)0.1137 (3)0.0125 (4)
C30.53268 (19)0.19797 (8)0.0409 (3)0.0146 (4)
H3A0.54990.22090.16060.017*
C40.40308 (19)0.19342 (8)0.0216 (3)0.0159 (4)
H4A0.33250.21280.12950.019*
C50.37710 (18)0.16110 (9)0.1525 (3)0.0153 (4)
H5A0.28880.15830.16430.018*
C60.48096 (18)0.13218 (8)0.3132 (3)0.0130 (4)
C70.45272 (19)0.09798 (8)0.4963 (3)0.0147 (4)
H7A0.36450.09710.50960.018*
C80.51663 (18)0.03447 (8)0.8182 (3)0.0126 (4)
C90.62640 (18)0.01408 (9)0.9863 (3)0.0153 (4)
H9A0.71330.02350.97660.018*
C100.39007 (19)0.01950 (9)0.8339 (3)0.0166 (4)
H10A0.31460.03250.72020.020*
C110.7985 (2)0.20505 (10)0.0612 (3)0.0197 (4)
H11A0.89390.20200.04590.029*
H11B0.77440.24900.04870.029*
H11C0.74930.18870.20670.029*
C120.0159 (2)0.12323 (10)0.4736 (4)0.0231 (5)
H12A0.08210.12940.41730.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0318 (3)0.0392 (3)0.0202 (3)0.0063 (2)0.0064 (2)0.0025 (2)
Cl20.0281 (3)0.0258 (3)0.0401 (4)0.0015 (2)0.0128 (2)0.0010 (2)
Cl30.0394 (3)0.0294 (3)0.0264 (3)0.0015 (2)0.0102 (2)0.0048 (2)
O10.0158 (6)0.0169 (7)0.0145 (7)0.0007 (5)0.0034 (5)0.0060 (6)
O20.0184 (7)0.0165 (7)0.0168 (7)0.0003 (5)0.0079 (6)0.0046 (6)
N10.0192 (8)0.0095 (7)0.0115 (8)0.0006 (6)0.0053 (6)0.0004 (6)
C10.0184 (9)0.0062 (8)0.0120 (9)0.0000 (7)0.0023 (7)0.0009 (7)
C20.0165 (9)0.0087 (8)0.0127 (9)0.0017 (7)0.0047 (7)0.0021 (7)
C30.0230 (10)0.0084 (9)0.0124 (10)0.0012 (7)0.0050 (8)0.0004 (7)
C40.0195 (9)0.0115 (9)0.0143 (10)0.0017 (7)0.0005 (8)0.0010 (8)
C50.0144 (9)0.0128 (9)0.0189 (10)0.0006 (7)0.0047 (8)0.0000 (8)
C60.0188 (9)0.0084 (8)0.0121 (9)0.0021 (7)0.0050 (7)0.0023 (7)
C70.0170 (9)0.0116 (9)0.0167 (10)0.0024 (7)0.0066 (8)0.0008 (7)
C80.0188 (9)0.0080 (8)0.0126 (9)0.0003 (7)0.0070 (7)0.0024 (7)
C90.0151 (9)0.0138 (9)0.0186 (10)0.0007 (7)0.0072 (8)0.0011 (8)
C100.0171 (9)0.0148 (9)0.0164 (10)0.0021 (7)0.0021 (8)0.0024 (8)
C110.0220 (10)0.0222 (11)0.0179 (11)0.0021 (8)0.0105 (8)0.0048 (8)
C120.0190 (10)0.0284 (12)0.0214 (11)0.0022 (8)0.0049 (8)0.0025 (9)
Geometric parameters (Å, º) top
Cl1—C121.768 (2)C4—H4A0.9500
Cl2—C121.771 (2)C5—C61.408 (3)
Cl3—C121.763 (2)C5—H5A0.9500
O1—C11.354 (2)C6—C71.452 (3)
O1—H10.8400C7—H7A0.9500
O2—C21.369 (2)C8—C101.393 (3)
O2—C111.431 (2)C8—C91.400 (3)
N1—C71.292 (2)C9—C10i1.381 (3)
N1—C81.418 (2)C9—H9A0.9500
C1—C61.400 (3)C10—C9i1.381 (3)
C1—C21.409 (3)C10—H10A0.9500
C2—C31.383 (3)C11—H11A0.9800
C3—C41.399 (3)C11—H11B0.9800
C3—H3A0.9500C11—H11C0.9800
C4—C51.375 (3)C12—H12A1.0000
C1—O1—H1109.5C6—C7—H7A119.2
C2—O2—C11116.63 (14)C10—C8—C9118.75 (17)
C7—N1—C8121.48 (16)C10—C8—N1125.04 (17)
O1—C1—C6122.35 (17)C9—C8—N1116.21 (16)
O1—C1—C2117.87 (16)C10i—C9—C8120.83 (18)
C6—C1—C2119.78 (16)C10i—C9—H9A119.6
O2—C2—C3125.84 (17)C8—C9—H9A119.6
O2—C2—C1114.35 (15)C9i—C10—C8120.41 (17)
C3—C2—C1119.81 (17)C9i—C10—H10A119.8
C2—C3—C4120.26 (18)C8—C10—H10A119.8
C2—C3—H3A119.9O2—C11—H11A109.5
C4—C3—H3A119.9O2—C11—H11B109.5
C5—C4—C3120.46 (17)H11A—C11—H11B109.5
C5—C4—H4A119.8O2—C11—H11C109.5
C3—C4—H4A119.8H11A—C11—H11C109.5
C4—C5—C6120.21 (18)H11B—C11—H11C109.5
C4—C5—H5A119.9Cl3—C12—Cl1110.39 (12)
C6—C5—H5A119.9Cl3—C12—Cl2110.22 (12)
C1—C6—C5119.47 (17)Cl1—C12—Cl2109.93 (12)
C1—C6—C7120.62 (17)Cl3—C12—H12A108.7
C5—C6—C7119.90 (17)Cl1—C12—H12A108.7
N1—C7—C6121.54 (17)Cl2—C12—H12A108.7
N1—C7—H7A119.2
C11—O2—C2—C33.6 (3)C2—C1—C6—C7179.44 (17)
C11—O2—C2—C1176.48 (16)C4—C5—C6—C10.3 (3)
O1—C1—C2—O21.5 (2)C4—C5—C6—C7179.84 (17)
C6—C1—C2—O2179.08 (16)C8—N1—C7—C6178.93 (16)
O1—C1—C2—C3178.60 (16)C1—C6—C7—N12.4 (3)
C6—C1—C2—C30.9 (3)C5—C6—C7—N1177.12 (17)
O2—C2—C3—C4178.67 (17)C7—N1—C8—C1011.6 (3)
C1—C2—C3—C41.3 (3)C7—N1—C8—C9169.16 (17)
C2—C3—C4—C50.9 (3)C10—C8—C9—C10i0.9 (3)
C3—C4—C5—C60.1 (3)N1—C8—C9—C10i179.83 (17)
O1—C1—C6—C5179.37 (17)C9—C8—C10—C9i0.9 (3)
C2—C1—C6—C50.1 (3)N1—C8—C10—C9i179.90 (17)
O1—C1—C6—C71.1 (3)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.841.842.584 (2)147
C12—H12A···O1ii1.002.213.120 (3)150
C12—H12A···O2ii1.002.303.121 (3)139
C3—H3A···Cg1iii0.952.733.5221 (19)142
Symmetry codes: (ii) x1, y, z; (iii) x, y1/2, z3/2.

Experimental details

Crystal data
Chemical formulaC22H20N2O4·2CHCl3
Mr615.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.4773 (2), 21.3287 (5), 6.2424 (2)
β (°) 105.669 (2)
V3)1343.13 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.67
Crystal size (mm)0.54 × 0.18 × 0.07
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.712, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
10624, 3069, 2361
Rint0.033
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.090, 1.03
No. of reflections3069
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.25

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.84001.84002.584 (2)147.00
C12—H12A···O1i1.00002.21003.120 (3)150.00
C12—H12A···O2i1.00002.30003.121 (3)139.00
C3—H3A···Cg1ii0.95002.73003.5221 (19)142.00
Symmetry codes: (i) x1, y, z; (ii) x, y1/2, z3/2.
 

Footnotes

Additional correspondence author, e-mail: ohasnah@usm.my.

Acknowledgements

We thank the Malaysian Government and Universiti Sains Malaysia for an FRGS grant [304/PKIMIA/638122] to conduct this work. MHAl-D thanks the Yemen Government and Hadhramout University of Science and Technology for financial scholarship support. HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAl-Douh, M. H., Hamid, S. A. & Osman, H. (2008). In Proceedings of Asian Scientific Conference on Pharmaceutical Technology, June 1–3, Batu Ferringhi, Penang, Malaysia, Poster ASC088.  Google Scholar
First citationAl-Douh, M. H., Hamid, S. A., Osman, H., Ng, S.-L. & Fun, H.-K. (2006). Acta Cryst. E62, o3954–o3956.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAl-Douh, M. H., Hamid, S. A., Osman, H., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o3570–o3571.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2051.  CrossRef Web of Science Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKabak, A., Elmalıi, A., Elerman, Y. & Durlu, T. N. (2000). J. Mol. Struct. 553, 187–192.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Y.-F., Xia, H.-T., Yang, S.-P. & Wang, D.-Q. (2006). Acta Cryst. E62, o5908–o5909.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParra, M. R., Garcia, T., Lorenzo, E. & Pariente, F. (2007). Biosens. Bioelectron. 22, 2675–2681.  Web of Science PubMed Google Scholar
First citationSalem, I. A. & Amer, S. A. (1995). Transition Met. Chem. 20, 494–497.  CrossRef CAS Web of Science Google Scholar
First citationShah, A. M., Helal, M. H. S., Al-Douh, M. H., Hamid, S. A. & Osman, H. (2008). In Proceedings of 22nd Scientific Meeting of Malaysian Society of Pharmacology and Physiology, April 5-6, Kuala Lumpur, Malaysia, Poster 58.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeoh, S. G., Yeap, G. Y., Loh, C. C., Foong, L. W., Teo, S. B. & Fun, H.-K. (1997). Polyhedron, 16, 2213–2221.  CSD CrossRef CAS Web of Science Google Scholar
First citationViswanathamurthi, P., Dharmaraj, N., Anuradha, S. & Natarajan, K. (1998). Transition Met. Chem. 23, 337–341.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o680-o681
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds